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Abstract

Preservation of metals in infrastructures and other assets requires cost-effective and sustainable solutions such
as green corrosion inhibitors. This study assesses an apple pomace-derived green inhibitor synthesized by an
innovative zero-waste method. Electrochemical measurements revealed the high performance of this liquid
extract in reducing the corrosion of carbon steel in NaCl brine. The chemical composition of this inhibitor
was characterized by liquid chromatography mass spectroscopy (LC-MS) to shed light on the corrosion
inhibition mechanism. Based on LC-MS analysis, the results of surface analysis were interpreted. Specifically,
the major corrosion inhibitor agent in the apple pomace extract was determined as C26H50NO7P (1-Linoleoyl-
sn-glycero-3-phosphocholine), which can adsorb onto the steel surface to form a barrier layer and serve as a
blocker of active anodic sites. Further study showed that the apple extract adsorption follows the Langmuir
isotherm, and physical adsorption is dominant (vs. chemical adsorption). Theoretical calculations using
quantum chemistry proposed a physisorption mechanism for the protection of steel by C26H50NO7P
molecules.
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Introduction
Chloride-based deicers have been used extensively in winter
road maintenance operations [24, 37]. Since these chemi-
cals are water soluble and corrosive, they can pose a great
risk on the integrity, performance, and service life of steel
structures (and components) [7, 43]. They may induce pre-
mature failures, which have substantial implications on the
reliability, resilience, serviceability, and environmental foot-
prints of the structure [29, 69]. One of the cost-effective
methods for preventing or reducing the corrosion damage
entails the application of corrosion inhibitors [20, 59, 78].

This method has been widely employed by maintenance
agencies to mitigate the corrosion risk of deicers [50]. The
efficiency of corrosion inhibitors is defined by their physico-
chemical properties such as active functional groups, elec-
tronic structure, electron density, non-bonding (lone pair)
electrons, and π-electrons [64, 66].
Traditional corrosion inhibitors contain chemical com-

pounds that can have toxicological effects and pose harm-
ful impacts on the receiving environment, especially
surface waters [18, 30]. In recent years, green corrosion in-
hibitors have been introduced as alternatives to traditional
inhibitors [13, 38, 40]. Bio-based materials have been used
in the winter maintenance operations of roadways, either
as freezing point depressant, or as green corrosion inhibi-
tor [53]. These materials are mostly produced by
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fermentation and processing of desugared molasses, beet
juice, corn, and other agricultural products [2, 16].
Recently, the authors have introduced an innovative

zero-waste method for producing agro-based corrosion
inhibitors as an additive to deicer/anti-icer chemicals. The
major advantage of the chemicals prepared by this method
over the commercial green chemicals used by the depart-
ments of transportation (e.g., beet juice) is that the former
ones feature much lower chemical oxygen demand, which
makes them more eco-friendly [31]. An example of inhibi-
tors synthesized by the innovative method is a liquid ex-
tract made from peony leaf waste, exhibiting a corrosion
inhibition efficiency of 65.8% for carbon steel in NaCl
brine [51]. Due to relatively low corrosion inhibition effi-
ciency (IE) of the peony leaf extract, the authors further
explored a variety of other local agro-based wastes as feed-
stock (such as grass, dandelion leaf, blueberry pomace,
cherry pomace, and apple pomace) to produce high-
efficiency “green” corrosion inhibitors. After a preliminary
study, the apple pomace seemed to be the most promising
agricultural waste for producing green inhibitor among
the tested wastes. Therefore, we explored this feed-
stock further. In addition, the amount of apple waste in
Washington State is 27,794 tons of dry biomass per year
[27]. Therefore, the current research may lay the founda-
tion of converting a huge amount of waste to an eco-
friendly product, which can notably benefit the society
and the environment.
Apple pomace has been used as a food ingredient, and

for producing jam and jelly [25, 41]. Some researchers
have used commercial apple-derived pectin (C6H10O7) as
a green inhibitor [79]. Pectin can be extracted from apple
pomace using different acid extraction methods which
produce solvent waste [42, 81]. However, no waste is pro-
duced during the extraction process of producing the
apple pomace extract herein, which makes it a more envir-
onmentally friendly corrosion inhibitor than commercial
pectin.
This work investigated the effect of an apple pomace li-

quid extract on the corrosion of C1010 mild steel in 3.5%
NaCl brine. A zero-waste process developed by the authors
was adopted to produce this “green” corrosion inhibitor.
Chemical, electrochemical, and surface analyses were used
to shed light on the corrosion behavior. Finally, using
quantum chemical calculations we propose a mechanism of
corrosion inhibition.

Experimental
Materials
The corrosion coupons were prepared from C1010 steel
with a composition presented in Table 1. The exposed
surface area of each coupon was 1 cm2. The coupons were
polished by 60- to 1500-grit sandpaper sequentially,
degreased by ethanol, and then washed with deionized
water. In the next step, they were exposed to 3.5% NaCl
brine over a 7-day period (168 h). The reason for choosing
3.5% NaCl brine for this research is that it is known that
NaCl concentration of around 3% is the most corrosive
concentration of NaCl brine for iron in aerated solutions
at room temperature [11]. Therefore, the authors used this
concentration to simulate a worst-case scenario. In the
field, the concentration of 23% NaCl is the common as-
applied concentration, for anti-icing or deicing applica-
tions. However, due to snow precipitation and ice melting
conditions, the stormwater runoff tends to have much
lower concentrations of NaCl.
Different concentrations of the apple pomace extract (1%,

2%, and 3% v/v (volume of extract/total volume)) were
employed in this research. These values corresponded to dry
mass per volume of apple pomace extract (APE) at 2.61,
5.22, and 7.82 g/L, respectively. For drying the APE, it was
oven dried at 103 °C for 24 h. The code names of the samples
are shown in Table 2. While the range of 1–3% v/v is high
relative to the range of ppm used by many researchers, it is
much lower than 20% v/v that is common for using agro-
based byproducts such as beet juice in winter maintenance
operations. In addition, some researchers have reported the
range of up to 4% v/v of alcohol-based inhibitors for protec-
tion of reinforcing steel [36].
The apple pomace extract was prepared using a chem-

ical/biological process that has been described elsewhere in
detail [51]. Briefly, in this process the apple pomace, which
contained seed and peel, underwent two degradation steps:
first, chemical degradation in an alkaline solution contain-
ing urea at around − 13 °C, then biological degradation by
bacteria at room temperature. The resulting solution was
heated at 85 °C until its volume halved. The concentrated
solution was used as the corrosion inhibitor without further
treatment or purification. All the chemicals used in this re-
search were of analytical- grade purity.
It should be mentioned that the process used in this

research is more complex than common processes of
dissolving the agricultural feedstock in a solvent such as
a mixture of water and alcohol, or acid [17, 76].

Table 1 Composition of the steel samples

Type
of
Steel

Element (wt.%)

C Mn S P Fe

C1010 0.08–0.13 0.30–0.60 ≤0.05 ≤0.04 Balance

Table 2 Code-names of the coupons in this work

Description Samples exposed to 3.5% NaCl brine containing
various concentrations of APE

Inhibitor% (v/v) 0 1 2 3

Coupon code APE0 APE1 APE2 APE3
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Mass spectrometry
The liquid chromatography–mass spectrometry (LC-MS)
method was employed for in-depth chemical analysis of
the APE. The analysis was conducted in the positive ion
mode using Synapt G2-S mass spectrometer. Calculation of
the normalized weight percent (wt.%) of each compound
was conducted based on the normalized percent surface
area of each peak with the aid of the ImageJ software.

Electrochemical measurement
A PARSTAT MC multichannel Potentiostat per-
formed the corrosion measurements using a standard
three-electrode system comprising the working elec-
trode (corrosion coupon), a reference electrode (Ag/
AgCl, KCl saturated), and a counter electrode (plat-
inum mesh). The electrochemical impedance spectros-
copy (EIS) measurements were carried out using the
same system in the frequency range of 100 kHz – 10
mHz by superimposing AC signal of ±10 mV around
the open-circuit potential (OCP). Tafel polarization
test was conducted at a potential sweep rate of 0.167
mV/s in the range of − 250 mV to + 250 mV with re-
spect to OCP. The VersaStudio software was used for
running the electrochemical corrosion tests and calcu-
lating the Tafel polarization parameters, and ZSimp-
Win 3.60 software was employed for interpretation of
the EIS data. The tests were at least duplicated to ob-
tain an acceptable reproducibility. All of the electro-
chemical tests were performed at room temperature.

Surface analysis
The surface layer was examined via a JEOL JXA-8500F
electron probe micro-analyzer (EPMA). The EPMA uses an
electron probe to generate irradiation on the specimen sur-
face, and then the characteristics of the produced X-ray are
analyzed by wavelength-dispersive X-ray spectroscopy
(WDS) techniques to qualify the element distributions on
the surface. For each area, five elements (e.g. Fe, N, Cl, O,
and P) were analyzed and their spatial distribution mapped.
In order to study the surface layer more in-depth, X-

ray photoelectron spectroscopy (XPS) analysis was used.
The analysis was carried out using an AXIS-165 multi-
electron spectrometer from Kratos Analytical Inc. The
data acquisition and data analysis were performed using
the XPSPEAK 4.1 software.

Quantum chemical calculation
All the calculations were performed using molecular me-
chanics/MM+ level, and the semi-empirical calculations with
PM3 method [74] at 25 °C by Hyperchem 7.52 software.

Results and discussion
Chemical composition of the liquid extract
Figure 1 and Table 3 show the results of LC-MS analysis
for the APE. Based on the mass spectrum data, the APE
molecules mainly include C26H50NO7P and
C31H43N5O (and other organic compounds), which con-
sist of nitrogen, oxygen, and phosphorus elements. The
organic mixtures containing N, P, and O elements have
polar functions, so will adsorb onto the metallic surface as

Fig. 1 LC-MS spectra of the APE
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a barrier organic layer [19]. The adsorption of the polar
atoms on the surface of metal may occur through coordin-
ation between the lone pair or π-electrons cloud and the
metallic surface [23, 71].

Electrochemical characterization
OCP measurements
The OCP of steel coupons in the presence and the
absence of the APE was measured after different pe-
riods of immersion in NaCl brine, as shown in Fig. 2.
The OCP can be a function of corrosion potential
and electrical resistivity of the protective layer formed on

the sample [83]. It can be seen that the OCPs of the sam-
ples exposed to the solutions containing the apple pomace
extract shifted to more noble values, which may be a sign
of the more thermodynamically steady system [33]. This
conclusion has been confirmed by considering the steady
trend of the OCP for sample APE3 after the third day of
the experiment (72 h). This effect is not the same for all
concentrations; for instance, APE2 experiences a sharp de-
crease in OCP values after 72 h; even more than APE1.
This behavior can be due to the probabilistic nature of
corrosion which causes fluctuations of OCP [28].

Tafel polarization results
Figure 3 presents the Tafel polarization plots of the
samples after 7-day immersion in NaCl brines having
different concentrations of APE. It is seen that
addition of APE shifted the corrosion potential to a
more noble potential and decreased the anodic
current density. These can be ascribed to the adsorp-
tion of organic molecules on the anodic active sites
of the steel surface [1, 14].
Table 4 shows the electrochemical parameters de-

rived from the Tafel polarization plots. By increasing the
concentration of the APE, the corrosion current density
(icorr) was notably decreased and the lowest icorr was ob-
tained at 3% (v/v) apple pomace extract. The maximum
inhibition efficiency (IE%) of APE calculated using icorr
value was 83%, which is significantly more than that of

Table 3 Chemical constituents identified for APE using LC-MS
analysis

Formula Retention time (min) m/z wt.%

C16H14F2N4O4 0.40 365.0968 7.0

C3H4N2NaO2
+ 2.37 120.0807 9.4

C32H54N8O9 3.22 695.3990 10.4

C40H54N8O11 3.59 801.3981 4.4

C31H44N2O4 4.73 509.3329 7.5

C31H43N5O 4.95 518.3360 17.3

C31H41N5O 5.79 502.3437 3.1

C26H50NO7P 6.65 520.3352 19.3

C27H41N7O2 6.97 496.3261 7.0

C17H32N6O2 8.56 353.2603 4.9

C42H63O4P 9.87 663.4440 9.7

Fig. 2 OCP versus time for mild steel in NaCl brine containing 0 to 3% (v/v) APE
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pectin (78.7%) for X60 steel in 0.5M HCl solution [79]
and that of Sarang Semut (Myrmecodia Pendans) extract
(65.21%) for low carbon steel in 3.5% NaCl solution [62].
By adding the extract at 3% (v/v), the corrosion poten-

tial (Ecorr) of the steel increased by more than 85 mV,
which shows that APE is an anodic inhibitor and the
corrosion inhibition is attributable to change in the acti-
vation energy [14, 21]. Based on Table 4, the values of
anodic and cathodic Tafel slopes were 104.1 and 384.4
mV/dec, respectively for the APE0 sample. Both anodic
and cathodic Tafel constants decreased with increases
in the APE concentration.

EIS results
Figure 4 depicts the impedance Nyquist curves of steel
samples in NaCl brines with various concentrations of
APE. The capacitive arc radius increased by increasing
the concentration of the apple pomace extract, which
corresponds to improved corrosion resistance [15, 49].
The capacitive arcs for samples APE0 and APE1 have
similar forms despite their different sizes, which shows
that the inhibition mechanism is independent of

theextract concentration for these samples. However,
the feature of the capacitive arc with a Warburg imped-
ance emerged in samples APE2 and APE3. The observed
arcs in all samples are non-ideal semi-circles which is
likely due to the frequency dispersion caused by
corrosion-induced non-homogeneity of the steel surface
[8, 12]. In addition, adsorption of the barrier organic
layer on the surface of metal can induce surface hetero-
geneity that can affect the shape of capacitive arc [9, 58].
The Bode curves in Fig. 5 reveal that by increasing the

APE concentration, |Z| value at the frequency impedance
of 10 mHz (Log f = − 2) increased. Since this value corre-
sponds to the corrosion protection provided by the inhibi-
tor [65], it shows that by increasing the inhibitor
concentration, the corrosion protection was improved.
The equivalent electrical circuits used for studying the

impedance spectra are shown in Fig. 6. The circuits con-
sist of the following elements: Rs (solution resistance), Rf

(corrosion film resistance), Qf (constant phase element
(CPE) of film), Rct (charge transfer resistance of metal/
solution interface), and Qdl (CPE of metal/electro-
lyte interface), and W (Warburg impedance).

Fig. 3 Tafel polarization curves for steel samples after 7-day exposure to NaCl brine containing 0 to 3% (v/v) apple pomace extract

Table 4 Electrochemical parameters fitted by using Tafel polarization data

Sample
Name

Tafel slopes (b/mV) Ecorr (mV) icorr (μA/
cm2)

IE%a

βa -βc
APE0 104.1 ± 46.7 384.4 ± 101.1 − 833.3 ± 25.3 11.92 ± 3.29 –

APE1 83.6 ± 1.5 92.5 ± 45.4 −712.2 ± 30.5 4.60 ± 2.24 61.4

APE2 64.8 ± 12.0 88.6 ± 16.7 − 757.6 ± 117.1 3.58 ± 0.20 69.9

APE3 87.3 ± 28.7 102.1 ± 5.5 − 728.8 ± 31.9 2.03 ± 1.01 83.0

Note: standard errors are reported
aIE% = (1 - icorr (inhibited) / icorr (uninhibited)) × 100
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Some of the values of the fitted parameters based on the
equivalent electrical circuit model are summarized in
Table 5. In the equivalent electrical circuit, Qdl is the CPE
of the electrical double layer at the metal/electrolyte inter-
face. The CPE represents an non-ideal capacitor in the
EIS results, and its impedance is stated as follows [73].

ZCPE ¼ 1
Y 0 jwð Þn ð1Þ

Where Y0 is the CPE magnitude, n is the phase shift
due to surface roughness (− 1 ≤ n ≤ 1), and ω is the angu-
lar frequency. The values of Cdl, represented in Table 5,
were measured as follows [44].

Cdl ¼ Y 0Rct
1−n

� �1=n ð2Þ

The Cdl values decreased with increases in the concen-
tration of APE, which can be ascribed to the reduction
of double layer dielectric constant [10]. This means a
thicker electrical double layer, which is caused by more
displacement of corrosive species by APE molecules at
the steel/electrolyte interface [57, 75]. By increasing the
concentration of APE, the values of Rct increased which
could translate to higher inhibition efficiencies [26]. In
addition, Rf increased in the presence of higher concen-
trations of APE, which may pertain to the decrease in
the number of ionically conducting paths. This implies a
slowed-down migration rate of aggressive species (such

Fig. 4 Nyquist curves for steel samples after 7-day immersion in NaCl brine containing 0 to 3% (v/v) APE

Fig. 5 Bode curves for steel samples after 7-day immersion in NaCl brine containing 0 to 3% (v/v) APE
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as Cl− ions) through the adsorbed protective layer to-
wards the surface of steel. The Warburg impedance was
observed in APE2 and APE3 samples, which shows a re-
sistance due to the diffusion process over the porosity of
the corrosion product film [32, 35].
The fitted curves for Nyquist and Bode curves of sam-

ples APE0 and APE3 are shown in Fig. 7. As can be
seen, there is a good match between the modeled and
experimental results. For modeling the electrochemical
behavior of samples APE0 and APE3, the equivalent cir-
cuits presented in Fig. 6 (a) and 6 (b) were used, respect-
ively. The maximum IE of APE calculated using EIS data
was 98.8%, which was much more than that of pectin
(77.1%) for X60 steel in 0.5M HCl solution [79] and that
of Myrmecodia Pendans extract (79.7%) for the corro-
sion of mild steel API 5 L Grade B in 3.5% NaCl [63].
The Nyquist curves of the APE3 sample at various

immersion periods are shown in Fig. 8. The protection
responses were modified over time, controlled by the
charge transfer mechanism for all time periods. The big-
gest capacitance arc was observed at day 7, which
showed the stability of the protective layer over time.
The Bode curves depicted in Fig. 9 demonstrate the in-
creasing of the |Z|10mHz with APE concentration, which
shows improvement in anti-corrosion performance of
the inhibitor and its stability over time. After five days of
immersion, the Bode curve showed the fingerprint
of two time constants, which can be explained by the

changing of the protection mechanism from geometry
blocking to energy effect [14]. This is in good agreement
with Tafel results that linked the APE corrosion inhib-
ition to changing of the activation energy.

Adsorption isotherm
The interaction of APE molecules with the steel sur-
face can be determined by using an adsorption iso-
therm. In this regard, the surface coverage degree (θ)
was assumed to be equivalent to inhibition efficiency
(IE) measured by the EIS technique. The IE versus
APE concentration was fitted to Langmuir, Freun-
dlich, Flory-Huggins, and Temkin adsorption iso-
therms. The Langmuir isotherm exhibited the best fit
to the data, with the correlation coefficient of 0.997
(Fig. 10). The Langmuir isotherm follows the follow-
ing equation [54].

log
C
θ

� �
¼ logC−logK ð3Þ

Where C is the concentration of APE in g/L (dry
mass/volume of extract solution), K is the adsorption co-
efficient (L/g). Classical adsorption isotherms (such as
Langmuir) use the model of non-penetrable interface in
which a solvent can be substituted by the molecules of
an adsorbate [45].

Fig. 6 Equivalent circuit models employed for assessing the EIS results

Table 5 EIS parameters obtained by fitting the data to an equivalent circuit for the samples immersed for 7 days in NaCl brine

Sample
Name

Rf
(Ω cm2) ×
102

Qf Cf
(F cm−2) ×
10−4

Rct
(KΩ cm2)

Qdl Cdl
(F cm− 2) ×
10− 4

W
(Ω cm2

s-1/2)

Rp
a

(KΩ
cm2)

IE%b

Y0f
(Ω−1 cm− 2

snf) × 10− 4

nf Y0dl
(Ω− 1 cm− 2

sndl) × 10− 4

ndl

WAPE0 1.48 ± 1.17 18.69 ± 8.00 0.64 ± 0.10 4.76 ± 3.27 1.09 ± 0.04 7.61 ± 3.51 0.83 ± 0.11 7.48 ± 3.73 – 1.24 –

WAPE1 1.42 ± 0.68 2.99 ± 1.25 0.62 ± 0.23 0.63 ± 0.32 7.67 ± 1.08 12.08 ± 3.84 0.66 ± 0.10 95.59 ± 77.55 – 7.82 84.2

WAPE2 5.78 ± 2.72 2.10 ± 0.76 0.83 ± 0.01 1.02 ± 1.33 10.56 ± 7.46 5.99 ± 1.43 0.61 ± 0.04 23.63 ± 19.87 75.75 ±
75.74

11.13 88.9

WAPE3 3.39 ± 3.35 3.26 ± 1.71 0.47 ± 0.19 0.44 ± 0.44 99.28 ± 98.31 3.28 ± 1.89 0.82 ± 0.03 3.04 ± 1.27 1.02 ±
1.01

99.61 98.8

Note: standard errors are reported
aRp = Rf + Rct
bIE% = (1 - Rp (uninhibited) / Rp (inhibited)) × 100

Honarvar Nazari et al. Journal of Infrastructure Preservation and Resilience             (2020) 1:7 Page 7 of 19



The change in the free energy of adsorption (ΔG0
ads)

was measured as follows [54, 68].

ΔG0
ads ¼ −2:303RTlog CsolventKð Þ ð4Þ

Where R designates the gas constant, T shows the ab-
solute temperature, K is the adsorption coefficient (L/g),
and Csolvent is the water concentration (1000 g/L). The

Gibbs free energy was estimated to be − 16.33 kJ mol− 1.
The negative value of ΔG0

ads suggested the spontaneous
occurrence of adsorption process of APE species onto
the steel surface. The absolute value of Gibbs free energy
was smaller than 20 kJ mol− 1, which suggests that the
physical adsorption is dominant, rather than chemical
adsorption [72]. In this condition, the electronic struc-
ture of the adsorbate is disturbed because of the

Fig. 7 Nyquist curves (a, c) and Bode curves (b, d) with the fitted curves for steel sample after 7-day immersion in NaCl brine containing 0% (v/v)
of APE (APE0) and 3% (v/v) of APE (APE3)

Fig. 8 Nyquist curves for steel samples immersed for different periods in NaCl brine containing 3% (v/v) APE
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electrostatic interaction between APE molecules and
the steel surface [70].

Surface analyses
SEM micrographs
The SEM images of as-washed coupons are provided in
Fig. 11. A rough surface was observed on the uninhibited
sample (APE0) and smoother surfaces on the samples
exposed to APE containing solutions. Other researchers
for the uninhibited and inhibited samples in Cl− contain-
ing media reported similar results [3]. The amount of

metallic surface covered by the organic layer increased
with increases in the concentration of APE. This is in
good agreement with the results obtained by electro-
chemical measurements and adsorption isotherm.

EDS results
The main elements of the surface layer formed on the as-
washed APE0 – APE3 steel samples are shown in Fig. 12.
The main peaks for all samples corresponded to iron and
oxygen, which suggests the formation of iron oxides on
the surface. This is in good agreement with the results

Fig. 9 Bode curves for steel samples immersed for different periods in NaCl brine containing 3% (v/v) APE

Fig. 10 The isotherm for adsorption isotherm of APE (C, in g/L, dry mass per volume of corresponding APE)
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obtained by EIS measurement that suggested the forma-
tion of a corrosion product layer on the surface of steel. In
the case of APE3, a relatively large peak related to phos-
phorus can be seen around 2 keV, which is attributed to
the adsorption of inhibitor molecules onto the steel
surface.

EPMA results
For more in-depth analysis of the corrosion surface
layer, EPMA analysis was employed which enables
simultaneous detection of different elements and
mapping of their distribution on a defined surface
area. The EPMA elemental maps for the surface

Fig. 11 SEM micrographs of as-washed coupons after 7-day immersion in NaCl brine with APE at (a) 0%, (b) 1%, (c) 2%, and (d) 3% (v/v)

Fig. 12 EDS results of the corrosion surface layer for (a) APE0, (b) APE1, (c) APE2, (d) APE3 steel samples
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Fig. 13 EPMA maps of the corrosion surface layer for APE0 and APE3 steel samples. The size of analyzed area was set at 50 μm× 50 μm
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layer formed on the APE0 and APE3 steel samples
are shown in Fig. 13. On the steel surface exposed
to uninhibited NaCl brine (APE0), there is little
presence of N or P and the corrosion product layer
consisted of an iron oxide/hydroxide layer containing
Cl. The interface between the corroded surface (left)
and the intact steel substrate (right) is clearly illus-
trated by the elemental maps of Fe, O and Cl. In
contrast, the surface layer in NaCl brine with high
inhibitor concentration (APE at 3%) clearly consisted
of a phosphorous compound. These results are in
very good agreement with the results obtained by EDS.
Therefore, from these results and the LC-MS data it can
be concluded that C26H50NO7P is the major corrosion

inhibitor agent in the APE. The charge density of phos-
phates is more negative than that of amines [34]; as such,
the bond of former with metallic surface is more stable.

XPS results
Figure 14 depicts the results of XPS analysis for WPE0
and WPE3 samples. In the plot associated with Fe2p in
WPE0, there is a peak at 708.37 eV which is related to
Fe3O4 [46]. The XPS analysis of O1s unveils two peaks
at 530.65 eV and 528.8 eV, which are associated with
Fe3O4 and Fe3O4 complexes, respectively [4, 5]. In the
presence of APE (sample APE3), two peaks appeared in
the Fe2p plot. The major peak seen at 709.66 eV comes
from Fe2O3 [60]. The second peak at 708.63 is due to

Fig. 14 XPS plots for APE0 and APE3 samples
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Fe3O4 [46]. Therefore, in the presence of APE, the major
part of corrosion product layer is converted to Fe2O3

from Fe3O4. It is known that Fe2O3 is more corrosion-
resistant than Fe3O4 [39]. As such, one of the reasons
that APE3 has a less corrosion rate than APE0 is the
catalytic effect of APE in converting Fe3O4 to Fe2O3 in
corrosion surface layer. It is known that phosphates can
catalyze the oxygen evolution at near neutral pH [77]. In
addition, they can stabilize the corrosion product layer
[47]. Therefore, C26H50NO7P played the main role in
converting Fe3O4 to Fe2O3. Observation of the N1s plot
shows a peak at 400.75 eV that indicates adsorption of
an amine-containing compound on the steel surface
[82], which may be C31H43N5O. In addition, the plot of
P2p shows a peak at 134.72 eV that reveals an amine-
phosphate based constituent [61], which may have re-
sulted from the adsorption of C26H50NO7P compound.

Quantum chemical calculations
Theoretical studies have prospective applications in de-
signing and developing of many organic inhibitors in the
field of corrosion inhibition chemistry. The capability of
the inhibitor for corrosion prevention bases on its spatial
distribution of molecule and its electronic arrangement
over frontier molecular orbitals. Molecular geometry sys-
tems of compounds C26H50NO7P and C31H43N5O as the
main compounds of the APE were determined. The
stable geometry of the compounds was obtained by PM3
method, which was carried out in Hyperchem software
(Fig. 15).
The calculated chemical parameters for C26H50NO7P

and C31H43N5O molecules are given in Table 6. It is
seen that the dipole moments (μ) for C26H50NO7P and
C31H43N5O molecules are 17.0 D and 6.6 D, respectively.
The organic molecules with high dipole moment may

Fig. 15 Conformation structure for C26H50NO7P and C31H43N5O

Honarvar Nazari et al. Journal of Infrastructure Preservation and Resilience             (2020) 1:7 Page 13 of 19



form electrostatic interactions with the metal surface,
that result in a strong adsorption on the surface of metal
[55]. In this research, the value of μ for C26H50NO7P is
more than twice of the value of μ associated with
C31H43N5O. This can justify the better corrosion inhib-
ition properties of C26H50NO7P relative to C31H43N5O.
These results are also in good agreement with the results
obtained by Verma et al. that showed D-glucose deriva-
tives with the dipole moment of 8.17 D having more
than 96% corrosion inhibition efficiency in 1M HCl

solution [80]. In addition, the μ value of C26H50NO7P
(17.0 D) is more than that of pectin, 11.725 D [79],
which justifies the better anti-corrosion performance of
APE than pectin.
The energy gap (ΔE = ELUMO – EHOMO) between the

ELUMO and EHOMO levels of inhibitor molecules is an-
other important electronic parameter which is given in
Table 6. The values of energy gap for C26H50NO7P and
C31H43N5O molecules are 7.7548 eV and 8.3776 eV, re-
spectively. Low absolute values of the energy gap means
good inhibition efficiency of the organic inhibitor [56]. It
is evident that C26H50NO7P has a lower energy gap than
C31H43N5O. This confirms the EDS and EPMA results,
which showed that C26H50NO7P is the main corrosion
inhibitor agent in the APE. Similar observations have
been reported by Aloysius et al. where VB7 with the ΔE
of 3.769 eV showed stronger affinity towards the steel

Table 6 Quantum calculation results of the APE obtained by
using PM3 method

Molecule EHOMO (eV) ELUMO (eV) Energy gap (ΔE, eV) μ (Debye)

C26H50NO7P −8.863 −1.108 7.755 17.0

C31H43N5O −8.471 −0.093 8.378 6.6

Fig. 16 Electrostatic potential maps of C26H50NO7P and C31H43N5O
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surface and better inhibition efficiency than VB1 with
the ΔE of 6.555 eV [6].
Figure 16 displays the electrostatic potential maps for

C26H50NO7P and C31H43N5O molecules. More dark
red (negative) regions associated with nucleophilic re-
activity in the potential map of C26H50NO7P and
C31H43N5O indicate that these molecules are readily
sharing free electron pairs with the metal surface (elec-
trophilic agent) through electrostatic interactions. Also,
the molecules with blue (positive) region have electro-
philic reactivity [22].
Figure 17 displays the frontier orbitals including the

highest occupied molecular orbital (HOMO) and the
lowest unoccupied molecular orbital (LUMO) for
C26H50NO7P and C31H43N5O molecules. It can be seen
in the HOMO of C26H50NO7P molecule that the isosur-
faces have been localized via phosphate moiety. This
moiety has donor sites that facilitate the adsorption on the

metallic surface by O atoms. However, the side chain (tri-
methyl amine and ester group) did not contribute to the
HOMO electronic distribution. On the other hand, LUMO
of C26H50NO7P molecule plays the role of acceptor where
the electronic distribution is localized on the O atoms of
ester moiety and C atoms of C=C bonds. In addition, O
atoms of phosphate moiety are able to coordinate with
positive ions of the surrounding environment.
In Fig. 17, it can be seen that HOMO isosurfaces are lo-

calized in C31H43N5O via benzoimidazole and piperidine
moieties. Benzoimidazole and piperidine moieties have
donor sites of C31H43N5O that facilitate the adsorption on
the metallic surface by N atoms. Nevertheless, the side
chain (aryl groups and amide) has not any influence on the
electronic distribution of the HOMO in C31H43N5O. In
addition, N atoms of benzoimidazole and piperidine
moieties have active sites to coordinate with ions, which
enables them to be acceptor of electron. Finally, the

Fig. 17 LUMO and HOMO distributions for C26H50NO7P and C31H43N5O

Fig. 18 Physisorption mechanism of C26H50NO7P and C31H43N5O molecules on the steel surface
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theoretical studies revealed that the hydrocarbon groups
attached to C26H50NO7P and C31H43N5O have no effect
on LUMO or HOMO distributions and can just be as
hydrophobic fragments.
It was observed that nitrogen and oxygen atoms in the

studied molecules have high electron density. These sites
are nominated to be the active sites to proper electro-
philes and can be attached within the environment [48].
Based on this, a physisorption mechanism was proposed
for adsorption of C26H50NO7P and C31H43N5O mole-
cules on the metallic surface, as depicted in Fig. 18.

Mechanism of corrosion inhibition
The inhibition mechanism in the presence of APE was
adsorption of an organic protective film, and chemical
conversion of corrosion product layer to a more
corrosion-resistant film. The adsorption type was Lang-
muir isotherm model in which a monolayer of organic
molecules form a non-penetrable interface. In the Lang-
muir model, each active site on the metal surface can be
related equally to an adsorbate molecule, and there is no
interaction among the adsorbed molecules [67]. In
addition, the saturation coverage occurs when all of the
surface active cites are occupied by the adsorbate mole-
cules [67]. According to the experimental results, the
saturation behavior in the inhibitive characteristics oc-
curred in 3% v/v of APE in this research, since the cor-
rosion efficiency at this concentration of APE in close to
100%, thus it cannot increase considerably.
1-Linoleoyl-sn-glycero-3-phosphocholine

(C26H50NO7P) has a major role in the inhibition proper-
ties of APE. The corrosion inhibitive behavior of
C26H50NO7P can be related to the functional group of
its molecular structure [52]. It was also responsible for
converting Fe3O4 in corrosion product layer to a more
corrosion-resistant iron oxide (Fe2O3). APE molecules
may attach to the surface of steel though their high elec-
tron density sites [70]. The APE adsorption entails the
interaction of non-bonding electrons on nitrogen and
oxygen with the steel surface.
More APE was associated with higher Rct and Rf values

which shows the formation of a more protective surface
layer. On the other hand, more APE corresponded to lower
values of Cdl, due to displacement of corrosive agents by
organic molecules via an adsorption process at the metal/
media interface. The inhibition efficiency was improved
by increasing of APE concentration, which indicates an
active corrosion protection. The corrosion protection
mechanism changed over time from geometry blocking to
energy effect. APE molecules blocked the anodic active
sites and shifted the corrosion potential to more passive
values. The amount of this shift was more than 85mV,
and this suggests thatAPE is an anodic inhibitor and in-
hibition property is due to the change of activation energy.

Conclusions
This research assessed the corrosion behavior of C1010
steel in 3.5% NaCl brine in the presence of an apple
pomace liquid extract. The corrosion mechanism in the
presence of this extract was elucidated using electro-
chemical measurements, mass spectroscopy, and surface
analyses and the following key findings have been
obtained.

� Apple pomace extract acted as a “green” corrosion
inhibitor. The inhibition efficiency increased with
increasing the concentration of the extract and over
time.

� An excellent inhibition efficiency of 98.8% was
achieved at 3% of this green inhibitor after 7-day of
immersion in NaCl media.

� Apple pomace extract molecules adsorbed onto the
surface of steel following the Langmuir isotherm and
physical adsorption was dominant (vs. chemical
adsorption).

� The apple pomace extract blocked anodic active
sites on the surface of steel, and converted Fe3O4 to
Fe2O3, which is a more corrosion-resistant iron
oxide.

� The main corrosion inhibitor agent in the apple
pomace extract was C26H50NO7P molecule.

� The protection mechanism improved over time
from geometry blocking to energy effect.

� The quantum chemical calculations confirm the
experimental results and suggest the physisorption
mechanism of this green corrosion inhibitor.
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