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Abstract

such as smart meters.

neural network, Leak detection

The water supply network (WSN) is subjected to leaks that compromise its service to the communities, which,
however, is challenging to identify with conventional approaches before the consequences surface. This study
developed Machine Learning (ML) models to detect leaks in the WDN. Water pressure data under leaking versus
non-leaking conditions were generated with holistic WSN simulation code EPANET considering factors such as the
fluctuating user demands, data noise, and the extent of leaks, etc. The results indicate that Artificial Neural Network
(ANN), a supervised ML model, can accurately classify leaking versus non-leaking conditions; it, however, requires
balanced dataset under both leaking and non-leaking conditions, which is difficult for a real WSN that mostly
operate under normal service condition. Autoencoder neural network (AE), an unsupervised ML model, is further
developed to detect leak with unbalanced data. The results show AE ML model achieved high accuracy when leaks
occur in pipes inside the sensor monitoring area, while the accuracy is compromised otherwise. This observation
will provide guidelines to deploy monitoring sensors to cover the desired monitoring area. A novel strategy is
proposed based on multiple independent detection attempts to further increase the reliability of leak detection by
the AE and is found to significantly reduce the probability of false alarm. The trained AE model and leak detection
strategy is further tested on a testbed WSN and achieved promising results. The ML model and leak detection
strategy can be readily deployed for in-service WSNs using data obtained with internet-of-things (loTs) technologies
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Introduction

Water supply system provides one of the most essential
service for the communities. However, due to the deteri-
oration of the underground water pipe network, a large
amount of water is lost every year, mostly unnoticed.
According to [38], about 3281 megaliters (10%) of water
was wasted in the UK during 2009-2011, and about 15%
of supplied drinking water was wasted each year in the
US. The percentage of lost water is significantly higher
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in historical water districts such as Cleveland, Ohio, Bos-
ton, MA, etc. Many factors can cause leaks, such as pipe
corrosion, aging, defects and inappropriate installation
[21]. A detailed discussion is presented about the cause
of water main failures by Sadiq et.al [39]. Due to the
complex underground environment, predicting under-
ground water pipe failure remains a challenging prob-
lem. The state of practice with most agencies is to
rehabilitate pipes after leaks are directly observed [47],
while many small leaks remain undetected until the
damages surfaced in the form of ground cavitation etc.
Evidently, the agency perspective on cost does not in-
clude the socio-economic cost to the communities such
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as healthcare cost due to compromised water quality.
Technologies to detect leakage and forecast water pipe
failure will enable agencies to evolve into preventative
strategies with significant socio-economic benefits.

A significant amount of efforts has been made on
water pipe leak detection. Strategies can be broadly
classified in five categories, i.e., vision based, sensor/in-
strumental based, transient response based, model
based, and data-based [10]. The first two technologies
require to use specialized mobile inspection equipment
with optical, acoustic, or electromagnetic sensors [16,
20, 34], which is expensive and time-consuming. For
example, leak detection with acoustic signals can often
be influenced by the type of leak, opening size, pipe
materials and soil conditions [8]. Technology such as
ground penetrating radar can detect leak around pipe
but requires heavy human involvement in signal ana-
lyses [3, 5, 14]. The pressure or acoustic transient sig-
nals are used for pipe burst detection, since such
transient signals travel along the pipe at the speed of
sound starting from the burst location [41]. However,
the transient responses decay with distance and dimin-
ish over a short time, and therefore requires sensor
with high spatial and temporal resolution. Model-based
approach for leak detection has been theoretically
shown to be capable of identifying leakage and localize
its position. They are, however, very difficult to be im-
plemented in real systems [2, 12, 28] due to its require-
ments on detailed information required for a hydraulic
model such as the user demand, pipe condition, water
pressure distribution, etc. Such information is difficult
to collect or is typically not available. Empowered with
the Internet of Things (IoT) and artificial intelligence
(AI), data-driven technologies have been proven cap-
ability knowledge discovery [24], image processing [7],
and event forecasting, etc. [25]. Data-driven leak detec-
tion, which is based on learning from historical data
with statistical or pattern recognition algorithms, is
emerging [37]. It does not require collecting compre-
hensive set of information as needed for a model based
approach.

With the development of supervisory control and data
acquisition (SCADA) systems, real-time monitoring data
of water pressure and/or flow rate are available and can
be collected for the leak detection and localization [11,
22, 43]. Other data such as monitored acoustic sensor
data was found significantly affected by the environmen-
tal noise and limited transmission distance [27, 42]. The
monitored water pressure data of districted metering
areas (DMA) can be trained with a state of art ML
model to detect possible leak by used of the historical
data, which is combined with traditional methods such
as vision-based or instrument-based inspection to pin-
point leak location. Different ML algorithms have been
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developed for leaks detection, for example the ANNs
and a fully-line DensNet [30-32, 50]. The leaks or bursts
were also detected through comparing the predicted
water demand or the water pressure at nodes versus the
actual demand or pressure [4, 49].

The existing ML algorithms for leak detection gener-
ally include classification model, prediction-classification
model, and statistical model [48], each featuring advan-
tages and limitations. The classification model uses su-
pervised learning model and requires large datasets
under both normal conditions and leaking conditions. In
the practice, data under leaking conditions is generally
less commonly available. The prediction-classification
method belongs to unsupervised ML method and can be
trained just with data under normal service conditions.
Machine learning algorithms based on artificial neural
network and autoencoder neural network were devel-
oped and evaluated based on simulation data and
achieved reasonable accuracy [35, 44, 50]. The accuracy
of statistical ML model is dependent upon the uncer-
tainty levels.

To address this important issue, this paper explored
data driven machine learning (ML) model for leak moni-
toring of a desired water area in the WSN. The perform-
ance of a data-driven approach is highly dependent
upon the availability of historical data. Since data in an
actual water distribution network is not widely available
at this time, simulated data with industry certified hy-
draulic model EPANET is used to generate data used in
this study. The Artificial Neural Network (ANN), a su-
pervised ML algorithm, and Autoencoder neural net-
work (AE), an unsupervised ML models, were developed
to detect leak in a water supply network from sensor
data serving a District Meter Area (DMA). Both models,
which required balanced or unbalanced datasets respect-
ively, were found to achieve satisfactory results. Strategy
to improve detection accuracy is further developed by
multiple independent attempts of detection. The article
is organized as following: an introduction of the back-
ground and methodologies including the theoretical
basis of the hydraulic model for water pipe network,
background on ML models including artificial
intelligence neural network (ANN) and autoencoder
neural network (AE), and data generation scheme under
both normal and leaking conditions. This is followed by
the case studies of two hypothetic water distribution net-
work simulated by EPANET. The performance of ANN,
AE and a postprocessing framework are then described
and analyzed by using the first water distribution net-
work. The performance of AE model is future validated
on a larger network with complex water usage scenario,
i.e. C-Town water distribution network. Finally, the con-
clusions are provided to summarize the major discover-
ies of this paper.
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Theoretical background

Hydraulic model for water pipe network

A hydraulic model is commonly used to compute the
hydraulic parameters such as water pressure or water
head and flow rate for the design of a water distribution
network. The governing hydraulic equations describe the
conservation of mass and conservation of energy consid-
ering the topological characteristics of a water pipe net-
work. The hydraulic model allows to account for the
water usage behaviors (described as water demand fluc-
tuations at the service nodes) and events such as leak-
ages on the network performance. While hydraulic
model is regarded as sufficiently accurate for water net-
work planning purpose [48], there are uncertainties of
the model prediction results due to fluctuating water de-
mands, deteriorating pipe conditions, etc. A calibrated
hydraulic model serves as the basis for model-based leak
detection. Given it is sufficiently reliable, hydraulic
model can be utilized to generate holistic artificial data-
sets for the development and validation of ML-based
leak detection algorithms. As a general note, using holis-
tic artificially generated data is a common strategy in the
development of ML technologies when data is not avail-
able due to practice constraint. The key equations used
for the hydraulic computations are introduced in
following.

Equation (1) of the hydraulic model describes the con-
versation of mass at a pipe node, which prescribes that
under no leak condition the inflow of water to a pipe
node must be equal to the outflow of water. The outflow
of the water including the demand or use of water at
that node as well as water flowing from this node to
other nodes.

ZPGP,, qp,n - DZCt = 07 VneN# (1)

where P, is the set of pipes connected to the node #, g,
. is the flow rate of water into node # from pipe p (n°/
s), D% is the actual water demand at node n (m>/s), and
N is the set of all nodes in the pipe network. g, ,, is posi-
tive when water is flowing into node n from pipe p,
otherwise, it is negative.

Equation (2) of the hydraulic model describes the con-
versation of energy. For water pipe network, the total
energy is typically referred as the total water head, which
includes components describing the kinetic energy (kin-
etic water head), hydraulic potential energy (pressure

head), and gravitational potential energy (elevation
head), i.e.,
Pa P
hy = + tza=hy+H, =2 + +z5+Hp (2)
% Yw 2 Yw

where 7 is the total water head, u is the water velocity at
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each node, and z is the altitude of each node. H; is the
energy loss between node A and node B.

There are two major mechanisms for the energy lose
in a pipe flow [46], i.e., the distributed energy loss and
localized energy loss. The distributed energy loss along
the pipe due to hydraulic resistance is mainly deter-
mined by the velocity of the flow V, the internal diam-
eter of the pipe d, the length of the pipe L, and the
roughness of the pipe wall, which is described by the
Hazen-Williams formula [26], i.e., Eq. (3).

HOm) = (S76 v ®)

where C is the roughness coefficient of pipe wall.

The localized energy loss is due to turbulence associ-
ated with change of flow conditions (such as flow speed,
direction, or flow area etc.), which is determined by the
topology of water distribution network connections.

An important phenomenon in a water supply network
is the water usage or demand. Two major types of
models are generally used for water demand at pipe
nodes, ie., demand-driven model and pressure-driven
model. A comparison of both models is described in [6].
A pressure-driven water demand model is used in this
study to consider the effects of losing pressure due to
change of water demand or leaks.

0 p<Py
_PO 2
D= D, (2 Po<p<P
f<Pf—P0> 0=PELS
Dy p> Py

(4)

where D is the demand at a particular node, Dyis the de-
sired demand(m®/s), p is the water pressure, pr is the
pressure above which the desired demand Dy should be
met, p, is the water pressure below which no water will
be supplied at the node.

The leaking is modeled as a special type of water de-
mand in this study. The demand due to a leaking sce-
nario is related to the size of the leak and is described in
Eq. (5) [13].

2
dieak = chpa\ﬁ (5)

where dj,,; is the equivalent water demand due to leak
(m®/s), C, is the discharge coefficient, with a default
value 0.75, A is the area of leak, p is the internal water
pressure, the exponential o is the discharge coefficient,
which is 0.5 for steel pipe, and p is the water density.

The model is implemented in EPANET, a certified hy-
draulic model for water supply network (WSN).
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Artificial neural networks (ANN)

Artificial Neural Network (ANN) is a supervised ma-
chine learning (ML) model. The architecture of ANN in-
cludes interconnected neurons in the input layers,
hidden layers, and output layer. The number of layers
and the number of neuron in each layer determine its
overall performance [1]. Increasing the number of neu-
rons and hidden layers can improve the ability of ANN
model to describe complex nonlinear relationships. It,
however, also increase the computational demand and
potentially lead to overfitting. An optimal ANN architec-
ture for this study is determined by an optimization
process, which leads to an ANN model with one input
layer, three hidden layers, and one output layer, as
shown in Fig. 1.

The input layer consists of I neurons, which are corre-
sponding to the number of input features. The hidden
layers provide the capability to model the complex non-
linear relationships which are fine-tuned with the train-
ing data. The output layer consists of one neuron which
is used to classify the output as leaking or not leaking
condition.

The hidden layers include fully connected neurons, the
output of each neuron is written as follows.

Vi = f(z;lx,‘kw,_,k + b> (6)

where y; is the output of each neuron at the hidden
layer, x, i is the output of the last layer, for the first
layer of neural network, x,, , is the sample data {;. w,, « is
the weight of that neuron and b is the bias of that
neuron. The weight and bias are trained with the train-
ing datasets by the back-propagation algorithm. fl.) is
the activation function used to increase the nonlinear
property during the propagation. In this study, the
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‘ReLu’ function is used as the activation function of the
hidden layer, i.e., Eq. (7).

@) = max(0,%) (7)

The output of the last hidden layer is then transferred
into the neurons in the output layer, whose actions is
written as below.

y, = g(y0 +b) (8)

where and y, y, is the output of the output layer, y; is
the output of the neurons in the last hidden layer, @ and
b are the weight and bias. g(.) is the tangent sigmoid
transfer function defined as

2

- 1
1+e- 2 ®)

g(x)

The ANN model learns the relationship between the

output and input by a training process to classify the ob-

served data into leaking and non-leaking situations.

More detailed mathematical information about ANN
can be found at [19].

Autoencoder neural (AE) networks

Autoencoder neural network is an unsupervised ML
model. It is based on a special type of neural network
that is trained to reconstruct its input, so the output
(y1.923,---» ¥») would contain the same information as its
input (%1 x2%3,...,%,). To reduce the reconstruction error,
the network is forced to learn the hidden patterns be-
tween the input data. An innovative strategy is proposed
in this study to detect the leaking situation by autoenco-
der neural network based on its reconstruction error.
The reconstruction error is characterized by the mean
square error:

Input layer

hidden layers

output layer

input 1

input 2

input 3

input /

Fig. 1 Schematic of ANN architecture

output
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1
MSE = —

- (10)

n
Zi:l(xi _J’i)2
where MSE is the mean square error or reconstruction
error, # is the dimension of the input vector x, x; is the
sample data and y; is the predicted sample data.

A typical architecture of the autoencoder neural (AE)
network is shown in Fig. 2. The training process of the
AE network involves firstly compresses the input vector
x into a small dimension, which is called the encoding
process. Then the model will reconstruct the com-
pressed data into its original space, which is called the
decoding process. By reducing the error between output
and input, the weights and bias of the neurons in the
neural network are adjusted to learn the relationship
among the input data.

For a model trained by dataset of only non-leak condi-
tion, a large reconstruction error occurs it is inputted
with data of leaking condition because the relationship
described by the trained AE neural network is not valid
under such condition. By setting a threshold in the con-
struction error, the AE model can classify if a set of data
corresponds to a leaking situation or a non-leaking
situation.

Generation of monitoring data in the water supply
network under normal and leaking conditions

Machine learning (ML) model requires a sufficient
amount of data for training and validation. When short
of real-world data, it is a common approach to develop
and evaluate ML algorithms based on simulated data
[18, 36, 45]. A python package Water Network Tool for
Resilience (WNTR) is used to build the water supply
network and solve the hydraulic equations (which is
shown in section 2) for water flow in the pipeline system
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[23]. WNTR is an open-source python package for hy-
draulic simulations of water pipe system based on EPAN
ET. This package was adopted to run iterative simula-
tions with a combination of a set of random parameters
that describes the fluctuation in water demand, data
noise, and leaking conditions.

With the WNRT package, WSN operation data (i.e.,
pressure, flow rates, etc.) with fluctuating water de-
mands, leaking or non-leaking conditions can be gen-
erated. The randomness of the WSN model, including
water usage fluctuations, pipe conditions and noise,
are considered in data generation. The water usage
here is an overall estimated during a period. For ex-
ample, the baseline water usage at each node was
chosen from a uniform distribution in the range of
0.008 to 0.012L/s according to Funk etal [15]. Ac-
cording to [35], the real time water usage may fluctu-
ate from 0.3 times to 1.3 times that of the baseline
usage depending on the different time in a day. The
pipe conditions are described with the dimensionless
roughness coefficient. The roughness coefficient of
each pipe was selected from a uniform distribution
from 100 to 300. Different levels of noise were also
added to account for the uncertainty of WSN such as
the water usage or sensor error at a certain time
interval and is described with a Gaussian noise N(0,
o). Similar data generation framework was used by
Zhou et.al [50] for a different purpose. The detailed
data generation process is introduced in Case study L

Challenges in leak detection and strategy to
overcome the challenges

There are two primarily challenges in implementing a
data-driven model for leak detection of WSN:

Decoding

Encoding output layer

Input layer
p—

input x1

input x2
input x3 ’
1
1
1
1
1
1
1
1
1
|

input xi

are conceptual)

Fig. 2 Schematic of architecture of an autoencoder neural network (the numbers of neurons in the decoding layers and encoding layers

output y1

'oulpul y2
‘)’output y3

output yi
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1) Unbalanced data. Many existing leak detection
methods, Support Vector Machine (SVM),
Convolutional Neural Network —Support Vector
Machine (CNN-SVM), ANN, etc., treat leak
detection as a classification problem [9, 20, 31].
These methods require a sufficient large leaking
dataset as well as non-leaking datasets. However, as
pointed out by Mounce et.al [30, 32], there are rela-
tively limited leaking situations compared with non-
leaking situation. Let alone to require data of leak-
ing occurring at each pipe of a water distribution
system. This leads to overly unbalanced datasets,
i.e, much more non-leaking data than leaking data.
A major challenge of a data driven leak detection
approach is how to use little or no data collected
under leaking condition to train ML model for leak
detection.

2) Uncertainty of user demands. The water pressure
pattern in the service water pipe network may be
unstable due to the fluctuation of water use
behaviors [48]. The water use in the water supply
network is strongly affected by the user behaviors
and can show strong fluctuations. The prediction-
classification method has been developed for this
purpose [48]. For example, methods by [1, 10] pre-
dicted the water pressure at the next time step by
different methods. Baker et.al used an adaptive fore-
casting model to predict the short term water de-
mand of a DMA [4]. Leaking alert is triggered if the
difference between the actual water pressure and
predicted water pressure exceeded a threshold.
Water flow data at midnight when user water de-
mand is small has been used to identify the leaks,
under the assumption that baseline flow at midnight
is most likely due to leaks [29] when fluctuation in
user demand is small. However, most of these de-
tection methods require a consistent or predictable
trend of water demand, otherwise it will trigger
false alarms. The spatial relationship of multiple
nodes in the water distribution network can be used
to mitigate false alarms in leak detection. For ex-
ample, Zhou et.al [50] used a full linear DenseNet
neural network with the spatial information of mul-
tiple sensors in a water distribution network for leak
detection. However, such spatial information was
only used in supervised learning which requires suf-
ficient amount of data under leaking conditions and
therefore present challenges as stated in item 1).

To address these two challenges, a novel leak detection
method is proposed in this paper based on both the
spatial and temporal information. The spatial pattern
among a group of nodes is used in leak detection and
identify leak conditions. The temporal information is
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used to further improve the detection accuracy. The ad-
vantage of the new leak detection model is that it can be
trained with data under non-leaking conditions only.

Case studies of ML models for leak detection in
water supply network

Two water supply networks (WSN) were analyzed to il-
lustrate the proposed data generation framework and de-
velop new leaking detection methods. The first network
is a relatively small WSN that has been widely used as a
standard testbed, which was chosen to illustrate the data
generation process, development and validation of pro-
posed leak detection methods. The second network is a
large size WSN containing 5 district meter areas (DMA),
multiple water sources (7 tanks and 1 reservoir) and 6
different control rules (such as valve controls and pump
controls). The second WSN network was used to dem-
onstrate the performance of the developed leak detection
method under more complex conditions.

Case study - I: rancho Solano zone Ill water distribution
system

Rancho Solano Water Network located in the city of
Fairfield, California. This network is published by ASCE
task committee on a research database for water distri-
bution systems [17]. The graph of this water supply net-
work is shown in Fig. 3. There are 112 nodes in total,
including one reservoir as the source of water, and 126
pipes. The elevations of the nodes in this pipe network
range from 90 m to 120 m and the length of the pipes
range from 90 m to 130 m.

The water distribution network and basic water de-
mand at each service node are shown in Fig. 3. The basic
demand of each node is chosen from a uniform distribu-
tion of 0.008 to 0.012 L/s. The real demand at each node
is generated by adding a random Gaussian distribution
with variance o= 0.01L/s. Eleven demand ratios from 0.3
to 1.3 are considered during the data generation with
the hydraulic model for the WSN. The monitoring sen-
sors are assumed to be deployed in the area shown in
the red circle area, i.e., the water pressure data of the
nodes which are located in the red circle in Fig. 3 is used
for leak detection. Figure 3 also shows some key nodes
and pipes that are analyzed in the study.

The pressure-driven demand model, which relates the
water discharge to the water pressure head at the node
(i.e., Eq. 4), is used in the hydraulic analysis of the WSN.
The lower bound of the pressure head at the node is set
as 5m and the upper bound as 30 m. An example of the
relationship between demand/discharge and pressures
head at a node with base demand of 0.02 »7*/s is shown
in Fig. 4.

The overall data generation procedures of balanced
dataset with the hydraulic model for the WSN are briefly
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Fig. 3 lllustration of the water supply network and water demand at each node (color code corresponds to basic water demand in the unit
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summarized below. Similar amount of data is produced
for the monitoring area in the WSN under both leaking
and non-leaking conditions.

Dataset for non-leaking conditions

1. Define Water Pipe Network: Construct the pipe
network according to Rancho Solano Water
Network (Fig. 3) using EPANET data input format.

2. Assign Water Pipe Conditions: Assign the pipe
roughness of pipe with a random number from
uniform distribution 2/(100, 300). The length of
each pipe is already defined in the original water
pipe network

3. Set the Baseline Demand and Actual Demand at
User Nodes: the baseline demand of each node is
randomly selected from a uniform distribution
1(0.008, 0.012)L/s, following Funk et al. [15]. The
actual demand at each node is set by considering
both the base demand and the demand uncertainty,
ie,

Demand = deman ratio*Dya. + |[N(0, o). (11)

where Dy, is the predefined base demand. The demand
ratio is set from 0.3 to 1.3 to account for the fluctuation

0.0200

0.0175 4
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0.0075

real demand (m?3/s)
o
o
2
o
o

0.0050

0.0025

0.0000 +
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water pressure (m)

Fig. 4 Example of the relationship between water demand and pressure head at a node with base demand of 0.02 m*/s
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predefined baseline demand at the node (Eq. 1

160 T T T T T
140 J
120 -
g b
S100} l \_U“;l.f_
2 Al |}
=
8 8o} . V* |i 1 # .
s . PR | S
B ' ': * - o i:::.:.—_;
60 i ., ek —— demand ratio:0.3
= i v == demand ratio:0.6
a0t : . o ==+ demand ratio:0.9 |
i ) » demand ratio:1.2
6 2|0 4l0 6|0 8|0 l(l)O
Time step

Fig. 5 Example of water head at node ‘168" under different water demands (note: demand ratio is defined as the average water demand to the
1); the fluctuation is due to fluctuations in the real demand)

in water usage demand during a day or between differ-
ent days. Gaussian noise N(0, ¢) considers the uncer-
tainty due to the water usage fluctuation.

4. Data Generation: solve the hydraulic model of the
WSN with WNRT using the EPANET built-in
module and record the water pressure at selected
monitoring nodes (i.e, the nodes inside the red cir-
cle in Fig. 3).

5. Data generation for different water demand
situations: step 2 to step 4 are repeated for each
water demand scenery. 200 rounds of simulations
were conducted for each scenery to generate
sufficient amount of data under different water
demand situations,

Dataset for leaking conditions

1. Similar procedures as for non-leaking conditions
are followed to build the water network, assign pipe
roughness and water use demands (Step 1-3 for
non-leaking conditions).

2. Leak Scenario: Set pipe i as the leaking pipe. By
default, the leaking position is located at the middle
of the pipe, which, however, can be easily changed
for more complex scenario.

3. Data generation: solve the hydraulic simulator with
WNRT using the EPANET built-in module and rec-
ord the water pressure at selected monitoring nodes
(inside the red circle in Fig. 3).

4. Data generation for different water demand
situations: Repeat steps 2—4200 times for each pipe
at demanding level similar as what is done for non-
leak conditions.

5. Repeat the above step for each pipe leaking
scenario.

The water pressure data under different scenarios
were generated via the processes described. The non-
leaking situation and leaking situation at each pipe
contain 2200 cases respectively (11 different water de-
mand levels with 200 rounds of simulations). It is
noted that the model-generated data can be easily re-
placed with real-world data when measurement data
is available.

The code for data generation is published in this
link for the sake of open source.! Overall, the water
pressure is affected by the average demand at the
node, fluctuations in water demand, and if leak oc-
curs. To illustrate the characteristics of water pressure
data, the water pressure of node ‘168" under a few de-
mand ratios are shown in Fig. 5. As can be seen, the
water pressure can be highly influenced by the de-
mand levels. There are significant differences in the
water pressure between demand ratios of 0.3 versus
1.2. A higher water pressure corresponds to a lower
water demand. It should be noted that water pressure
is also affected by leak. For example, Fig. 6 shows the
water pressure at node ‘168’ is similar for intact water
pipe at high average water demand ratio of 1.0 versus
leaking pipe (pipe 198) with low average water de-
mand ratio of 0.3. Such overlap in the influence on
water pressure by water demand and leaking makes it
difficult to detect leak from data from a single node.
Machine Learning model, however, allows to extract
features from the spatial pattern in the pressure data

'https://github.com/herewego321/Random-WDN-data-generation
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at multiple nodes and therefore allows to differentiate
leaking versus non-leaking conditions.

Artificial neural network (ANN) model for leak detection

An ANN model is developed to detect leaks. The water
pressure data at a group of monitoring nodes is used for
this purpose. Unlike the existing approach of using time
series analyses, the water pressure data are used by ANN
model to find the spatial relationship among data at
monitoring nodes at a given time. The ANN model was
built and trained with TensorFlow in python environ-
ment. An optimal ANN architecture for this study is de-
termined by an optimization process, which leads to an
ANN model with one input layer, three hidden layers,
and one output layer. The input layer contains 11 neu-
rons corresponding to the 11 monitored nodes. The first
hidden layer contains 128 neurons and then the
remaining two hidden layers contain 258 neurons re-
spectively. The output layer contains 1 neuron, which is
a categorical data indicating leaking versus non-leaking
condition.

Overall, the ANN model is used to classify leaking and
non-leaking conditions of the monitoring area as a bin-
ary classification problem. As a supervised learning
model, ANN requires the dataset to be labeled prior to
training. A data set contains 2400 samples is prepared
for ANN training process, which includes 1200 non-
leaking samples and 1200 leaking samples. The non-
leaking samples are randomly selected from the simu-
lated non-leaking dataset and labelled as 0. The leaking
samples are randomly selected from the leaking dataset
that contains simulated data when leak occurred inside
the monitoring area and are labelled as 1. The leaking
and non-leaking dataset are generated follow the

procedures that described previously. Standardization of
the dataset is conducted to reduce the computing time
and avoid potential overfitting. Each row of the dataset
is transformed to a normal distribution with zero mean
and unit variance. The benefits of data standardization is
described by [40]. The 2400 labelled dataset is then ran-
domly split into independent training data and testing
data with a ratio of 7:3 (i.e., 1680 set of training data and
720 set of test data). The training dataset is used to train
the ANN model. The independent testing data is used to
validate the model results. The loss value of training and
validation processes are shown in Fig. 7. The loss value
is the mean square error of predicted result versus actual
result. As can be seen, both loss values of training data-
set and validation dataset decrease to small values during
the learning process, which means the ANN model is

0.7 1 —— Train

~ Valid
0.6

0.5 A

0.4

Loss

0.3 4

0.2 4

0.1

0.0 1

0 200 400 600 800 1000 1200 1400
Epoch

Fig. 7 Loss values during the ANN model training process
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able to uncover the relationship among data for classifi-
cation of leak versus non-leak conditions.

The final classification result by the trained ANN
model using the testing data is shown in Fig. 8 as de-
scribed with the confusion matrix. There were 370 non-
leaking cases and 350 leaking cases in the testing dataset,
both are classified with 100% accuracy and with no mis-
classification. The results imply that a) the relationship
of water pressure among a group of nodes is different
under leaking and non-leaking scenarios; and b) the
ANN model is trained to extract this relationship and to
accurately classify leaking versus non-leaking conditions.

Autoencoder neural (AE) network model for leak detection
The ANN model achieved excellent performance by util-
izing the water pressure data at multiple nodes. How-
ever, as a supervised ML model, ANN model requires
balanced data, ie., similar amount of data under both
normal and leaking conditions. However, in the reality,
the available data is typically unbalanced. i.e., there
might be only limited amount of data under leaking con-
ditions compared with data under non-leaking condi-
tions. Besides, labeling the dataset to leak or non-leak
conditions, i.e., such as the method used by [50] may be
extremely difficult under real situation since the leaks
might not be detected until their effects surface.

A variation of ANN model, the autoencoder neural
(AE) network, is developed for leak detection to resolve
the challenge of unbalanced data. As an unsupervised
ML model, the AE model features unique advantages to
work with unbalanced data. In this study, a AE model

Normal

True class

Break

Break

Normal
Predicted class

Fig. 8 The confusion matrix of the classification result of leaking and
non-leaking cases by the trained ANN model (achieved 100%
accurate with no misclassification)
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with 5 layers was built. As shown in Fig. 2, the first and
last layer contains 11 neurons which are corresponding
to the 11 monitored nodes. The second and third layer
encodes the input data from 11 nodes to a lower-
dimensional space, while the fourth and fifth layer de-
codes the data from this lower-dimensional space back
to 11 nodes. The hidden layer of the AE model contains
3 neurons. Since the AE model features the ability to de-
tect abnormal samples from dataset of normal samples,
only the non-leaking samples are used for the training
purpose. One thousand two hundred samples are ran-
domly selected from the non-leaking dataset to train the
AE model. Each sample in the dataset includes the water
pressure information at the 11 selected monitoring
nodes. 70% of the 1200 normal non-leaking dataset is
standardized and used for training. The rest 30% of the
normal non-leaking dataset is used for validation.

Figure 9 shows the loss values, defined as the recon-
struction error for AE model, during the training
process. Small loss values of close to zero are achieved
for both the training and testing data, meaning the re-
constructed output from the AE model is close to its in-
put of dataset under normal non-leaking conditions.
This also implies that the AE model is well trained with
the normal non-leaking dataset. When leaking dataset is
input to the trained AE model, the model will generate a
large reconstruction error, which can be used to detect
leaking conditions.

Independent datasets are used to evaluate the per-
formance of the trained AE model to detect leaking con-
ditions. The dataset includes three different scenarios,
i.e. Five hundred fifty datasets from the non-leaking con-
ditions, i.e. there is no leaks anywhere in the water dis-
tribution system; 550 cases of dataset where a leak
happens at a random pipe inside the monitoring area
(pipe ‘163’); 550 cases of datasets where the leak happens
at a random pipe outside the monitoring area (‘pipe
‘198’). The location of example pipes can be found in
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Fig. 9 Loss values (i.e, the reconstruction error) by the AE model
during the training process
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Fig. 3. All of the data samples are normalized based on
the mean and variance values of non-leaking dataset (by
minimizing the mean value and divided by the variance
value).

Figure 10 shows the statistics histogram of the recon-
struction errors by the AE model for data under the
three different scenarios. The rectangles with different
color lines indicate the 97.5% range of reconstruction
error for normal and two leaking situations. As can be
seen in Fig. 10, the reconstruction error of data under
normal non-leaking situation is small, with 97.5% of re-
construction error less than 0.00015, which is much
smaller than those under the other two situations. The
reconstruction error of data when leak occurs inside the
monitoring area features largest reconstruction errors.
While the reconstruction errors of data for leaking out-
side the monitoring area lies in between. Overall, dataset
corresponding to pipe leaking within the monitoring
area leads to large reconstruction error by the trained
AE neural network model. The differences in the recon-
struction error are clearly differentiable from those by
the normal non-leaking cases. This can be used to define
the threshold for leak detection. Leaks occurring outside
the monitoring areas, however, still has a low probability
to be identified as leaking situation. It should be noted
that since a certain area is monitored by these sensors,
the ideal result is only the leaking inside or very closed
to this area can be detected. Leaking faraway from this
monitoring area should not be able to trigger the detec-
tion. Method to mitigate detection error due to the in-
fluence of leaking outside the monitoring areas will be
discussed in next sections.

Based on the observation, a threshold of reconstruc-
tion error can be defined for the trained AE neural

(2021) 2:10
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network can be used to differentiate the leak versus
non-leak situations. This threshold can be set based on
the training process and be further tuned when data
under leaking conditions is available. A threshold of
0.000402 is set for this case based on the reconstruction
error at the end of AE neural network training. With
this trained AE model, the monitored water pressure
data can be fed into the trained model to obtain the re-
construction error. If the reconstruction error is larger
than the set threshold value, a leaking alert would be
triggered to promote actions such as inspection and
replacement.

The performance of AE is evaluated at the situations
where leaking happens at each pipe. For each single
pipe, independent data of 2200 non-leaking cases and
2200 leaking cases are generated. The water pressure
data inside the monitoring area is then fed into the
trained AE model. Fig. 11 summarizes the probability of
leaking alert is triggered, i.e. percentage of cases with a
reconstruction error larger than the threshold, under
each pipe leaking conditions of the WSN. As can be
seen from Fig. 11 a), the alert triggering probability (i.e.,
false alert) under non-leaking situation is very low, or
only about 3% maximum. Fig. 11 b) shows the probabil-
ity leaking alert is triggered when leak occurs at each
pipe. For the leaking happens inside the monitoring area,
the alert has 68% to 100% probability to be triggered.
For leak happens outside the monitoring area, the
chance of triggered the alert is compromised (less than
40% for most parts). These observations imply that AE
model can detect leaks from the monitored water pres-
sure data. For the globally monitoring purpose, the mon-
itoring sensors need to be strategically deployed in the
WSN to achieve high reliability in leak detection.
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Sensitivity study on factors affecting the accuracy of the AE
model in leak detection

Sensitivity study is conducted to evaluate the effects of
contributing factors on the performance of AE model
for leak detection. These include three independent fac-
tors, including the compression ratios of AE, the sizes of
leak, and fluctuation/uncertainty of water demand.

The compression ratio is the number of uncompressed
data divided by compressed data as calculated in Eq. 12. It
is an important hyperparameter of the AE neural network.
A large compression ratio can not only save the physical
data storage space but also force the AE model to learn
the internal pattern of input data. However, too much
compression may lead to excess information loss and de-
crease the detection accuracy. The range of compression
ratio is selected between 1 to 6 for the sensitivity study.

Uncompressed Size

Compression Ratio = (12)

Compressed Size

The uncertainty of water usage is the description of
water demand fluctuation during a day. A higher fluctu-
ation of water demand increase the difficulty for leaking
detection since water demand and leak both affects
water pressure in the WSN. To describe its sensitivity,
the uncertainties of water usage are assumed to follow a
normal distribution and are described with different
water usage uncertainty levels, i.e., N(0, 0.001) L/s,
N(0.005) L/s, N(0, 0.01) L/s, N(0, 0.05) L/s.

The leaking size is another important factor that influ-
ences the detection system performance. Conceptually,
detection of small leak is much difficult than large leak,
since smaller leak has less influence on the status of
WSN and can be inundated with water demand

fluctuations. For the sensitivity study, the leaking size is
varied from 0.01 m to 0.12 m.

For each combination of these three factors, the per-
formance is evaluated by a dataset generated by assuming
leak occurs in a pipe (pipe ‘163’) inside the monitoring
area and a data set with non-leaking. The data is randomly
split for independent validation. The final accuracy is cal-
culated as the average accuracy from a 3 rounds of cross-
validation processes. Fig. 12 shows the leak detect accur-
acy of the AE models affected by the compression ratios,
water usage uncertainty, and leak sizes.

As shown in Fig. 12, the AE model achieved close to
100% accuracy when uncertainty with water usage is
small. At a given leaking size, the accuracy of leak detec-
tion by the AE model decreases with the increasing
water usage uncertainties. As the water usage uncer-
tainty level increases from 0.001 L/s to 0.015 L/s, the ac-
curacy of the model decreases from 100% to 89.93%.
However, even with high variance in water use uncer-
tainty (compared to the baseline water usage at 0.012 L/
s), the AE model achieved decent accuracy in leak
detection.

The performance of AE model is significantly influ-
enced by the leak size. Small leaks tends not to be de-
tected and WSN is classified under normal non-leaking
situations (i.e., 0% correct detection). While normal non-
leaking cases are all classified correctly (i.e., 100% correct
detection). This gives an accuracy of around 50% for a
balanced dataset with equal number of data under both
leaking and non-leaking conditions. With increasing
leaking sizes, the AE model achieved higher leak detec-
tion accuracy. This is reasonable since the larger the leak
size, the more disturbance it will have on the pressure
distribution in the WSN to allow its detection. A similar
conclusion was shown in Zhou et.al [50].
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The compression ratio has a negative influence on the
overall detection accuracy. For example, as shown in
Fig. 12 a), at the leaking size of 0.06 m, the accuracy de-
creased from 85.24% to 67.02% when compression ratio
increases from 1 to 6. For leaking size of 0.11 m, the ac-
curacy decreases from 100% to 80.75% when compres-
sion ratio increases from 1 to 6. This is reasonable since
the higher compression ratio will loss more information
of original dataset. However, it is also noticed that the
influence of compression ratio is small for compression
ratio less than 2. A compression ratio of around 1.5 ap-
peared to achieve the best results. It also should be
noted that compared to the other two factors (leaking
size and water demand uncertainty), compression ratio
has a relatively smaller impact on the detection accuracy.
However, for a given leak size and water demand uncer-
tainty, fine tuning the compression ratio of AE model
helps to achieve a higher detection accuracy.

Improving classification accuracy by incorporating multiple
independent detection

The previous results show that by setting the proper de-
tection threshold, the AE model achieved good leak de-
tection accuracy using unbalanced data. This is a major
advantage to the conventional ANN model, which

requires balanced data under both non-leaking and leak-
ing conditions. An observation is that the AE model did
not achieve as high accuracy as the ANN model. It is de-
sirable to further improve the accuracy of AE model that
will help to reduce the amount of false detection (ie.,
false leaking alarm or missing detection of leak event)
detection. A method is proposed to further increase the
leak detection accuracy by utilizing the probability the-
ory for multiple independent trials. Intuitively, since
leaking in the physical world will last for a while before
it is repaired, the chance to detect the leak is higher if
the effort is attempted multiple times. The leak status is
unveiled by a voting strategy. In other words, for n at-
tempts in leak detection, the detection outcome is de-
fined as the outcome by the majority (more than 50%) of
these attempts. Since each detection attempt is via inde-
pendent data set, each represents an independent trial.
Mathematically, if the probability of correctly detecting a
leak under a single attempt is p, then the probability of
more than half attempts correctly detect the leak will be

n

p= >, Cpa-p"

i= int(3)

(13)
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where n is the number of the total attempt for identify-
ing a leakage. C! is the set of i combination of set 7. # is
the total number of monitoring cases. p is the correct
detection probability of each case.

According to Eq. (13), the probability of correct detec-
tion approaches to 1 when n approach infinite n— oo,
under the condition p is larger than 0.5.

According to the principle described by Eq. 13, mul-
tiple attempts were made for leak detection, i.e., multiple
datasets under a given leaking or non-leaking condition
are fed into the AE leak detection model. The final des-
ignation of leaking or non-leaking condition is based on
if more than half of the detection attempts give that
result.

To evaluate the performance of multiple attempts,
three scenarios are considered, i.e. non-leaking situ-
ation, leaking in pipe 163 located inside the monitor-
ing area, and leaking in pipe 214 located outside the
monitoring. Two thousand two hundred set of pres-
sure data are generated under each scenario. For each
scenario, the accuracy with n times of attempts is cal-
culated by the following procedures (also illustrated
in Fig. 13):

1) n sets of data are randomly selected from the 2200
cases.

(2021) 2:10

Page 14 of 21

2) Each of the dataset is fed into the AE model to
generate an output of Leak or Non-leak condition
based on the set threshold.

3) The final designation of Leaking versus Non-
Leaking condition based on more than half of the n
attempts give that condition.

4) Determine if the defection is correct or wrong by
comparing the detected condition by 3) with the
actual condition of the pipe.

The procedure from 1) to 4) are repeated 1000 times.
From this, the overall accuracy in correctly detecting the
pipe condition is calculated.

Effects of multiple attempts The results of accuracy
under multiple attempts of detections using the pre-
trained AE model are shown in Fig. 14. The detection
threshold is set as 0.000402. The vertical axis is the de-
tection accuracy of the pipe condition. The horizontal
axis indicate the number of attempts in detection. As
seen from this figure, the detection accuracy improved
with multiple attempts and achieved close to 100% de-
tection accuracy, regardless where leak occurs. This is
consistent with what is predicted by Eq. 13.

Effects of detection threshold by the AE model
Threshold is a critical parameter for the AE leak
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Fig. 13 Flow chart of evaluation process with n attempts
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Fig. 14 Accuracy of correct pipe condition detection with multiple attempts with pre-trained AE model with threshold set as 0.000402

detection model. Sensitivity analyses are conducted on
the influence of threshold on the model detection accur-
acy. The results for the three different scenarios defined
as in the previous context are shown in Fig. 15. Two
thousand two hundred cases of dataset were generated
for each scenery and are fed into the AE model to deter-
mine the reconstruction errors. From this, the percent-
age reconstruction error by AE model larger than the
reconstruction error is determined. The horizontal axis
are the thresholds and vertical axis is the percentage of
cases with reconstruction error larger than the threshold
(i.e., the case is identified as leaking by the AE model).
The 50% line is also indicated in the figure. As can be
seen from the figure, for all the three pipe condition
sceneries, a smaller threshold corresponds to larger

chance for the condition to be identified as leaking con-
dition. For no leaking condition, this presents as false
alarm. A larger threshold reduces the false alarm but
may miss leaking cases. According to the eq. 13, leaks
can be properly identified with multiple attempts as long
as a detection accuracy is larger than 0.5. Based on this
criteria, leak within the monitoring area can be accur-
ately detected with any threshold between 0.00029 to
0.00057, by use of the multiple attempts strategy.

By using the proposed post-processing method with
50 time steps data. The final detection result is shown in
Fig. 16. The result clearly demonstrates that when leak-
ing happens inside or nearby the monitoring area, the
AE model is able to detect such leaking happens cor-
rectly. For leaking which is far away from the monitoring
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Fig. 15 Percent of leak warning at different detection thresholds of AE model under different pipe conditions
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Fig. 16 Final leak detection result for each pipe leaking situation

Leaks that can
trigger leakage alert

Leaks will not
trigger leakage alert

area, the model can differential it from inside leaking
situation to mitigate the false alert. There are two pipe
leaking situations inside the monitoring area not de-
tected. The main reason is the unappropriated threshold
selection since all the pipes are using the same thresh-
old. However, when more and more data available dur-
ing the operation stage, this threshold can be tuned for
each pipe, which will increase the detection ability
eventually.

Case study - II: C-town water distribution network
C-Town water distribution network is a virtual network
that was used for calibration competition in Battle of the
Water Calibration Networks (BWCN) [33]. The topology
and mode of operations of the network are described in
details and the true network data are made public after
the competition. This well-characterized water distribu-
tion network allows to test the proposed leaking detec-
tion method under a more complex scenario. From this,
the performance of the proposed Autoencoder model
based leak detection model is evaluated.

The topology of C-Town water distribution network is
shown in Fig. 17. There are 1 reservoir and 7 water sup-
ply tanks. This network including 388 user nodes, 432
pipes, 11pumps, and 4 valves, which are divided into 5
district meter areas (DMA). The water demand at each
node is provided. In this study, 4 predefined monitoring
areas are chosen as shown in Fig. 17.

Hydraulic model of this C-Town WSN is built with
WNTR. Since the water demand at each node is already
defined, the actual water demands are used for hydraulic
model rather than using the water demand ratio and un-
certainty. The WDN under non-leaking situation and
pipe failure (leaking size of 0.05m) are simulated. The
leaking data set and non-leaking data set for the C-
Town WSN are generated following the same designed
data generation procedures as described in Case study I
Rancho Solano Zone III Water Distribution System.

Figure 18 shows the water pressure at node ‘9’ with
and without leaking. The leaking situation correspond-
ing to leaking at pipe ‘P251’. The exact position of node
and pipe can also be found in Fig. 17.

Performance of AE model in leak detection
The AE water pipe leakage detectors for each area is
trained by using the samples from non-leaking data set.
The performance of the AE leaking detection model is
evaluated by calculating the probability of AE model
triggering an alarm when leaking happens at each pipe,
by sensors installed at different DMAs as shown in Fig.
17. For each pipe in the network, 169 sets of leaking and
non-leaking water pressure data at nodes within the
monitored area are generated. By feeding the water pres-
sure data into the AE model, the probability successfully
detection of each pipe leaking is shown in Fig. 19.

A few observations can be made from Fig. 19: 1) The
probability of a successfully leak detection of a pipe is
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of C-town

Fig. 19 The probability of leak alert by AE detection model when leak happens on pipe in the WSN: a Monitoring sensors located in area a of C-
town, ¢ Monitoring sensors located in area b of C-town, ¢ Monitoring sensors located in area ¢ of C-town, d Monitoring sensors located in area d
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affected by the location of the pipe and the distribution
of monitoring sensors. 2) the AE leak detection model
achieved a high detection accuracy for leaks of pipe in-
side the monitoring area. 3) The probability of detecting
leak in pipes outside the monitoring area is typically
smaller and is affected by the topological structure of
the WSN and setting of the AE model.

The proposed multiple detection attempts strategy is
utilized to further improve the leaking detection accur-
acy and mitigate the false alarm. One hundred independ-
ent attempts are used. Leak alert will be triggered if
more than 50 attempts indicated leaking (or reconstruc-
tion error by the AE model larger than the threshold).
Fig. 20 shows the updated result of probability of detect-
ing leaks in pipes in the WSN using this strategy. The
results indicated leaks in pipes located in the monitoring
area are all detected with 100% accuracy. Compared with
the results shown in Fig. 18, the false alarm is signifi-
cantly mitigated. In the meanwhile, leaks outside the
monitoring area is not detected, except for Fig. 19 b).
This is due to a conditional valve nearby and therefore

leaks in these pipes have a larger disturbance to the
WSN. The implication is that sensors need to be de-
ployed in a strategic way to ensure the full coverage of
the complete WSN.

Conclusions and discussions

Real time detection of leaks in the water supply network
(WSN) bears important socio-economic benefits and is,
however, challenging. Innovative data-driven machine
learning (ML) models for leak detection are developed
in this study. The spatial relationship of water pressure
at multiple nodes in a water distribution network was
learned and used for leak detection. Model-based data
generation strategy is developed where data was gener-
ated by an industry certified hydraulic model for testbed
WSNs. Factors such as the fluctuation of water demand
are considered under both non-leaking and leaking situ-
ations. Artificial Neural Network (ANN) is found to
achieve high accuracy in leak detection. It, however, re-
quires balanced dataset including similar amount of data
collected under leaking or non-leaking conditions, which
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is difficult to implement in the real WSNs where data
under leaking condition is relative rare than that under
normal conditions. The Autoencoder Neural Network
(AE) model, an unsupervised ANN model, is developed
to learn from the unbalanced data to classify the leaking
versus non-leaking conditions. The results indicate AE
achieved decent accuracy in leak detection. Factors af-
fecting AE leak detection model are analyzed. An in-
novative strategy is proposed to further improve the
reliability in leak detection by use of multiple independ-
ent attempts. The results show that this significantly re-
duces the false alarm. The AE based leak detection
strategy is applied to a mature WSN to further evaluate
its performance. The results indicated the AE ML
model-based strategy achieves high accuracy in detecting
leaks in pipes located within the monitoring area. The
accuracy in detecting leaks in a pipe is dependent upon
the location of the water pipe and the distribution of
monitoring sensor. The use of multiple attempts strategy
significantly reduced the false alarm.

Discussions

Detecting leaks in the WSN is challenging due to the
complex topology, fluctuations in user demand, and lack
of monitoring data. Detecting leaks with inspection tools
is expensive and labor-intensive, and cannot achieve
real-time detection. Traditional model updating ap-
proach for structural health monitoring is difficult to
implement for WSN due to complex topology and
uncertainty in the hydraulic conditions. Detecting
leaks based on the transient responses of WSN re-
quires to capture the transient signals over a very
short period when leak occurs, which requires high
sampling rate. Data-driven approach using ML models
is promising to achieve quick and reliable leak detec-
tion. The rationale is that the spatial pattern of water
pressure and its variations under leak are affected by
the network structure of water distribution offers in-
formation about the conditions of the WSN. The ML
models developed in this study allow to detect leak
from unbalanced data, i.e., with only data under
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normal operational conditions. Compared to other
leak detection algorithms, the methods have the fol-
lowing advantages:

1) Provide quick leak detection with high accuracy.

2) Unlike the conventional transient-based leak detec-
tion, which requires sensor with high sampling rates
to capture the transient process. The AE leak detec-
tion model learn from the spatial pattern contained
in the data and only needs sensor with low sam-
pling rate (and therefore inexpensive).

3) By using data from multiple nodes, the detection is
more robust than data-driven models that only use
data at single node.

4) The data driven approach does not require strong
domain expertise to implement.

While data used for model training and validation in
this study are from generated data by high fidelity model
for WSN. The framework is readily applied to real world
data. With the development of the Internet of Things
(IoT), more and more sensors, i.e., smart meters, will be
deployed into the water distribution network to monitor
its health conditions. This will allow to obtain data to be
used by the developed model.

Future work is recommended to continue to refine the
ML model and evaluate its performance with the moni-
toring data from in-service WSNs. There are also many
issues that require further study. For example, the ability
of a monitoring sensor to monitor the change of water
pressure caused by leakage may decrease with the in-
creasing distance of the sensor to the leakage position.
Therefore, how to optimize the distribution of monitor-
ing sensor to effectively cover the whole WSN is an im-
portant issue. Strategies could include to divide a large
WSN into several smaller districts, which could improve
the coverage of the whole WSN in a cost effective way
and provide reliable detection accuracy. Precisely locate
the leaking position is important for timely intervention,
which is also an important topic requiring further
investigation.
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