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Abstract 

In-line inspection (ILI) is important to pipeline integrity management since it can detect pipeline defects and identify 
potential failure locations through periodical examinations. However, effectively evaluating defects based on ILI data 
is challenging. Measurements of ILI are easily influenced by instrument performance and maintenance activities, 
leading to unmatched and imbalanced data. Poor ILI data make it difficult to establish defect growth models based 
on multiple inspections. This study conducted comprehensive analysis of ILI data for evaluating corrosion defects of 
a steel pipeline. First, statistical analysis was performed on raw data to visualize distributions of corrosion depths and 
number of corrosions. Second, hierarchical clustering method was used to classify corrosion severity levels based 
on features of corrosion depth and estimated repair factor. The interaction effect between adjacent corrosions was 
considered. Machine learning methods, including k-nearest neighbor, support vector machine, random forest, and 
light gradient boosting machine were used to explore the relationship between the location parameters of adjacent 
corrosions and severity levels. Then, maximum corrosion depths and corrosion density were filtered from raw ILI data 
of multiple inspections, which were critical for pipeline failure prediction. Finally, distribution parameters were fitted to 
establish stochastic growth models on maximum corrosion depth and corrosion number density. This study presents 
data analytics based approach to obtain valid information from ILI data in practice.
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Introduction
Pipelines play a significant role in transporting substan-
tial amounts of oil and gas commodities across long 
distances. Steel pipes may suffer from different types of 
defects, including corrosion, cracking, and mechanical 
damage. If these defects are not properly monitored and 
repaired, it may cause public safety issues and economic 
losses. Pipeline integrity management has been devel-
oped to keep pipelines in safe operating conditions. It 

is a program that coordinates procedures, instruments, 
and tasks for evaluating the condition of pipelines. It can 
help schedule inspection and maintenance work to lower 
failure risk [27]. Generally, it includes three main compo-
nents: defects detection and identification, defect growth 
prediction, and risk-based management.

Non-destructive evaluation methods such are widely 
used for in-line inspection (ILI) to locate and identify 
anomalies on pipelines. Magnetic flux leakage (MFL) and 
ultrasonic tools are common ILI techniques used for cor-
rosion inspection of steel pipes. Different ILI tools show 
different capabilities to identify corrosion features. Some 
ILI tools can identify corrosion features with unique 
geometries including corrosion pits, axial grooving, and 
general corrosion better than others. Generally, ILI tools 
have average accuracy within ± 10% of pipe wall thickness 

*Correspondence:
Hao Wang
hwang.cee@rutgers.edu
1 Department of Civil and Environmental Engineering, School 
of Engineering, Rutgers, The State University of New Jersey, New 
Brunswick, USA

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s43065-023-00081-w&domain=pdf


Page 2 of 19Cui and Wang  J Infrastruct Preserv Resil            (2023) 4:14 

[26]. To predict defect growth and time to failure, ILI 
need to be performed periodically. Defects from at least 
two inspections should be matched to their positions in 
the pipeline. However, each ILI uses its own coordinate 
system to locate detected corrosions in the pipeline [22]. 
As a result, these inconsistent coordinate systems would 
lead to unmatched data from multiple ILI runs. In addi-
tion, the accuracy of ILI tools is greatly influenced by 
instruments error and environmental conditions [4]. 
Changes in technologies and maintenance activities 
make it difficult to obtain consistent ILI data from mul-
tiple years.

Corrosion is one of the most important defects that 
affects the pipeline integrity directly. There are large 
quantities of ILI data on corrosion features. There-
fore, extracting useful information from corrosion ILI 
data is important. Corrosion defects on pipeline can be 
divided into single defect and interacting multiple defects 
[19]. Compared to single defect, analysis of interaction 
between multiple corrosion defects was more complex. 
Chiodo and Ruggieri [7] found that interactions between 
adjacent defects would influence the failure pressure of 
pipeline significantly. Similarly, it was reported that the 
failure pressure of pipeline decreased significantly due to 
interaction effects between adjacent corrosion defects [6, 
14, 24, 25]. Therefore, the assessment of interacting cor-
rosion defects is desired from ILI data.

In addition to interacting effects that need to be con-
sidered, establishing appropriate growth model is also 
important for pipeline integrity management. The reli-
able prediction of defect growth can help schedule future 
inspection and maintenance activities to prevent poten-
tial pipeline failures in the future. There are two catego-
ries of defect growth models: the model-based approach 
and the data-driven approach. Model-based approaches 
primarily rely on physical models, such as finite element 
models, to predict defect growth. Liu et al. [15] employed 
Bayesian networks to update the likelihood of subsea 
pipeline damage and estimated the ultimate probability 
of damage. Based on this probability, they were also able 

to predict the remaining useful life of the pipeline. The 
data-driven approach is to use ILI data or sample data to 
investigate the propagation of defects. F. Caleyo et al. [5] 
used the Markov chain to estimate the time-dependent 
growth rate of pipelines. Arzaghi et al. [1] used Dynamic 
Bayesian network (DBN) to predict varying growth rates 
of pitting and corrosion degradation in subsea pipelines. 
Instead of calculating corrosion growth rates, Mohd et al. 
[18] used Weibull distribution to develop a time-depend-
ent corrosion depth model that can predict the peak 
depth of pipeline at any given age. Similarly, Gumbel 
distribution was adopted to predict the growth of block 
maximum corrosion depth [13]. Further to this study, 
the peaks over threshold (POT) method was also used to 
improve the evaluation performance of extreme values 
[28]. Therefore, it is applicable to use different distribu-
tion parameters to establish stochastic growth models of 
different corrosion features.

In summary, how to process and analyze existing ILI 
data from multiple years is of great significance. Complex 
corrosion features may be unmatched on both spatial and 
temporal scales. Therefore, this study aimed to propose 
a comprehensive procedure to analyze both raw and fil-
tered ILI data. Firstly, distributions of corrosion number 
and corrosion depth were visualized to provide prelimi-
nary evaluation. Then, interacting effects of adjacent cor-
rosions were considered to find the relationship between 
defect locations and defect severities. Finally, stochastic 
growth models were established to predict the evolu-
tion of maximum corrosion depth and corrosion number 
density.

Data collection
The ILI dataset was obtained from Magnetic Flux Leak-
age (MFL) tools in 2005, 2012 and 2016, respectively. A 
12-mile steel pipeline which was originally built in 1974 
was inspected. Based on the history of replacements and 
relocations, the pipeline was divided into several seg-
ments (a-g), as listed in Table 1.

Table 1 General information about the pipeline

Line segment No Length (feet) Outer diameter (in.) Wall thickness (in.) Pipe grade Year installed

a 51,241 30 0.562 5L × 42 1974

b 613 24 0.438 5L × 42 1974

c 772 20 0.375 5L × 42 1982

d 5,910 30 0.562 5L × 60 2005

e 1,698 30 0.562 5L × 60 2005

f 41 6.625 0.28 5L × 42 1974

g 654 30 0.562 5L × 42 2002
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In this study, external corrosion defects were selected 
for analysis since it is the major defect observed in this 
pipeline. The pipeline consisted of 1,955 girth welds in 
total. Corrosions did not occur in every segment of all 
girth weld numbers. Therefore, only girth weld number 
with corrosion defects were extracted from the ILI data-
set. From 2005 to 2016, about 400 girth weld numbers 
showed external corrosions. Table 2 displays the number 
of corrosion defects present in each girth weld location, 
with some locations having multiple defects. Details of 
ILI dataset included girth weld number, absolute dis-
tance, peak depth, length and orientation.

Analysis methodology
Clustering
The objective of clustering is to divide observations into 
several clusters so that data points within the same clus-
ter are similar to each other. In this study, hierarchical 
clustering method was used to separate corrosion defects 
with similar features. Corrosion severity levels have a 
hierarchical structure, as most features of defects in high 
level would be severer than low level. Therefore, hierar-
chical clustering is suitable for the classification of corro-
sion severity level.

Hierarchical clustering includes divisive and agglom-
erative algorithms. The divisive algorithm is a top-down 
approach. At the beginning, all the observations belong 
to one cluster. Then, different observations will be 
divided into more clusters according to the certain crite-
rion such as distance. On the contrary, the agglomerative 
algorithm is a bottom-up approach. Each observation is a 
cluster at first. Then, similar observations will be merged 
to fewer clusters.

In this study, the agglomerative algorithm was used. 
It can determine the similarity between observations of 
each cluster by measuring the distance between them. 
Smaller distance indicates higher similarity. Therefore, 
the clustering algorithm merges the two clusters with the 
shortest distance between them to construct the clus-
tering tree. Measurements of distance between clusters 
can be conducted through different methods, such as 
single, complete, centroid, average and ward linkages. 

Single linkage clustering calculates the distance between 
two clusters as the shortest distance between any two 
data points in each cluster. In contrast, complete linkage 
clustering uses the maximum distance between any two 
data points in each cluster. Average linkage clustering 
calculates the average distance between all pairs of data 
points in each cluster. Centroid linkage clustering calcu-
lates the distance between the centroids of each cluster. 
These linkage methods may be sensitive to anomalous 
data points and easy to generate unreasonable cluster-
ing. However, data points of corrosion defects have many 
outliers. Therefore, ward linkage was used in this study. 
Ward linkage can minimize the loss of combining clus-
ters each time. It calculates the error sum of squares 
(ESS) of each cluster. Small ESS value means agglomera-
tive data points. Therefore, clusters can be combined to 
fewer clusters by minimizing the increase of ESS.

Classification
Machine learning methods
To find relationship between defect location parameters 
and severity levels, different machine learning methods 
were used, including k-nearest neighbors (KNN), support 
vector machine (SVM), random forest (RF), and light 
gradient boosting machine (LightGBM).

KNN is a supervised learning method proposed by 
Fix and Hodges [11]. In classification, an unlabeled data 
point will be assigned to the label that is most commonly 
found among the k-nearest training data points from 
the target data point. Therefore, the select of k value and 
measurement of distance are important for KNN.

SVM is initially a binary classification approach which 
is aimed to construct an optimal separation hyperplane 
[17]. The hyperplane has the maximum distance from 
the nearest sample points (called support vector) on 
both sides. Therefore, SVM can balance the learning abil-
ity and the complexity of the model. By means of kernel 
functions, SVM is capable of mapping data from a low-
dimensional space to a higher-dimensional space. There 
are three commonly used kernel functions, including the 
linear kernel, polynomial kernel and radial basis function 
(RBF) kernel [20].

RF was proposed to solve classification, clustering, and 
prediction problems. It is a decision tree based machine 
learning algorithm evolved from the bagging ensemble 
learning. Firstly, a decision tree consisting of multiple 
independent forests is randomly generated. Then, fea-
tures are selected by calculating the information gain. 
From the root node, the tree is split according to the fea-
ture partitioning condition and the principle of minimum 
node purity until the rule is satisfied. Usually, information 
entropy is used to measure the purity of data [3]. Differ-
ent from the single decision tree method, Random Forest 

Table 2 Number of external corrosion defects found in different 
inspection years

Inspection year Defects 
count 
no

2005 792

2012 1345

2016 2508
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randomly selects m subsamples from the original data-
set with put-back. And then it will train a single decision 
tree with k randomly-selected features. The optimal fea-
tures are chosen from these k features to split the nodes. 
After that, t decision tree can be constructed by repeat-
ing above process t times. The final prediction result is a 
weighted average of each decision tree.

LightGBM is a boosting tree algorithm in the ensem-
ble learning [12]. It utilizes a leaf-wise approach to select 
the best split, allowing it to identify the leaf node with the 
highest split gain out of all the leaf nodes in the decision 
tree. LightGBM optimizes training data points based on 
the gradient of each data point. Data point with larger 
gradient means larger contributions to the informa-
tion gain. The algorithm employs a histogram-based 
method to convert continuous feature values into k inte-
gers, thereby allowing for the creation of a histogram 
with a width of k. Subsequently, the algorithm will iter-
ate through the training data to compute the cumulative 
statistics for each discrete value present in the histogram. 
In this case, only discrete values of the sorted histogram 
are required to be traversed when choosing the splitting 
point of feature. Therefore, LightGBM can decrease the 
computation cost significantly.

Evaluation metrics
For binary classification, accuracy, precision, recall and 
F1 score are usually used to evaluate model performance. 
Accuracy, as defined by Baldi et al. [2], is the proportion 
of correctly classified samples in the testing dataset out 
of all the samples. Precision, on the other hand, is the 
percentage of true positive samples among all the pre-
dicted positive samples. Recall is the percentage of truly 
predicted positive samples out of all truly positive sam-
ples. F1 score is a balanced score that combine precision 
and recall. These metrics can be calculated as shown in 
Eq. (1) to (4) [21].

where, TP represents number of positive samples cor-
rectly predicted as positive; TN represents number of 
negative samples correctly predicted as negative; FP is 

(1)Accuracy =
TN + TP

TN + FP + TP + FN

(2)Precision =
TP

TP + FP

(3)Recall =
TP

TP + FN

(4)F1 =
2× Precision× Recall

Precision+ Recall

number of negative samples incorrectly predicted as pos-
itive; FN is number of positive samples incorrectly pre-
dicted as negative.

For multi-classification, it can be regarded as multiple 
binary classifications. Therefore, average value of them can 
be used to evaluate the model performance. In this study, 
weighted F1 score was calculated, because it takes into 
account the importance of different categories [16].

Defects growth predictions
Data preprocessing
In the ILI dataset, not all inspection locations had external 
corrosions. Normal points and manufactural bend were 
also common. Therefore, data points of external corrosions 
were filtered first. After that, the segments with replace-
ment recordings were eliminated because it will influence 
the defect growth.

However, to establish growth models, the filtered data 
still needed to be organized according to certain rules. For 
the growth model of corrosion depth, the maximum peak 
depth in each segment was selected, as maximum cor-
rosion depth is one of the most important factors leading 
to pipeline failure. Then, only data showing continuous 
increase in maximum depth over inspection years were 
filtered. This approach yields a more conservative data 
subset, which will be used to analyze the growth of maxi-
mum corrosion depth in further analysis. For the growth 
model of corrosion density, data points that deviated from 
the mean value by more than 3 times the standard devia-
tion were removed. Except for these outliers, all data points 
were used for growth prediction of corrosion density.

Distribution models and parameters were used to predict 
future corrosions because these distributions can capture 
the trend of corrosion based on previous ILI data. Corrosion 
growth process is complicated so that using stochastic growth 
models instead of simplified growth rate may be better.

Gumbel distribution
Gumbel distribution is particular useful in fitting the distri-
bution of extreme values. Since maximum corrosion depth 
is the extreme value, Gumbel distribution was selected to 
fit corrosion depth data. Gumbel distribution is derived 
from the extreme value theory that developed by Fisher 
and Tippett [10]. The probability distribution function of 
the maximum value for each sample converges to the gen-
eralized extreme value (GEV) distribution. Gumbel distri-
bution is a special form of GEV distribution, as expressed 
in Eq. (5) [13].

where, Gt(z) is the density when the maximum corro-
sion depth is equal to z; and z is the maximum corrosion 

(5)Gt(z) = e−e
z−µ(t)
σ (t)
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depth in this study; μ is the location parameter; σ is the 
scale parameter; and t is the inspection year.

Weibull distribution
Weibull distribution is a non-stationary distribution that 
follows Cole’s method [9]. It is usually used to model the 
reliability. Weibull distributions can model right-skewed 

data, left-skewed data, or symmetric data [23]. In this 
study, corrosion number density is an index that reflects 
the number of defect per unit distance. In different seg-
ment, the number density has a large difference. Corro-
sion number density below 5 was the most, leading to 
left-skewed ILI data. In this case, Weibull distribution 

Fig. 1 Number of defects along the pipeline from 2005 to 2016 (a) scatter plot, (b) boxplot
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can be of great help. The expression of Weibull distribu-
tion is shown in Eq. (6) [13].

where, Wt(x) is the density when the corrosion num-
ber density is equal to x; and x is the corrosion number 

(6)Wt(x) =
ξ(t)

σ (t)

x

σ(t)

ξ(t)−1

× e
−

x
σ(t)

ξ(t)

, x ≥ 0

density; ξ is the shape parameter; σ is the scale param-
eter; and t is the inspection year.

Analysis results and discussion
Statistical analysis of corrosion depths and locations
To compare the distribution of corrosion defects, the 
number of defects in each girth weld number along the 
pipeline was counted, as shown in Fig. 1. Each girth weld 

Fig. 2 Corrosion depth along the pipeline from 2005 to 2016 (a) scatter plot, (b) boxplot
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Fig. 3 2D contour plot of peak depth in (a) 2005, (b) 2012, (c) 2016
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represents 30–40 feet pipe length. It can be seen that the 
average number of defects increased from 2005 to 2016, 
which is consistent with the change in total number of 
defects. In addition, the increase of corrosion defects 
around several girth weld numbers was found more 
significant. For example, the number of defects in seg-
ments around 11,080 girth weld number was 9 in 2005. 

However, it increased to 77 and 170 in 2012 and 2016, 
respectively, indicating the soil environment in these seg-
ments for high corrosion potential. However, the soil sur-
vey data were not available.

The comparison of corrosion depth was based on peak 
depth in each girth weld number. The peak depth is 
defined as the maximum depth of the corrosion divided 

Fig. 4 Density plots of (a) longitudinal locations of corrosion defects; (b) circumferential locations of corrosion defects

Fig. 5 Hierarchical clustering of corrosion defects based on peak depth and ERF
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by the wall thickness at the location of the corrosion. 
Therefore, the larger peak depth means the severer corro-
sion condition. The plot of peak depth along the pipeline 
is shown in Fig.  2. Interestingly, the average corrosion 
depth was observed to decrease from 2005 to 2016. This 
is reasonable because there were a lot of small corro-
sion defects generated in 2012 and 2016, which reduced 
the average depth. Ideally, the corrosion depth would 

Table 3 Classification results of corrosion severity levels

Severity level Average 
depth (%)

Average ERF Average 
length (in.)

Average 
width 
(in.)

Low 4.34 0.910 1.4 1.7

Medium 14.05 0.913 1.4 1.9

High 27.31 0.937 3.3 4.8

Fig. 6 Geographical distribution of corrosion severity levels

Fig. 7 Illustration of location parameters on a 2D plane for one pipe segment
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Fig. 8 Correlation plot between three input variables: (a) scatter pair plot, (b) heat map
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increase over years if no repair is placed. However, this 
trend was not observed at each inspection location. The 
variations can be caused by the changes in instrument 
performance of ILI tools and the maintenance or repair 
activities between different inspections. However, the 
information of these changes were not available in this 
study. Therefore, establishing the corrosion depth growth 
model based on raw ILI data was not suitable.

For the localized segment, corrosion depth presented 
certain increasing trend. As shown in Fig.  1, the corro-
sion depths were the most severe around the distance of 
4500–5000 feet. Therefore, 2D contours of the peak cor-
rosion depth were plotted in these segments, as shown in 
Fig.  3. In Fig.  3, x-axis was the absolute distance to the 
original location; y-axis was the orientation degree in the 
circumferential direction. For example, 0° and 360° rep-
resented the top of pipeline, while 180° denoted the bot-
tom of pipeline. It shows that the area of maximum peak 
depth increased a lot in 2016, compared to 2005. In addi-
tion, it was found that maximum peak corrosion depths 
were located at around 4600 and 4800 feet with circum-
ferential degrees of 150°-200°.

To have better understanding of the corrosion distribu-
tion, the density plots of axial and circumferential loca-
tions of corrosion defects were shown in Fig.  4. It was 
found that external corrosions were more likely to occur 
at 10 and 30 feet relative to the pipeline joint. The cir-
cumferential degree was mainly around 180°, indicating 
external corrosion tended to happen at the bottom of 
steel pipe.

Interaction of adjacent defects on corrosion severity level
Classification of corrosion severity level
In this section, ILI data in 2016 was used to investigate 
the relationship between corrosion severity level and 
defect location parameters. Estimated repair factor (ERF) 
is the ratio of maximum allowable operating pressure 
(MAOP) of pipeline to the safe working pressure. Both 
peak depth and ERF are the significant indicators about 
corrosion severity level. Higher peak depth and ERF 
indicate defects that are more dangerous. Therefore, all 
defects were divided into several clusters through hierar-
chical clustering method based on defect depth and ERF, 
as shown in Fig. 5.

To better characterize the corrosion severity level, 
these clusters needed to be combined to fewer catego-
ries. Clustering methods can capture characteristics of 
data distribution based on distance criteria. However, 
to obtain reasonable severity levels, empirical methods 
should also be considered. Therefore, cluster 1, cluster 
3 and cluster 4 were combined to represent the highest 
defect level, because these clusters had the highest value 
in peak depth or ERF. Similarly, cluster 5 were used to 

represent medium severity level. Cluster 2 were the low 
severity level. It should be noted that the low, medium, 
and high severity levels here are relative in this ILI 
dataset.

Table  3 shows the classification results of sever-
ity level. From the table, it is obvious that the average 
defect depth, ERF, length and width were the most in 
high severity level. This is reasonable, as higher val-
ues mean higher risk of failure. Therefore, defects at 
high severity level should be prioritized in the mainte-
nance scheduling. Furthermore, the geographical dis-
tribution of three severity levels can be seen in Fig. 6. 
Defects with high severity level were mainly found in 
low latitudes, indicating the soil environment in low 
latitudes may have high corrosion potential.

Relationship between corrosion location parameters 
and severity level
As stated above, corrosion severity level was classified 
based on defect depth and ERF. These two indicators are 
geometric parameters related to defects themselves and 
do not take into account the interactions between multi-
ple defects. In this study, three location parameters were 
selected to represent the interacting effect of adjacent 
defects, including OD,  Sc and  SL. OD denotes the relative 
distance between the centroid of corrosion defect and 
pipeline girth weld.  Sc is the distance between two adja-
cent corrosion defects in the circumferential direction, 
while  SL is the distance between two adjacent corrosion 
defects in the longitudinal direction. Detailed illustra-
tions of these parameters are depicted in Fig. 7.

It should be noted that final values of OD,  Sc and  SL 
were the minimum of upstream and downstream values. 
This is because the interacting effect of adjacent defects is 
mainly caused by the nearest ones. After obtaining location 
parameters, the correlation between these factors should 
be analyzed first to avoid co-linearity. Figure 8 (a) shows the 
correlation between each two variables. It can be observed 
that the scatter data points of them distributed randomly. 
No obvious linear or nonlinear relationship were found. 
From Fig. 8 (b), correlation coefficients between each pair 
were also small, indicating that the co-linearity did not exist 
in these variables. Therefore, there is no need to reduce the 
dimensionality of these variables.

Machine learning methods were used to analyze the 
relationship between location parameters and severity of 

Table 4 Performance of different machine learning methods

Metrics KNN SVM RF LightGBM

Accuracy 72.71% 74.24% 74.83% 74.15%

Weighted F1 0.67 0.69 0.71 0.69
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Fig. 9 (a) importance of input variables on three severity levels of corrosion defects; and impact of input variables on (b) low; (c) medium; (d) high 
severity level
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corrosion. Taking OD,  Sc and  SL as the input variables and 
three severity levels as responses, the fitting results using 
four different machine learning methods (KNN, SVM, RF, 
LightGBM) were listed in Table 4. As can be seen, random 
forest shows the best performance among all methods.

The importance of three location parameters were fur-
ther analyzed using random forest model. Shapley Additive 
Explanation (SHAP) was used to interpret the classification 
results. It is a method derived from coalitional game theory 
[8]. Initially, SHAP value is developed to evaluate the con-
tributions from each player to the game. In the model inter-
pretation, the prediction made by a model can be explained 
as the sum of the contribution or attribution values of each 
input variable used in the model. Therefore, the impact 

value of each feature can be calculated as SHAP value. A 
higher SHAP value indicates a more important feature.

In Fig.  9 (a), class 0 represented the low severity level, 
class 1 represented the medium severity level, class 2 rep-
resented the high severity level. It can be seen that OD had 
the most significant impact on the classification, followed 
by  SL and  Sc. Furthermore, positive and negative correla-
tions between location parameters and severity level can be 
interpreted. As shown in Fig. 9 (b), high feature values of 
OD,  SL and  Sc mainly distributed in regions greater than 0. 
That means greater value of OD,  SL and  Sc can make more 
defects belong to low severity level. Similarly, in Fig. 9 (d), 
high feature values of OD,  SL and  Sc mainly distributed in 
regions smaller than 0, which means smaller value of OD, 

Fig. 10 Plot of maximum corrosion depth (a) density plot, (b) boxplot
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 SL and  Sc can make more defects belong to high severity 
level. When considering the location parameters OD,  SL, 
and  Sc, smaller values of these parameters indicate higher 
potential for more critical corrosion defects. A smaller 
value of OD implies that the corrosion defect is located 
closer to the pipeline joint, increasing the likelihood of 
high severity. Similarly, smaller values of  SL and  Sc indicate 
that the corrosion defects are located closer together in the 
longitudinal and circumferential directions, respectively, 
which can lead to higher potential for interaction and 

Fig. 11 Fitting of Gumbel Distribution in different inspection years (a) histogram plot, (b) Q-Q plot

Table 5 Fitting parameters of Gumbel distributions

Inspection year Location parameter (μ) Scale 
parameter 
(σ)

2005 16.53 7.68

2012 18.83 7.96

2016 22.47 8.97
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combined effect. Therefore, smaller values of these location 
parameters can cause more severe corrosion defects.

Stochastic growth models
Maximum corrosion depth
To predict the growth of maximum corrosion depth, the 
raw dataset was processed to obtain the reasonable sub-
sets for further analysis. Relative distance to the girth weld 
number was used to locate the defect location; For the 
defects at the close locations, only the data that shows the 
continuous growth trend of maximum corrosion depth 
over inspection years were selected. That means, if the 
maximum corrosion depth keeps growing, it can be con-
sidered that this location was most susceptible to external 
corrosion. This approach resulted in a smaller and more 
conservative data subset, which was used to analyze the 
growth of maximum corrosion depth. The density and 
box plot of the extracted data subset are shown in Fig. 10. 
It shows that the maximum corrosion depth increases 
over time and can be used for growth prediction.

Considering that the Gumbel distribution is particular 
useful in representing the probability distribution of the 
maximum value in a sample, the corrosion depths in the 
subset were fitted to the Gumbel distribution. The theo-
retical and empirical quantiles were compared through 
the histogram and Q-Q plots as shown in Fig.  11. The 
data points are close between theoretical and empiri-
cal quantiles, indicating the fitted Gumbel distribution 
has high accuracy. The fitting parameters are shown in 
Table 5.

Using the linear regression to fit the Gumbel distribu-
tion parameters over the inspection year, the fitted line 
can be seen in Fig. 12. It can be found that the location 
and scale parameters have an increasing trend that indi-
cates the growth of maximum corrosion depths. The 
linear model can be expressed in Eq.  (7) and (8). After 
obtaining the two parameters, the Gumbel distribution 
can be used to calculate the density of maximum corro-
sion depth at the year of interest.

Fig. 12 Fitted lines of Gumbel distribution parameters (a) location parameter; (b) scale parameter with respect to inspection year
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where, μ is the location parameter; σ is the scale param-
eter; and t is the inspection year.

Corrosion number density
In this study, corrosion number density denotes the 
number of defects per unit distance. Therefore, the 
number of corrosion defects in each segment of girth 
weld was used to construct the probabilistic model 
of number growth. As stated before, the number of 
defects tended to increase over time. However, there 
were many outliers in raw data, which had a negative 

(7)µ(t) = 0.5161t − 1018.7

(8)σ(t) = 0.1085t − 210.1

effect on the fitting of growth distribution parameters. 
Therefore, raw data for the number of defects were 
processed to filter these outliers. Data points that devi-
ated from the mean value by more than three times the 
standard deviation were deleted. The density and box 
plot of the processed data can be seen in Fig. 13.

Then, Weibull distribution was used to fit the cor-
rosion number density. As shown in Fig.  14, most of 
the observations were located in the tails, which was 
consistent with non-stationary assumption of Weibull 
distribution [9]. In addition, it can be observed that 
the percentage of corrosion number density with high 
values increased over time. Therefore, more corrosion 
defects could be found in the same segment in 2016 
than 2005 and 2012.

Fig. 13 Plot of corrosion number density (a) density plot, (b) boxplot
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The fitted parameters of Weibull parameters can be 
seen in Table 6. And the linear regression of these param-
eters are shown in Fig.  15. It was found that the shape 
parameter decreased over time, but the scale parameters 
had an increasing trend. The linear model is expressed in 
Eq. (9) and (10). After obtaining the two parameters, the 
Weibull distribution can be used to calculate the density 
of corrosion number density at the year of interest.

(9)ξ(t) = −0.021t + 43.56

Conclusions
This study used statistical analysis and data analytics to 
analyze ILI data of pipeline corrosions. Firstly, the dis-
tributions of corrosion depths and the number of cor-
rosions on raw data were visualized. Then, the corrosion 
severity levels were classified based on the clustering of 
corrosion depth and ERF. Relationship between location 

(10)σ(t) = 0.1313t − 260.94

Fig. 14 Fitting of Weibull Distribution in different inspection years (a) histogram plot, (b) Q-Q plot
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parameters and corrosion severity level considering 
interactive effects were explored. In addition, raw ILI 
data were processed to obtain useful data for establishing 
stochastic growth prediction models on maximum corro-
sion depth and corrosion number density.

The number of corrosion defects increased significantly 
over years. However, average corrosion depths decreased 
due to the occurrence of small corrosions and mainte-
nance activities. In the longitudinal direction, corrosions 

were more likely to occur at 10 and 30 feet relative to 
pipeline joint; while in the circumferential direction, 
corrosions were prone to occur at the bottom of pipe-
line. In the segment of each girth weld number, the loca-
tions with shorter spacing between adjacent defects and 
the locations close to the girth weld were more prone 
to severe corrosion. For the entire pipeline, corrosion 
with higher severity level was mainly located in lower 
latitudes, indicating the soil environment in low latitudes 
may cause high corrosion potential.

The growth trend of two corrosion characteristics: 
maximum corrosion depth and corrosion number 
density were observed. Gumbel and Weibull distribu-
tion parameters of stochastic growth models can be 
used to predict the evolutions of maximum corrosion 
depth and corrosion number density, respectively. This 
study presents a detailed approach on how to obtain 
valid information from ILI data in practice, which can 
be further used for failure prediction and maintenance 
planning in pipeline integrity management system.

Table 6 Fitting parameters of Weibull distributions

Inspection year Shape parameter (ξ) Scale 
parameter 
(σ)

2005 1.52 2.40

2012 1.37 2.94

2016 1.29 3.92

Fig. 15 Fitted lines of Weibull distribution parameters (a) shape parameter; (b) scale parameter with respect to inspection year
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