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Abstract

This study extracted 16 climatic data variables including annual temperature, freeze thaw, precipitation, and
snowfall conditions from the Long-term Pavement Performance (LTPP) program database to evaluate the climatic
regionalization for pavement infrastructure. The effect and significance of climate change were firstly evaluated
using time as the only predictor and t-test. It was found that both the temperature and humidity increased in most
States. Around one third of the 800 weather stations record variation of freeze and precipitation classifications and
a few of them show significant change of classifications over time based on the results of logistic regression
analyses. Three unsupervised machine learning including Principle Component Analysis (PCA), factor analysis and
cluster analysis were conducted to identify the main component and common factors for climatic variables, and
then to classify datasets into different groups. Then, two supervised machine learning methods including Fisher’s
discriminant analysis and Artificial Neural Networks (ANN) were adopted to predict the climatic regions based on
climatic data. Results of PCA and factor analysis show that temperature and humidity are the first two principle
components and common factors, accounting for 71.6% of the variance. The 4-means clusters include wet no
freeze, dry no freeze, dry freeze and snow freeze. The best k-mean clustering suggested 9 clusters with more
temperature clusters. Both the Fisher’s linear discriminant analysis and ANN can effectively predict climatic regions
with multiple climatic variables. ANN performs better with higher R square and low misclassification rate, especially
for those with more layers and nodes.

Keywords: Climatic regions, Climate change, Machine learning, Principle component analysis (PCA), Factor analysis,
K-means cluster analysis, Fisher’s discriminant analysis, Artificial neural networks (ANN)

Introduction
Background
Climatic factors such as temperature and moisture have
significant influence on the deterioration of both pave-
ment structural capacity and pavement materials [1],
and are key factors for pavement preservation and resili-
ence analysis. Many countries have developed their own
climatic region classifications for determining asphalt

binder grade, including the USA [2], China [3], Jordan
[4], Italy [5], Thailand [6], Iran [7] and Yemen [8]. Not
only are asphalt binder grade selected based on climatic
regions, climatic factors are also critical for both flexural
and rigid pavement design [9]. Yang et al. conducted a
sensitivity analysis of the influence of climatic inputs on
pavement distress development using the Mechanistic-
Empirical Pavement Design Guide (MEPDG) software
[10]. The MEPDG includes the Enhanced Integrated Cli-
mate Model (EICM) with historical hourly data from
around 800 weather stations to model future climatic
conditions for pavement performance prediction [11].
Basma et al. found that structural number of flexural
pavement need to be adjusted to offset a reduction in
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the subgrade resilient modulus due to an increase in
moisture content [12]. For pavement maintenance and
preservation, Wang et al. found the same pavement
preservation treatments used in different climatic re-
gions performed significantly different based on the
LTPP SPS-3 data [13]. Different pavement preservation
strategies or techniques should be considered for differ-
ent climatic regions.

Development of climatic regions
The climatic regions are usually determined based on
the maximum and minimum temperature and rainfall.
Geographic and environmental factors may also be con-
sidered. In the Long-term Pavement Performance
(LTPP) program, the annual total amount of precipita-
tion and the freezing index [14–16] are used to divide
the United States into four climatic regions, including
dry no Freeze, dry freeze, wet no Freeze and wet freeze.
However, there are still several challenges for climatic
regionalization for pavement infrastructure. Firstly, the
number of climatic regions may need to be increased to
better quantify the effects of climatic factors. For ex-
ample, Wang et al. used 6 climatic regions by adding dry
mild and wet mild to the original four climatic regions
[13]. Bandara et al. classified the I-94 corridor in Mich-
igan into four climatic regions [11]. Many States have
microclimates by considering different geographical or
environmental conditions and adding more weather sta-
tions or expanding the number of months of available
data [11, 17].
Secondly, climatic factors include temperature, humid-

ity, rainfall, snowfall, etc. and how to balance and con-
sider all of those different factors is of importance.
Bandara et al. used the average low temperatures in
January, average high temperatures in July, average pre-
cipitation in January and average precipitation in July to
classify the I-94 corridor in Michigan into 4 climatic re-
gions [11]. Wang et al. used the number of days below
0 °C, the number of wet days, and the freeze–thaw cycles
to classify climatic regions [13]. In agriculture studies,
the K ppen climate classification considers only rainfall
and temperature were usually used to determine climatic
regions including tropical, arid, temperate, continental,
and polar [18]. However, to further improve the accur-
acy and effects of climatic regionalization, more detailed
information is required. It has been reported that the
potential water balance of the soil over the growing
cycle, heliothermal conditions over the growing cycle
and night temperature during maturation have been
used to build a multiple criteria climatic classification
system for the grape-growing regions [19].
Moreover, the climatic changes poses threatens to

transportation infrastructure, which may change the cli-
matic regions, especially for those at the margins of

regions. Mills et al. evaluated the impact of climate
change on flexible pavement design and performance
based on 17 weather sites and found that low
temperature cracking will be less problematic while rut-
ting may cause earlier rehabilitation and reconstruction
in Southern Canada [20]. Gudipudi et al. used 19 climate
models to project future climatic and analyzed the im-
pact of climatic change on pavement performance. It
was found that projected climate changes are likely to
cause greater distresses and/or earlier failure of the pave-
ment including 2–9% more fatigue cracking and 9–40%
more rutting at the end of 20 years [21, 22]. A rational
procedure would be necessary to adjust current climatic
regionalization based on observed or predicted climatic
dataset.

Machine Learnings in climatic regionalization
The weather stations collect more detailed long-term cli-
matic data that can be used to improve the climatic
regionalization for pavement infrastructure. There have
been several studies on the climatic regionalization of
pavements based on the data collected from weather sta-
tions. Recently, the machine learning has been applied in
many fields to identify relationships between variables
and to provide highly accurate prediction or classifica-
tion base on massive data samples and therefore has the
potential for pavement climatic regionalization analysis.
Yang et al. [23] adopted Principle Component Analysis
(PCA) to identify three major factors including
temperature, precipitation, and radiation for climatic
regionalization of pavements and then the k-means clus-
ter analysis to classify pavement climatic regions. The
probabilistic neural network and Support Vector Ma-
chine (SVM) were also used to predict pavement climate
regions and fairly high accuracy were obtained. There
are mainly three types of machine learning algorithms,
unsupervised learnings, supervised learnings and rein-
forced learnings. The unsupervised learnings identify key
components or factors and classify unlabeled data based
on their correlations while supervised learnings classify
data through minimizing the misclassification or error of
a model trained by labeled data. Therefore, unsupervised
learnings can be used to find the optimal classification
while supervised learnings can be used to predict the
classification.
The reinforced learnings are to determine the actions

in an environment to maximize the cumulative reward
and are usually used for optimization in operation
research.
In climatic regionalization studies, k-means and hier-

archical clustering have been used to redefine the cli-
mate zones of Turkey based on temperature and
precipitation data collected from 113 climate stations
[24], to determine the climate regions in Argentine [25],
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to determine rainfall regions in India [26], to identify re-
gional climate change patterns [27], and to divide the
European domain into regions of similar projected cli-
mate changes using predicted total temperature and pre-
cipitations [28]. PCA is usually used to identify key
climatic components that can be used as criteria
determine climatic regions [29, 30]. One study reported
that the annual variation in mean and minimum
temperature, annual maximum temperature, and spring,
summer, and fall precipitation are the five principle
components for the climate regionalization in Puerto
Rico [31]. Factor analysis can be used to identify the
common factors for climatic data. The temperature, win-
ter moisture and moisture factors, explaining 46%, 32%
and 12% of the total variance, were identified based on
factor analysis for the climatic regionalization of the
Tibet, China [32]. ANN has been adopted to predict cli-
matic regions in South America [33] and Puerto Rico
[31]. A supervised classification with Mahalanobis dis-
tance was used to classify climate regions in China based
on the data collected from 172 stations between 1984
and 2013 [34]. One study reported delineation of high
resolution climate regions in Korean peninsula using the
ANN, random forest, k-nearest neighbor, logistic regres-
sion, and SVM supervised learnings [35]. Both unsuper-
vised and supervised learnings were adopted to delineate
homogeneous climatic regions in Pakistan.

Objectives and scope
The LTPP recommends temperature and freeze data to
classify climatic regions while neglect other information in-
cluding raining days, sub-zero days, etc. Further, a long
term climatic data are needed to determine the climatic
regionalization due to the high variation of temperature
and freeze condition in areas around the borders of the cli-
matic regions. As the collection and accumulation of more
detailed climatic data, it is interesting to include those de-
tailed long-term climatic data to help determine climatic
regionalization. The objectives of this study are to deter-
mine the main contribution factors of climatic data col-
lected from the LTPP weather stations, to classify climatic
regions through unsupervised machine learning methods,
and to predict climatic regions through supervised ma-
chine learning methods. The general trend of climate
change over time was evaluated and the significance was
tested through linear regression and parameter t-tests. The
unsupervised learning methods includes PCA, factor ana-
lysis and k-means cluster analysis. The supervised learning
methods includes the Fisher’s linear discriminant analysis
and the Artificial Neural Network (ANN).

Data collection
Established in the 1980s, the LTPP has been collecting
large quantities of pavement data from more than 2400

pavement sections in the USA and Canada. The LTPP
collects climate data from the weather stations located
near the test sections. The detailed hourly data are avail-
able and the daily, monthly and annual statistics such as
maxim, minimum, average are calculated and stored in
the LTPP. In this study, 21,666 annual climate data from
1948 to 2012 were collected from 800 weather stations
in 62 States in the US, Canada etc. Table 1 summarizes
the definitions and statistical descriptions of those
data. Sixteen variables were collected, including
temperature, humidity, precipitation, snowfall and freez-
ing conditions. In the LTPP program, the wet/dry
threshold is average annual precipitation of 508 mm and
the freeze/no-freeze threshold is average annual freezing
index 83.3 degree-Celsius days [36].

Climate change
Figure 1 shows the effects and significance of time on
those climatic variables using time as the only predictor
for simple linear regression. Positive and negative par-
ameter estimates indicate increasing and decreasing
trends, respectively. P-values lower than 0.05 are
regarded as significant [37]. The horizontal axle is the
proportion of States over the total 62 States. It can be
seen that the mean, maximum and minimum of the
average temperature in most States increase significantly,
while the freeze index and freeze thaw cycles decrease
significantly in the last 60 years with p-values less than
0.05. The minimum temperature in nearly 80% of the
States increase significantly with time. Therefore, the
global warming has been significant, as investigated in
previous studies using historical data or climate models
[21]. It is also noted that around 50% States show signifi-
cant increasing precipitation and humidity while only
10–20% States show significant decreasing trend. The
rising temperatures intensify the Earth’s water cycle and
increase evaporation, causing increased precipitation and
flooding in some area close to the storm tracks. Satellite
observations have found increased precipitation and
total atmospheric water due to the increase of surface
warming [38–40].
Figure 2 (a) shows the map of the climatic regions de-

fined in LTPP. A general classification of each State is
recorded in the LTPP database. However, it should be
noted that the weather stations in one State may have
different freeze or precipitation classifications. Actually,
even for the same weather station, the freeze and pre-
cipitation classifications may change at different years.
The freeze and precipitation classifications of each wea-
ther station at each year was calculated and the variation
of freeze and precipitation classifications can be deter-
mined based on the criteria. For the 800 weather sta-
tions, 523 (65%) of them weather stations maintain the
same freeze index classification and 564 (70%) of them
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Table 1 Statistical description of the LTPP climatic data

Variables Definition Max. Min. Ave. Std.

MEAN_ANN_TEMP_AVG Average of daily mean air temperatures for a year (°C) 25.9 −4.1 13.3 4.7

MAX_ANN_TEMP_AVG Average of daily maximum air temperatures for a year (°C) 32.6 1.8 19.8 5.0

MIN_ANN_TEMP_AVG Average of daily minimum air temperatures for a year (°C) 22.1 −10 6.9 4.7

MAX_ANN_TEMP Absolute maximum air temperature for a year (°C) 52.2 21.4 37.1 3.3

MIN_ANN_TEMP Absolute minimum air temperature for year (°C) 10.1 − 69.1 −16.8 9.3

DAYS_ABOVE_32_C_YR Number of days when daily maximum air temperature was above 32.2 °C for a year 197 0 44.4 40.4

DAYS_BELOW_0_C_YR Number of days when daily minimum air temperature was below 0 °C for a year 271 0 94.6 56.0

FREEZE_INDEX_YR Sum of negative daily temperatures lower than 0 °C for a year 3369 0 252.3 326.4

FREEZE_THAW_YR Number of freeze–thaw cycles for year 236 0 74.2 41.0

MAX_ANN_HUM_AVG Average of daily maximum humidity for a year (%) 100 0 84.7 14.5

MIN_ANN_HUM_AVG Average of daily minimum humidity for a year (%) 84 0 44.7 11.0

TOTAL_ANN_PRECIP Total annual precipitation (mm) 3658.1 0 909.8 431.6

INTENSE_PRECIP_DAYS_YR Number of days precipitation was greater than 12.7 mm for a year 84 0 21.4 12.1

WET_DAYS_YR Number of days precipitation was greater than 0.25 mm for a year 261 0 124.3 40.8

TOTAL_SNOWFALL_YR Total snowfall for a year (mm) 10,674 0 525.4 693.2

SNOW_COVERED_DAYS_YR Number of days for which snow cover data were available for year 184 0 1.6 11.3

Fig. 1 Results of the PCA
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maintain the same precipitation classification over the
past 70 years. Figure 2 (b) and (c) show the variation of
freeze and precipitation classifications, in which darker

color indicate high percentage of weather stations in this
State recorded varying freeze and precipitation classifica-
tions. It can be seen from Fig. 2 (b) that the States at the

Fig. 2 Climatic regions and its variations. a Original four climatic regions in the LTPP. b Variation of freeze classifications. c Variation of
precipitation classifications

Dong et al. Journal of Infrastructure Preservation and Resilience             (2021) 2:5 Page 5 of 15



borders of north and south have high variations of freeze
classifications.
To investigate if time is a significant factor for the

probability of a weather station is freeze/no freeze or
wet/dry, the logistic regression analysis using the freeze
or precipitation classification as the target and time as
the predictor was adopted to build the models for each
of the weather station. Five hundred-thirteen logistic re-
gression models were built and the parameter estimates
of time as well as its P-value were obtained. Among the
277 (35%) weather stations recording variations of the
freeze classifications, 196 weather stations shows in-
creasing temperature and 16 of them are significant,
while 81 shows decreasing temperature and none of
them is significant. Among the 236 (30%) weather sta-
tions recording variations of the precipitation classifica-
tion, 140 weather stations shows increasing precipitation
and 7 of them are significant, while 96 shows decreasing
precipitation and none of them is significant.

Methodology for classification
PCA
PCA is to convert a set of potentially correlated variables
into a set of linearly uncorrelated variables. Each of the
new variable is called principal component and is a lin-
ear combination of the original variables. As shown in
Eq. (1), the first principal component F1 is the linear
combination of x1, x2, …, xp that has maximum variance
among all linear combinations and accounts for as much
variation in the data as possible. The second principal
component F2 is the linear combination of x1, x2, …, xp
that accounts for as much of the remaining variation as
possible, with the constraint that the correlation between
F1 and F2 is 0. The third principal component F3 is the
linear combination of x1, x2, …, xp that accounts for as
much of the remaining variation as possible, with the
constraint that the correlations between F3, F1 and F2
are 0, and so on. aij is the loading coefficients of xi on Fj,
indicating the correlation of xj on Fi. Either the covari-
ance matrix or the correlation matrix of the variables
can be used to calculate the components from their re-
spective eigenvectors.

F1 ¼ a11x1 þ a21x2 þ⋯þ ap1xp
F2 ¼ a12x1 þ a22x2 þ⋯þ ap2xp

⋯
Fp ¼ a1px1 þ a2px2 þ⋯þ appxp

8
>><

>>:
ð1Þ

The first several principal components can explain the
major variation of the original dataset, and therefore can
be used instead of the original dataset to reduce the di-
mensionality of a data set. In pavement engineering,
PCA has been used to reduce the dimensionality of

dataset. Ghasemi used 5 principle components explain-
ing 89.72% of the total variance of the original 17 asphalt
mixture properties variables as the inputs for an ANN
model predicting pavement permanent deformation [41].
Yao et al. reduced 21 traffic variables into 3 principle
components for the pavement performance prediction
[42]. In this study, PCA based on correlation matrix was
firstly used to investigate the main components of the 16
climatic variables.

Factor analysis
Factor analysis has been widely used in psychology, soci-
ology and economic studies to find the lower number of
unobserved factors that can explain the variability
among correlated variables. As shown in Eq. (2), each
variable is a linear combination of common factors and
an error term. μ is the average or intercept. aij is the
factor loadings, indicating the contribution of common
factors on the variance of the variable. f1, f2, …, fm (m ≤
p) are uncorrelated common factors. Factor analysis can
be performed based on the orthogonal rotation tech-
nique of PCA or maximum likelihood method.

Xi ¼ μþ ai1 f 1 þ ai2 f 2 þ⋯þ aim f m þ εi ð2Þ

Factor analysis can be used to identify the common
factors and to quantify the relationship between ob-
served variables and the unobserved indicators. In pave-
ment engineering, factor analysis has been adopted to
evaluate the key factors of mixture properties and pave-
ment performance. Tian et al. analyzed the 27 properties
of asphalt mixture and find three common factors, in-
cluding the permanent deformation factor, the shear re-
sistance factor, and the moisture susceptibility factor
[43]. Chen et al. used both single factor and multiple
factor analysis to analyze the contributions of pavement
performance measurements on the latent pavement per-
formance factors including the roughness factor, the
early age cracking factor and the aged severe damage
factor [44]. In this study, factor analysis based on the
principal method was used to identify the major com-
mon factors of the 16 climatic variables.

Cluster analysis
Cluster analysis is a widely used unsupervised machine
learning method to classify data samples or variables
into different groups based on their similarity. Distance
metrics such as the Minkowski distance, Block distance
and Euclidean distance are usually used to measure the
similarity between samples. K-means clustering is the
most frequent used cluster algorithm classifying n sam-
ple into k clusters based on the distance. As shown in
Eq. (3), it uses selected k centroids as the beginning
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points, and then performs iterative calculations to
optimize the positions of the centroids by minimizing
the distances within each cluster. The Cubic Clustering
Criterion (CCC) can be used to estimate the number of
clusters using k -means based on minimizing the within-
cluster sum of squares through Monte Carlo methods.
High CCC indicates good clustering. K-means cluster
method has been used for pavement performance evalu-
ation and pavement automatic evaluation data process.
Wang et al. used a normalized cuts clustering to classify
35 pavement sections with 8 performance indicators into
5 clusters with different performance levels [45]. Li et al.
used k-means clustering to identify the potential dipping
in the groove measurement with laser profiling data
[46]. In this study, k-means clustering was used to clas-
sify the 21,666 samples into different climatic regions.

dij ¼ min xi − z j
�� ��� �

; xi∈S; z j∈Z ð3Þ

Discriminant analysis
The discriminant analysis is to classify samples into dif-
ferent groups based on its multiple characteristics. Dif-
ferent with cluster analysis which is an unsupervised
learning, the discriminant analysis is a supervised ma-
chine learning and needs labeled classification. Fre-
quently adopted discriminant algorithms include
Bayesian discriminant, linear discriminant, etc. The lin-
ear discriminant is developed by Fisher in 1937 and is
also called the Fisher discriminant. It uses a discriminant
function maximizing the sum of squares between differ-
ent groups and minimizing the sum of squares within a
group. In 1987, Chou et al. built a discriminant model
trained by historical data for pavement maintenance de-
cision making [47]. A z value can be obtained from the
model to determine if the pavement section needs an
overlay treatment.

Ann
ANN is the most popular supervised learning algorithm
for prediction and classification. In the ANN, the
weights of nodes are trained during learning and an acti-
vation function is applied to the sum of weighted inputs
to calculate outputs. The layers in ANN perform differ-
ent transformations, enabling complicated non-linear
calculation. A Deep Neural Network (DNN) is a type of
ANN including multiple hidden layers and therefore can
model very complex non-linear relationships. The train-
ing of the ANN is to find a set of weights that minimize
the predictive error and the backpropagation is the most
common training algorithm. ANN has already been ex-
tensively used in pavement material properties predic-
tion and pavement performance modeling. Hussan

utilized nonlinear regression and ANN to predict rutting
test results of asphalt mixture based on temperature, ag-
gregate source, aggregate gradation, bitumen penetration
values, and number of loading cycles [48]. Yao et al.
used an DNN with two hidden layers and 64 nodes to
predict pavement performance with 37 inputs [42].

Discussion of results
PCA
Figure 3 shows the PCA results for the 16 variables
based on correlations. Figure 3 (a) is the scree plot
showing the eigenvalue corresponding to each principal
component in order from largest to smallest. The eigen-
values for the first two components are 7.7, and 3.8, re-
spectively. Figure 3 (b) shows the portions of each
component on the total variation and are scaled to sum
to the number of variables. The first two components
account for 47.5% and 24.1% of the total variance, re-
spectively. It is rational to use the first two components
to represent all of the 16 variables, accounting for 71.6%
of the total variance.
Table 2 shows the loading matrix for the first five

components. The i column of loadings is the i th eigen-
vector multiplied by the square root of the i eigenvalue.
Each component is the weight sum of the 16 variables
with loadings as the weighting coefficients. High loading
value indicates high correlation between the variable and
the component. The loading values higher than 0.5 were
bolded for better illustration. It can be seen that the first
component is mainly related to the five temperature fac-
tors and four freeze condition factors. The second com-
ponent is mainly related to the five precipitation and
humidity factors. The third component is mainly related
to two humidity factors, and the fourth is mainly related
to snow covered days. The rest components have much
less correlations with all the variables. Therefore, the
temperature and humidity components can be used to
represent the 16 climatic factors.

Factor analysis
Table 3 shows the rotated loading matrix of the first two
factors based on the orthogonal rotation technique of
PCA. The scree plot and the proportion of eigenvalues
are the same as in Fig. 1 Each of the 16 variable can be
expressed as the weight sum of the two common factors
which explaining 71.6% of the total variance. It can be
seen that the first common factor is the temperature fac-
tor and the 10 temperature related variables have large
loading values. The second common factor is the humid-
ity factor and the six humidity related variables have
large loading values. It is noted that the snowfall and
snow covered days are more related to the temperature
factor. Further, the maximum annual temperature is re-
lated to both the temperature and the humidity factors
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and the loading value for humidity factor is negative
(− 0.61), indicating that the higher maximum annual
temperature is usually related to lower precipitation
level.

Cluster analysis
Firstly, the k-means clustering with four clusters were
performed. Figure 6 shows the average of each of the 16
variables for the four clusters. When we classify all the
samples into four groups, those are the center points
that could achieve the minimum within cluster sum of
squares. Based on temperature, precipitation and snow-
fall, we can estimate from Fig. 6 that cluster 1 is wet no
freeze, cluster 2 is dry no freeze, cluster 3 is dry freeze
and cluster 4 is snow freeze. The major difference be-
tween cluster 3 and 4 is not precipitation but the

snowfall. They are not exactly as the original four cli-
matic regions defined by the LTPP.
Different number of clusters were also performed and

the CCC values were shown in Fig. 4. It can be seen that
the highest CCC is achieved at 9-mean clusters. Figure 5
shows the distribution of all the 21,666 sample for both
4-mean and 9-mean clustering, and the original four cli-
matic regions defined by the LTPP in the coordinates of
the first two principle components. The horizontal and
vertical axles are the first and second principle compo-
nents, representing temperature and humidity, respect-
ively. For the 4-means clustering, it can be clearly seen
from Fig. 5 (a) that cluster 1 and 2 are in high
temperature region with high and low humidity, respect-
ively. Cluster 3 and 4 are in low temperature region and
cluster 4 has even lower temperature and higher

Fig. 3 Results of the PCA. a Scree plot. b Proportion of eigenvalues

Table 2 Loading matrix of the first five components

Variables Prin1 Prin2 Prin3 Prin4 Prin5

MEAN_ANN_TEMP_AVG 0.978399 0.106364 − 0.003164 0.042723 0.015729

MAX_ANN_TEMP_AVG 0.972456 −0.037692 0.003979 0.016051 0.083788

MIN_ANN_TEMP_AVG 0.940365 0.255010 −0.011688 0.068552 −0.058891

MAX_ANN_TEMP 0.661642 −0.509632 0.160909 0.017871 0.122109

MIN_ANN_TEMP 0.898253 0.167616 −0.044046 0.045169 0.013632

DAYS_ABOVE_32_C_YR 0.813625 − 0.329665 0.068207 0.187960 −0.047039

DAYS_BELOW_0_C_YR −0.935344 − 0.236707 0.004261 − 0.102506 0.142964

FREEZE_INDEX_YR −0.824088 −0.103101 0.094111 0.207272 −0.368696

FREEZE_THAW_YR −0.730925 −0.306496 − 0.056753 −0.299598 0.491193

TOTAL_ANN_PRECIP 0.123616 0.895597 −0.302086 −0.117232 0.062065

INTENSE_PRECIP_DAYS_YR 0.190140 0.846556 −0.297667 −0.150064 0.100138

WET_DAYS_YR −0.349331 0.770524 −0.226374 −0.017618 − 0.069989

MAX_ANN_HUM_AVG −0.182615 0.654580 0.665804 0.081985 0.195059

MIN_ANN_HUM_AVG −0.323228 0.757478 0.506772 0.126679 −0.028140

TOTAL_SNOWFALL_YR −0.745707 0.010550 −0.217644 0.198152 −0.217309

SNOW_COVERED_DAYS_YR −0.269808 0.048246 −0.244001 0.855057 0.348518
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humidity, causing the high snowfall as shown in Table 4.
Compared with Fig. 5 (c), the cluster borders are more
distinct.
For the optimal 9-means clustering with the lowest

within cluster sum of squares, we can see from Fig. 5 (b)
that the data points are more centralized, especially for
the temperature principle component. In additional to
the freeze and no freeze clustering, the model suggest
four to five temperature clustering. We could use cold,
cool, mild, warm, and hot instead of the original freeze
and non freeze temperature classification and could ob-
tain nine climatic regions including wet hot, wet warm,
wet mild, wet cool, wet cold, dry hot, dry warm, dry mild
and dry cool. This finding agrees with Wang’s recom-
mendation to add wet mild and dry mild regions to the

original four climatic regions [13]. In summary, PCA
and factor analysis can identify the main component and
common factors for the 16 climatic variables and cluster
analysis can be used to classify data samples or weather
stations to help determining climatic regions.

Discriminant analysis
With known climatic regions, the supervised machine
learning algorithm can be used to determine the
regionalization based on collected climatic data from a
new weather station or from the climate change. There
are 477 samples in the original sample with no climatic
regions labeled and therefore the rest 21,189 samples
were used for the following supervised learning analyses.
66% of randomly selected samples were used as training
set and the rest were used as the testing dataset. The
model parameters are firstly trained with the training
dataset and then the model is tested with testing dataset.
The Fisher’s linear discriminant analysis was con-

ducted first. Table 5 shows classification matrix for
training and validation datasets. The sum of each row of
the two datasets is 100%. In the training dataset, for the
wet no freeze climatic region, 85% of the classification
are correct and the majority (12%) of the misclassifica-
tions are classified as wet freeze. In the testing dataset,
for the wet no freeze climatic region, 81% of the classifi-
cation are correct and the majority (15%) misclassifica-
tions are classified as wet freeze. It can be seen that the
classification matrix of the testing dataset are close to
those of the training datasets, indicating there is no
overfitting. Overfitting means the model is only valid for
the training dataset but not work for the testing dataset
and therefore the robustness the discriminant model is
validated.
Figure 6 shows the distribution of classified samples in

the coordinates of the first two principle components. It
can be seen from Fig. 6 that results of the Fisher’s dis-
criminant analysis are very close as the original four cli-
matic regions shown in Fig. 5 (c). The misclassification
rate for the training and testing datasets are 13.6% and
14.4%, respectively, which is fairly good since it is classi-
fied based on the value of the linear combination of pre-
dictors. Therefore, the discriminant model can be used
to classify climatic regions based on the 16 climatic vari-
ables while the classification accuracy could be further
improved with proper supervised learning algorithms.

Ann
Due to the large volume of model parameters and non-
linear transformations capability, ANN has been proved
to obtain higher prediction accuracy in machine learn-
ings. As shown in Fig. 7, two ANN models were estab-
lished. One has one hidden layer with five nodes, and
the other one has two hidden layers with 10 nodes in

Table 3 Rotated loading matrix of the first two factors

Variables Factor 1 Factor 2

MEAN_ANN_TEMP_AVG 0.982994 −0.047980

MAX_ANN_TEMP_AVG 0.954591 −0.189334

MIN_ANN_TEMP_AVG 0.968678 0.104785

MAX_ANN_TEMP 0.573785 −0.606849

MIN_ANN_TEMP 0.913414 0.025054

DAYS_ABOVE_32_C_YR 0.752046 −0.452869

DAYS_BELOW_0_C_YR −0.960855 −0.087493

FREEZE_INDEX_YR −0.258940 0.089854

FREEZE_THAW_YR −0.769869 −0.188397

WET_DAYS_YR 0.262178 0.865239

TOTAL_ANN_PRECIP 0.320213 0.806396

INTENSE_PRECIP_DAYS_YR −0.200770 0.798712

MAX_ANN_HUM_AVG −0.077982 0.675087

MIN_ANN_HUM_AVG −0.224511 0.815680

TOTAL_SNOWFALL_YR −0.734878 0.127059

SNOW_COVERED_DAYS_YR −0.830072 0.027067

Fig. 4 CCC for different clusters

Dong et al. Journal of Infrastructure Preservation and Resilience             (2021) 2:5 Page 9 of 15



Fig. 5 Results of cluster analysis. a Four clusters. b Nine clusters. c Original four climatic regions by LTPP
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the first layer and 8 nodes in the second layer. Table 6
shows the classification matrixes for both training and
validation datasets of the two ANNs. For the one layer
ANN, the generalized R square of the training and test-
ing datasets are 94% and 93% respectively, which are
very close and indicate no overfitting. In the training
dataset, for the dry freeze climatic region, 92% of the
classification are correct and the majority (5%) of the
misclassifications are classified as wet freeze. In the test-
ing dataset, for the dry freeze climatic region, 92% of the
classification are correct and the majority (6%) misclassi-
fications are classified as wet freeze. It is noted that the
overall misclassification rate are 9.6% and 9.7% respect-
ively, much higher than the Fisher’s linear discriminant
analysis. This is because the nonlinear calculation cap-
ability of ANN. For the two layer ANN, the generalized
R square of the training and testing datasets are 97% and
96% respectively, and the overal misclassification rate
are 6% and 6.6% respectively, indicating that more model

parameters could significantly improve the model
accuracy.

Conclusions and future research
In this study, the climatic data were used to investigate
the climate regionalization for pavement infrastructure.
Firstly, 16 historical climatic data variables including an-
nual temperature, freeze thaw, precipitation, and snow-
fall conditions were extracted from the LTPP database
and the effect and significance of climate change were
evaluated. The unsupervised machine learning including
PCA, factor analysis and cluster analysis were firstly con-
ducted to identify the main component and common
factors for climatic variables, and then to classify data-
sets into different groups. Then, the Fisher’s discrimin-
ant analysis and ANN models were built to predict the
climatic regions based on climatic data. The benefit of
unsupervised machine learnings is to identify the key
factors and find the optimal clustering of climatic

Table 4 Average of climatic variables for each cluster

Clusters 4 clusters

1(wet no freeze) 2(dry no freeze) 3(dry freeze) 4(snow freeze)

Sample number 8601 3537 9099 429

MEAN_ANN_TEMP_AVG 16 17 9 5

MAX_ANN_TEMP_AVG 22 25 15 11

MIN_ANN_TEMP_AVG 10 10 2 0

MAX_ANN_TEMP 37 41 35 32

MIN_ANN_TEMP −10 − 10 −25 −29

DAYS_ABOVE_32_C_YR 50 93 14 4

DAYS_BELOW_0_C_YR 55 57 148 170

FREEZE_INDEX_YR 49 49 582 983

FREEZE_THAW_YR 50 53 101 95

MAX_ANN_HUM_AVG 91 68 87 90

MIN_ANN_HUM_AVG 49 30 48 53

TOTAL_ANN_PRECIP 1254 473 814 974

INTENSE_PRECIP_DAYS_YR 31 11 18 20

WET_DAYS_YR 144 76 141 174

TOTAL_SNOWFALL_YR 130 142 1127 2218

SNOW_COVERED_DAYS_YR 0 0 1 95

Table 5 Classification matrix for training and validation datasets of the discriminant analysis

Climatic
region

Training Testing

Wet no freeze Dry no freeze Wet freeze Dry freeze Wet no freeze Dry no freeze Wet freeze Dry freeze

Wet no freeze 85% 1% 12% 2% 81% 2% 15% 2%

Dry no freeze 12% 86% 0% 1% 12% 87% 0% 1%

Wet freeze 9% 0% 85% 6% 9% 0% 86% 5%

Dry freeze 4% 3% 5% 88% 4% 3% 6% 86%
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conditions based on the similarities among data samples,
while supervised machine learnings could provide a
more accurate classification based on the data.
Investigation on the LTPP annual climatic data shows

that the mean, maximum and minimum of the average
temperature in most States increase significantly while
the freeze index and freeze thaw cycles decrease signifi-
cantly. In addition, around 50% States show significant
increasing precipitation and humidity while only 10–
20% States show significant decreasing trend. The rising
temperatures increase evaporation, causing increased
precipitation. Around one third of the 800 weather sta-
tions record variation of freeze and precipitation classifi-
cations and a few of them show significant change of

classifications over time based on the results of logistic
regression analyses.
Results of PCA show that the first two components,

which are highly correlated with temperature and hu-
midity respectively account for a total of 71.6% of the
variance and can be used to reduce the dimensionality
of the original climatic variables. Results of factor ana-
lysis show temperature and humidity are the two com-
mon factors, and the snowfall and snow covered days
are more related to the temperature factor. The 4-means
clusters include wet no freeze, dry no freeze, dry freeze
and snow freeze. The 9-means cluster model with high-
est CCC suggest 4 and 5 temperature clusters for dry or
wet conditions.

Fig. 6 Results of Fisher’s discriminant analysis

Fig. 7 Structure of the ANNs

Dong et al. Journal of Infrastructure Preservation and Resilience             (2021) 2:5 Page 12 of 15



Both the Fisher’s linear discriminant analysis and
ANN can effectively predict climatic regions with
multiple climatic variables. ANN performs better with
higher R square and low misclassification rate, espe-
cially for those with more layers and nodes. This
study focused on using multiple climatic data. In fu-
ture study, the geological and solar radiation data
could be included to potentially improve the cluster-
ing and prediction.
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