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Abstract

number of cycles to failure.

Majority of pipeline infrastructure are old and susceptible to possible catastrophic failures due to fatigue. Timely
maintenance is the key to keep pipeline in serviceable and safe condition. This paper proposed a Bayesian inference
methodology based on the observed crack growth measurements and cycle data that predicts the probability density
of failure after initially estimating the equivalent initial flaw size (EIFS). The model was first developed based on one-
dimensional crack growth problem in plate with edge crack. Then the model was expanded to two-dimensional crack
growth problem in pipe wall. Stress intensity factors (SIF) at the crack tip in pipe model were calculated using finite
element (FE) analysis for different crack lengths and depths. Polynomial function and Gaussian process were used to
develop surrogate models of SIF. The analysis demonstrated that the proposed Bayesian inference method with
hyperparameters generated accurate inferred results for probability density function (PDF) of both EIFS and the

Introduction
Fatigue cracking is an inherently stochastic problem
affected by various sources of variability and uncertainty.
In the particular case of oil and gas pipeline fatigue-
induced cracks, it is important to effectively and effi-
ciently monitor and inspect pipelines. Due to the old age
and large size of pipeline transmission network, main-
taining these infrastructures within safe and serviceable
conditions is not an easy task. As a result, it is important
to contentiously improve and update efficiency of means
and interval of monitoring and maintenance by use of
innovative scientific methodologies. Such methodologies
should be able to account for probabilistic nature of
fatigue process, such as uncertainties in material proper-
ties, variability of internal pressure within the pipe, and
reliability and accuracy of inspection data about the
condition of pipe structure.

Traditionally probabilistic models within the classical
statistics scope deal with analyzing statistics of the error
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due to differences between model predictions and meas-
urement/observation data. The accuracy of such models
rely upon the quality and quantity of available observation
data. On the other hand, Bayesian statistics view on model
definition quantifies the extent to which the model repre-
sents the data and determines the probability of the model
being correct itself. This makes Bayesian models suitable
for cases in which the relevant data is limited.

In recent years there has been a great focus on data
driven solutions with help of machine learning methods
in detecting patterns and performance prediction in
various fields of science and engineering. Aeronautical
engineering and aircrafts structural failures has been the
major front for doing research related to fatigue in
various metallic alloys [1-6]. Knowledge about equiva-
lent initial flaw size (EIFS) in material is key to estimate
crack initiation and progression process [7]. Different
researchers have studied various aspects of applying
Bayesian inference in fatigue modeling. Makeev et al. [3]
investigated Bayesian inference of EIFS using Weibull
and log-normal Distribution. In the follow up work,
Cross et al. [1] extended the inference of Makeev’s work
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to multivariable inference of other crack growth parame-
ters in addition to EIFS using Markov Chain Monte
Carlo (MCMC) method. Liu et al. [2] used a fracture-
mechanics based approach to estimate EIFS based fa-
tigue limit of the material and compared the results with
the observed material microstructure and subsequently
presented prediction on fatigue life. Sankararaman et al.
[4, 5] performed detailed inference of multiple parame-
ters involved in crack growth model in conjunction with
finite element (FE) simulations under variable amplitude
loading. Xie et al. [8] used Bayesian inference to infer
parameters of crack growth model in addition to fatigue
life. They tested their model with pipeline field data and
reported desirable results.

Gobbato et al. [9] introduced a recursive Bayesian prog-
nosis methodology to predict and update remaining
fatigue life (RFL) of structural components in aerospace
structures using continues non-destructive evaluation
(NDE) data. Ribeiro et al., [10] further employed Bayesian
inference to estimate RFL of fixed offshore structures.
Babuska et al. [11] used Bayesian network to predict
fatigue parameters of 75S-T6 aluminum alloys by using
strain-life (S-N) curve data. Arzaghi et al. [12] used Bayes-
ian network inference to propose a dynamic decision
making and planned maintenance framework for sub-sea
pipelines. Li et al. [13] recommended a probabilistic health
prognosis for aircraft wing structure due to an edge crack
using dynamic Bayesian networks (DBN). They considered
uncertainties and proposed methodology which reduced
computational cost by modifying DBN updating interval
requirements.

Objective and scope

This study aims to employ a combination of these ap-
proaches to establish a hybrid model that improves its
prediction for future state of pipeline condition as more
inspection data is entered into the model. The model
has backward and forward inference. At each addition of
data point on number of cycle and crack size first the
model infers the equivalent initial flaw size (EIFS) prob-
ability density (PDF) and subsequently uses that to infer
the PDF for number of cycles to failure. The model can
be used to prioritize maintenance orders by isolating
sections that are at greatest risk of failure.

First, a base Bayesian framework model is established
based on synthetically generated data sets generated from
crack growth in steel plate from available equations in lit-
erature for edge crack in plates. Secondly, FE simulations
were performed on pipe model for several cases of crack
length and depth in pipe wall thickness. Surrogate models
were fitted to compute SIF for intermediary points among
actual FE simulated SIF values. The proposed model
predicts the failure based on 2-dimenssional crack growth
in the pipe wall thickness. Results of the proposed
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methodology are presented and ground truth values were
compared with inferred values.

Base model development and results for steel
plate

Equivalent initial flaw size (EIFS) definition concept

Using the available empirical solution for crack propaga-
tion in plates with a single edge notch in a load con-
trolled boundary conditions (constant remote tensile
stress) the base model was established. To calculate
stress intensity factor (SIF) at a given crack length, the
equation proposed by [14] was used to calculate shape
factor in the general SIF formula:

Ky = oymak (%) (1)

0.752 +2.02(%) +0.37(1- sin(3))’

2b
Ccos (%Z)

#(5) =z onl5) =

(2)

Where K; is mode-I SIF, o is applied nominal constant
remote stress, a is crack length, b is plate width, and F is
shape factor given by Tada’s equation and is valid for
any £ ratio.

The crack growth model will follow Paris’ crack
growth regime [15]:

da c2

N C1(4K) (3)
Where, C1 and C2 are material properties calibrated

based on experimental data, and AK is stress intensity

factor range between minimum and maximum applied

remote stress. j—;\’, is the rate of crack growth with the

change of loading cycle.

Combining the equation for SIF and Paris’s regime:

4 da
N= /c C1(AK)“? )

4 da
N = 5
/c Cl(m/sz(%))c2 )

Where, ¢ is initial crack length. This integral can be
numerically calculated using Simpson’s method.

The experimental data follows a general function in
the form of:

N:f(a,¢)

Where, ¢ is the vector of model parameters such as
loading, material properties, and geometry. The elements
of ¢ are considered random variables in a probabilistic
scheme. The parameters governing the distribution of
each random variable in ¢ are called hyper-parameters, .
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The probability of observing target cycle for a given
data point of (N,¢) can be framed using normal

distribution.
exp (_ [N—f(d, ¢)] > (6)

p(N|ﬂ,0,ﬂ) = 2ﬁ2

273

Where, p is conditional probability of observing N
cycle given model parameters, which includes EIFS,
crack length a at cycle N, and associated noise in the
crack growth model with standard deviation of /5:

log(N) = log(N) =8 7)

Where, N is the noisy measurement of the cycle com-
pared to the true cycle .

Using Bayesian inference the joint probability of target
data, N, given model for k number of data points can be
derived as:

m

p(Nla, {#:}.B) = [ [ p(Nilax, b, B)

k=1
(NS g .
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The initial flaw size (IFS) in fatigue analysis refers to the
small flaws that exist in material’s grain size scale. Such
flaws do not necessarily follow crack growth regimes such
as Paris’ equation which relates long crack propagation
rates to material properties. The small crack growth rate
exhibits oscillatory behavior compared to generally mono-
tonic behavior in long crack growth rates.

The equivalent initial flaw size (EIFS) is the concept
that allows interpretation of IFS into long crack analysis
realm. This allows implementation of long-crack based
crack propagation models from the beginning life of a
material undergoing cyclic loading. In other words, the
number of cycles required to reach a certain crack
length ay considering IFS and EIFS are equal. Their re-
spective short-crack and long-crack growth models gy(a)
and gy(a) are as follows [2]:

N _/”/ da _/“/ da
/ s &s(a) rrs 81(a)

EIFS direct probability density inference - p(6)

To develop and verify base model, it was assumed that
all the uncertainties are the result of EIFS or initial crack
length, 6. The modified distribution is as follows:

m

p(N|a7 07ﬁ) = Hp(Nk‘ﬂk,Ck,ﬂ)
k=1
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Where now only EIFS, ¢, is the only parameter whose
distribution is directly inferred.

To solve for p for each data point, k, we have to solve
for N by solving for flay, c;) following Eq. (5). To calcu-
late the one dimensional integral in Eq. (5) Simpson’s
quadratic integration rule can be employed which is dis-
cussed in detail in [16].

To evaluate the proposed base model, various sets of
data points where generated and S =10% noise was
added to the data to account for uncertainty within
crack growth model. The training data were generated
according to the following framework:

1- It was assumed that the initial flaw size, 6, follows a
normal distribution with assumed mean and
standard deviation. k samples were drawn from this
distribution.

2- Uniform distributions was assumed for final crack size,
a, and k samples were drawn from this distribution.
The lower bound of this uniform distribution was
assumed to be at least 3 times of the assumed standard
deviation of the normal distribution for ¢, larger than
the mean assumed for c.

3- Given a and c for each data point the
corresponding number of cycles, N, for that data
point was calculated following Eq. (5) and using
Simpson’s quadratic numerical integration method.

4- A random noise with zero mean and f standard
deviation was added to the calculated N.

Figure 1 shows a sample of synthetically generated
data points. In Fig. 1(a) final crack size and its corre-
sponding cycle number is visualized for k data point, in
which for this example they are 20 data points.

Table 1 shows the selected properties from previous
study [8] and assumed parameters for crack growth in
the base model for a steel plate with an edge crack.

For each data point (N, a) an EIFS likelihood probabil-
ity density is calculated and the product of all data point
likelihoods as shown in Eq. (9) will establish estimated
probability density of EIFS. Figure 2 shows box plots of
EIFS PDF for the dataset containing 20 data points. The
variation of the inferred EIFS distribution at each data
point is clearly distinguishable.

The final inferred EIFS distribution shown in Fig.1(c)
and summarized in Table 2 based on 20 data pints
shows that the estimation for mean is very close to the
mean of the true distribution but the standard deviation
or spread is not captured very well. To improve the in-
ferred distribution, we will try to infer the distribution
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parameters instead of distribution itself in the next
section.

EIFS probability density inference with hyper parameters-
p(6] a)

In this section instead of inference on EIFS itself, the
parameters of the assumed governing distribution for
EIFS conditioned on its distribution parameters will be
inferred:

p(6la) = [ [ p(6ila) (12)
k=1
p(N|a,a.f) = / p(N|a, 6, a.B)p(cla, a f)de
- / p(N|a. 6, f)p(cla)do (13)

p(Nla,a,p) = 1_’"[/ ! = exp <_ [N"f(a'“a)])p(gw)dg
k=1 r[ﬁ

o 8

(14)

Now in this equation where we have introduced a
prior probability for EIFS, p(6| &), which is conditioned
on a . This forms a hierarchical Bayes model. In this ap-
proach an additional integration is introduced. This

Table 1 Material and model parameters used in the plate

model
Parameter Definition - Value
@ 33%-13
Q2 29
10%
o 40 MPa
b (plate width/pipe wall thickness) 7.1 mm

integration can be solved by applying Simpson’s quad-
ratic integration twice.

Let us elaborate inference process of hyper-parameters
of EIFS distribution. We select some possible lower and
higher bounds for both mean and standard deviation.
Mathematically the bounds for mean can be from —co to
+oo, and for standard deviation it can be from 0 to +eco;
but to save a huge computation cost especially if we are
considering a finer step size or mesh, with a good guess
based on engineering judgement, we can select appropri-
ate bounds. The physics of the problem such as max-
imum possible crack depth and minimum possible crack
depth, a non- negative value, would give initial intuition.

In the next step we select a small enough step size to
capture a smooth outcome. This can be achieved by run-
ning few trial cases. After selecting the appropriate step
size for both standard deviation range and mean range a
0 distribution can be generated (bounds of 8 (EIFS) was
chosen from zero to close to maximum possible crack
depth or plate thickness, b) .

Integrating the resulting joint probability density
along mean and standard deviation separately yields
the marginal probability densities of mean and stand-
ard deviation of the EIFS. As it can be seen from
Fig. 3(d) and the accuracy of EIFS distribution estima-
tion using hierarchical model and hyper-parameters
has increased significantly. It is clear that inference
directly on EIFS distribution can estimate the mean
within an acceptable range with less than 0.1 mm
error (less than 6%), but it fails to predict standard
deviation and it has more than 90% error in standard
deviation prediction. On the other hand, the hierarch-
ical model was able to predict both mean and stand-
ard deviation with high accuracy. The error for
estimating EIFS distribution mean was 2% and error
for estimating standard deviation of EIFS distribution
was 4.6%.
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Box Plot of Inferred EIFS for each Data Point
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Fig. 2 Box plot illustrating EIFS distribution for individual data points
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Comparison of results between simple maximum like-
lihood (direct EIFS inference) and hierarchical Bayesian
analysis are shown in Table 2.

Estimating probability and cycle of failure

To estimate probability of failure we need to set a failure
crack length/depth criteria, az This could be a percent-
age of the width in which crack is being propagated.
From previous section we determined probability density
of the EIFS for the plate problem. For the plate problem
only a is the variable of crack that is growing and crack
length does not apply.

Now, having the EIFS distribution, distribution of
number cycles required to reach failure can be pro-
actively estimated as inspection data is gathered over
time. In the case of pipe problem, the inspection data
could include length and depth of the cracks detected in
the wall of pipe section.

To test this hypothesis, synthetic inspection data
points corresponding the number of cycles and respect-
ive crack length at that cycle (or time) needed to gener-
ated. Paris’ crack growth model was used to progress
crack length from the assumed initial size to assumed
final crack size for each synthetically generated data
point.

Initial crack length is randomly sampled from EIFS
distribution. As for the failure crack depth, a certain

percentage of plate width, b, (and later pipe wall thick-
ness in the pipe model) is assumed as the mean of fail-
ure crack depth (maximum allowable crack length). To
include uncertainty for the failure crack length, a stand-
ard deviation is added to the assumed mean of failure
crack depth to generate a normal distribution for the
final crack length. In addition, for each randomly sam-
pled EIFS, a corresponding failure crack depth is sam-
pled from failure crack depth distribution and hence the
number of cycles were calculated as shown in the flow
chart in Fig. 4. The flow chart shown in this figure can
be used in either plate problem or pipe problem. In the
plate problem, being a 2D model, crack only grows in
one dimension (one crack front), while in the pipe
model crack grows along length of pipe and depth
(through pipe thickness). Consequently, their corre-
sponding SIF functions are single variate and bivariate,
respectively.

For each synthetic data point generated using the algo-
rithm that was introduced earlier, the number of cycles
to the failure point corresponding to the sampled EIFS
and failure crack depth is estimated. Using Bayesian ana-
lysis two forecast scenarios are viable:

1- Estimating the distribution of number of loading
cycles to failure (Np based on observed numbers of
data points sampled from EIFS and failure crack

Table 2 Comparison of EIFS inference results using discussed methods

Parameters True Value Inference on EIFS Inference on Hyper Parameters
Mean 1.715mm 1.831 1.750 mm
Standard deviation 0.195 mm 0.014 0.204 mm
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depth distributions. This can only be done on the
synthetic data or field data where data was collected
after observing actual failure in the field or lab test.
Estimating the distribution of number of loading
cycles to failure (N based on observed numbers of
data points sampled from EIFS and any random
final crack depth that is sampled from a uniformly
distributed final crack size from the sampled EIFS
to any value smaller than assumed value for mean
of failure crack depth. i.e. We will be able to predict
probability distribution of number of loading cycles
to failure from observed data (loading cycles vs
crack depth) as new data points are added.

It should be mentioned the distributions resulted from
scenario-1 may be used as an informative prior in the
Bayesian process of estimating the distribution of num-
ber of cycles to failure in scenario-2. The mathematical
expression is as follows:

m

p(N|Nmngea /))) = Hp(NklNrangea ﬁ)
k=1

1 [N k -N range

s

Where, N,guge, is a vector with lower bound and
higher bound that covers the range of the number of cy-
cles that may cause failure.

The upper bound of N, can be calculated by as-
suming an extreme case of smallest possible EIFS and
largest possible crack depth. The probability of such
combination is very low in reality and even in case of
synthetically generated data. For example, Fig. 5, shows
an illustration of possible failure cycle outcomes for a
steel plate with an edge crack. This example includes
250,000 data points which was generated by sampling
500 EIFS and 500 ay from distributions EIFS~N(1.5,0.12)
and ay~N(6,0.1), respectively. As it can be seen in Fig. 5,
for this particular example the number of cycles does
not reach 3 million. While calculating the number of
cycles for the extreme case by considering IFS = 0.1mm,
and as=6.99mm, yields the maximum number of cycles

at about 3.8 millions.

With this overview of methodology, we now investi-
gate the estimations of number cycles to failure for

— H .
k=14/2mf3

Page 6 of 15
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Fig. 4 Flow chart that shows derivation of number of cycles at failure depth in generating synthetic data

NO Ny =N
Report Ny

various synthetic data sizes by directly estimating N, g
distribution for the plate problem with edge crack. The
following flowchart, shown in Fig. 6 demonstrates the
process for estimating the distribution of number of
cycles to failure.

The non-informative prior was selected as unit inte-
ger. The informative prior may be a PDF generated
the similar way as the example shown in Fig. 5 by
sampling from EIFS and an assumed failure crack
length. In this particular method using a good in-
formative prior will reduce the standard deviation of
the final posterior PDF.

To demonstrate this methodology with example, re-
sults of various estimations for number of cycles to
failure is shown in Fig. 7 (top). In this example the
inference was performed on four datasets comprising 5,
15, 30, and 50 data points.

From the Fig. 7 (left) we can observe that as more data
points are added (blue 5 samples and red 50 samples)
the distribution becomes sharper at peak and closer to
the mean of sample distribution shown in black dash
lines. In the case of EIFS inference this method is better
if only a single estimate is desired rather than the whole
distribution. Table 3 lists the parameters of the
distributions.

To have the standard deviation also represented in our in-
ference process we will again resort to inferring hyper pa-
rameters of the N, distribution as we did for EIFS.
Figure 7 (middle) shows an example of resulting joint likeli-
hood probability density for mean and standard deviation of
the N, distribution with 50 samples. To the right we can
see progression of the N,,,g distribution inference with 5
samples (blue curve) to 50 samples (red curve). The dashed
black distribution is observed sample distribution. As it can



Salemi and Wang Journal of Infrastructure Preservation and Resilience

(2020) 1:2 Page 8 of 15

le5

Distribution of number of
cycles to failure for steel plate

le—-6

o o o L b
» o o] o N
1 1 1 1 1

Number of data points in each bin

o
N
1

0.0 -

1.00 125 150 1.75

and a~N(6,0.1)
A\

2.00
Cycle (N)

Fig. 5 An illustrative example of possible distribution of number cycles to failure for a steel plate with thickness of 7 mm. assumptions: EIFS~N(1.5,0.12),

s Histogram |
—— PDF

=
N

T
=
o

o o
o 0
PDF of cycles to final crack size

T
o
H

T
o
N

- 0.0
3.00
le6

225 250 275

be seen clearly there is very good match between predictions
and observed samples. Table 4 summarizes the parameters
of this distributions.

It is worth noting that final number cycles were more
affected by the distribution of the EIFS than the final
crack size during process of generating synthetic data.
This another instance that the exemplifies importance of
EIFS distribution inference.

Pipe model development and Bayesian inference
results

In this section first the methodology to compute stress
intensity factor (SIF) using FE models is discussed. In

addition, surrogate models were introduced to
interpolate SIF values at the crack length and depths
that FE simulation were not performed. First, EIFS for
crack depth and were inferred and those inferred values
were used to estimate the distribution for number of
cycles to estimate cycle at final crack length.

Finite element (FE) modeling

The finite element modeling of this research included
3D simulation to calculate at the crack tip. Commer-
cially available multi-physics software ABAQUS was
used to perform FE simulations. For purpose of this
study typical steel material properties (E =200 GPa, v =

Set inputs:
EIFS distribution, as distribution, sample
sizem

v

Sample a; and a;;

Calculate N;fori=1-m

v

Add noise to each N; with standard
deviation of 8

Initialize:
Likelihood, Nyange

v

Set prior:
Informative prior, or
Non-informative prior

v

fori =1 - mloop:
posterior = p(Ni|Nm,,ge, ﬁ) X prior
prior = posterior

Fig. 6 Flowchart of deriving estimated distribution for number cycles for final (or failure) crack size distribution
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0.3) were assumed for steel and it was assumed that steel

has elastic behavior within the scope of SIF simulations.

To investigate crack growth and the respective SIF
evaluation more accurately a 3D model was developed
and a semi-elliptical (halved ellipse) shape was assumed
for the crack shape as previously it was reported in the
literature to emulate realistic crack shape more closely
[8, 17, 18]. The diameter of pipe was selected as D =
863.6mm and pipe wall thickness of ¢=7.1mm. These
numbers were adopted from [8]. The length of the pipe
section model was chosen to be 1000mm.

To reduce running time of each analysis case a prelim-
inary mesh sensitivity analysis was performed to deter-
mine largest mesh size where solution reaches stable
state and will not be improved by any further mesh size
reduction at the vicinity of the crack. This analysis was
performed for the crack with length of L =10mm and
depth of =1mm . The analysis concluded that a mesh
size of approximately 0.5mm (equivalent to 23 nodes) is
small enough to produce the stable response.

To further optimize required running time for each
analysis case, the symmetry of the model was taken ad-
vantage of, to reduce model size. To this end, as shown
in Fig. 8, the full pipe model was once reduced in half
due to symmetry along y axis (x-z plane) and a second
time along z axis (x-y plane). In addition, bias mesh
sizing was used to incrementally increase mesh size of

Table 3 Comparison of direct inference of Nyange on different

the pipe as we go farther away from location of embed-

ded crack to reduce computation effort.

It should be noted that the region where crack was
embedded was always meshed uniformly in size and cor-
responding to the appropriate mesh size derived from
mesh sensitivity analysis that was pointed earlier. This
incremental progression of mesh sizing can be observed
in Fig. 8(b) where the elliptical crack is embedded in the
quartile model (the model with symmetry along Y and Z
axis) and mesh dimension along perimeter of pipe and
long Z axis is increased as we go away from the crack re-
gion. To verify validity of this model reduction approach
we performed analysis for all models introduced in Fig.
8. The observed corresponding SIF calculations results
in the quartile model was validated and verified as an
alternative to the full model.

Figure 8(c) shows a snippet of cross section of the pipe
along Z axis where the crack is embedded (crack is posi-
tioned in the middle of the pipe). In this cross section we
can calculate the SIF for Mode-I fracture along the perim-
eter of semi-elliptical crack. All combination crack length
(10, 15, 20, 25, 30, 35, and 40 mm) and depth (1, 2, 3, 4, 5,
and 6 mm) generates 42 simulation cases.

It is worth noting that in Fig. 4 flowchart the criteria
for finding maximum number of cycles is controlled by
the maximum depth of crack through wall thickness of
the pipe . There are two reasoning for this criteria: first

Table 4 Comparison of inference of N,g,g. With hyper

sample sizes parameters on different sample sizes

No STD Mean No STD Mean

samples True Estimate True Estimate samples True Estimate True Estimate
5 515,847 52,757 1,422,988 1115177 5 482,924 460,000 1,318,528 1,290,000
15 530,064 32,175 1,569,746 1,148,483 15 425,447 450,000 1,516,247 1,520,000
30 425478 24,247 1,572,589 1,256,449 30 428,778 420,000 1,493,829 1,460,000
50 368,879 19,258 1,553,850 1,303,446 50 412,633 420,000 1,578,909 1,570,000
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Full Model

Y axis Symmetric z

Y and Z axes Symmetric

Fig. 8 3D pipe model with three different representations for modeling

J

as the ratio of crack length to crack depth (%) increases
the stress intensity factor along crack length becomes
less critical and the stress intensity factor along crack
depth is dominant. Second, in the crack growth process,
due to physics of the problem the room for crack growth
along the length of the pipe is many times larger than
the room for crack growth along crack depth through
the pipe wall thickness. This methodology can be re-
duced to only account for crack growth along the depth
and neglect the crack length growth evolution if the final
crack length is not of the interest for a particular prob-
lem such as edge crack growth in the plate problem dis-
cussed earlier. It is important to note that wile crack
length would be neglected as a failure assessment criter-
ion, updating crack length is necessary to have correct
crack depth growth progress.

The simulation results reveal that at shorter crack lengths
as the depth of crack increases the SIF becomes more critical
at the endpoints along the crack length, as shown in Fig. 9(a).
As the length of the crack becomes longer the critical SIF re-
mains at the deepest point of the crack. In other words, the
longer the crack length becomes the more dominant crack
depth becomes. This is the assertion and justification to an
earlier explanation about the implementation made in the al-
gorithm in Fig. 4 that crack depth is the main derive behind
crack growth progression. The cases illustrated in Fig. 9(a)
the critical points of stress intensity are clearly visible at red
areas along crack perimeter.

Surrogate model of SIF
Due to high computation cost and time, evaluating SIF
values for all possible combinations of crack lengths and

depths are not feasible. In a crack growth model and the
flowchart shown in Fig. 4 in each cycle SIF needs to be
calculated for the updated L and a. To this end a func-
tion was defined that can continuously compute SIF at
any L and a within the lower and upper bounds of the
crack length and depth that was evaluated in the FE
model. This function is known as surrogate function.

The surrogate function forms a 3D surface. This sur-
face can be estimated using various functions such as
polynomial based function or probabilistic based func-
tion such as Gaussian process (GP) model. Here we will
investigate both of these function for the simulated cases
and compare their fitting.

Polynomial surface fitting

A bivariate polynomial function with variables L and a
was used as inputs which are crack length and depth, re-
spectively. Consequently, the SIF value can be calculated
as follows:

deg, deg,

SIF(a,L) = Z Z ci;L'al
=0

i=0

Where deg, and deg; are the highest degree for each
variable (L and ) in the bivariate polynomial. Here we
chose deg, = deg; =2 . In addition, c; ; are constant coef-
ficients of the polynomial that will be evaluated using
linear optimization. As we have two sets of SIF this
function needs to be determined twice: once as SIF, and
second time as SIF;; which are SIF values at the front of
the crack along the length and SIF values at the front of
the crack along the depth, respectively. See Fig. 8(c) for
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Fig. 9 a Stress contour at crack front for different crack lengths and depths. b Fitted surrogate functions using 42 data points for SIF along crack
depth. ¢ Fitted surrogate functions using 42 data points for SIF along crack length (Crack lengths are in mm and SIF in MPa-mm™ ")

Assuming input variables (L and ) in form of a vector
X;=X3, Xy, ..., X,,, for m data points, the output, S/I}"(a,L
), would be in form of Y(X;), Y(X5), ..., Y(X,,). At each
non training point, X":

visualized locations of crack fronts annotated with SIF,
and SIF;.

Gaussian process (GP) fitting

In the GP fitting method each SIF data point is fitted to
a normal distribution and the expected value of the dis- . X,.,X.|2
tribution is chosen as fitted value at that point. K(Xi Xj ) o Cov(f (Xi), f (X/ )) =e /



Salemi and Wang Journal of Infrastructure Preservation and Resilience

(2020) 1:2 Page 12 of 15

p
Final Crack Depth vs. Cycle Final Crack Length vs. Cycle led True cycle Vs. Noisy cycle
7.0
o (@)
6.5 © o °F i 1.0+ © ©
— 6.0 O o =
£ O £ 8 © 0.8 °9
Ess = o o) .
© o) d le) o |2
. o o 9| 3041 o S
4 >
£ 50 oo £ © G 0.6
& o © = 2 o)
8 451 o k3 ® o o 5
3 x 25 4 o (¢} Z 0.4/
8 4.0 o = 0.4 (®)
o o LL) O o O O
3.5 o e}
Qa® 0.2
a 20 o o @
3.0 070, (o)
e} o) (o) 0.0
02 04 06 08 10 02 04 06 08 10 00 02 04 06 08 10
Cycle le4 Cycle led True Cycle le4
Fig. 10 Synthetic data points generated for 2 dimensional crack growth in pipe wall. Crack depth vs. cycle (left), crack length vs. cycle (middle),
and true cycle vs. noise added cycle (right)

SIF(a,L) = Y*(X*) = B[Y*(X")|X", X, Y]
= K(X*, X)K(X,X)'Y

Var[Y*(X*)|X*, X, Y] = K(X*,X*)
—K(X*, X)K (X, X) ' K(X,X*)

Where, K is the kernel or covariance function, fis the
process function, and ¢ is the characteristic length of the
covariance function. In this study Radial-basis function
(RBF) kernel (squared-exponential (SE) kernel) was used.

Too small £ values cause oscillatory behavior between
training data points as result of faster variations of the
function. For details on Gaussian process implementa-
tion refer to [19, 20].

Totally 42 cases of FE simulations were conducted.
These two surface fitting methods’ accuracy were com-
pared with different number of training points. Simula-
tions were performed at 6 crack depths and 7 crack
length, which in total yields 42 cases of simulation.

Figure 9 illustrates results of fitting surface to the FE
simulations. In these figures the fitted surface is shown
in blue and the all data points are shown in red circles.

Opverall it can be said that both methods perform very
good with predictions. But caution is needed when deal-
ing with GP method as the fitting in this method is very
sensitive to the length scale parameter (£). In addition,
GP method has a tendency of overfitting if not tuned
well with a good covariance function (kernel) [20]. The
polynomial based fitting method showed that it consist-
ently gets better as more training data is included in the
fitting process. It is worth noting that neither of these
methods (especially GP method) are capable of having
good extrapolated predictions so it is necessary to have
as many boundary points as possible to make the fitted
model more accurate. Nevertheless, both these methods
were incorporated in the developed algorithm that com-
putes the SIF values for predicting number of cycles in
the crack growth model.

Joint Likelihood of EIFS along depth and length
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Inference of EIFS for pipe

Applying the aforementioned method to crack growth in
pipeline problem brings a few more challenges. The case
for crack growth in an edge crack in steel plate only as-
sumes crack growth in single dimension while the crack
growth in pipe wall is assumed as a semi-elliptical shape
that has two growth fronts; along the depth and along
the length of the crack (minor and major axis of ellipse
respectively). This property makes this problem similar
to the problem of EIFS distribution with hyper-
parameters (introduced in the section “EIFS probability
density inference with hyper parameters- p(6|a)”) which
would require cubic likelihood array. Applying the 2-
dimmensional version of crack growth algorithm illus-
trated in Fig. 4 we will generate 30 data points as shown
in Fig. 10. The finer the step size for cycles and mesh
size for crack length and depth, the longer it takes for
the code to yield the results.

Consequently, there exists a likelihood distribution for
every possible pair of crack length and crack depth. So,
in the end we will find a joint likelihood distribution of
EIFS for crack length and crack depth. The example of
such joint likelihood distribution is shown in Fig. 11
(left). We can solve for marginal likelihoods of EIFS for
crack length and crack depth by integrating out the
other variable using Simpsons’ quadrature technique in-
troduced earlier. The computed marginal likelihoods of
crack length and depth are shown in Fig. 11 for crack
depth (middle) and crack length (right). The results
show that the algorithm has good accuracy in estimating
(represented by blue curves) mean of the true distribu-
tion (represented by red as ground truth distribution
and green as sample distribution). Similar to the plate
problem, the standard deviation of crack depth and
length is not well estimated in this method.
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Table 5 Estimated vs. true distribution values for £IFS along
depth and length

EIFS Mean STD

True Estimate True Estimate Assumed
Depth 1.74 1.794 0.222 0.052 0.19
Length 15.166 15429 1 0.555 1

To improve inference on standard deviation we could
use hyper-parameter estimation as we did for plate prob-
lem. In comparison to the plate problem where crack
growth was single dimensional, we only had to solve
marginal likelihoods once for each data point. In the
case of pipe crack growth given we consider hyper pa-
rameters (mean and standard deviation) for both crack
depth and crack length, we will have 4 hyper parameters
to estimate. Solving this problem with Simpson’s quad-
rature will be extremely expensive. To solve this prob-
lem Monte Carlo simulations would work more
efficiently as also mentioned in [1, 2, 4]. We chose to as-
sume standard deviation for our problem in the section
where we infer number of cycle to final crack size. This
is because we did not perform hyper parameter esti-
mates for mean and standard deviation of crack depth
and length separately as we did in case of plate problem
(see Fig. 3, and Table 2). Such computation can be per-
formed using MCMC [21].

The properties of estimates for EIFS are summarized
in Table 5. The estimated values of standard deviation in
this table are not capturing the variability compared to
true values. The assumed values were selected based on
many observations and engineering judgments. Values
between 0.1 to 0.5 mm for depth and 0.5 to 1.5 mm can
be considered good guess range for standard deviations
according to author’s observations in other cases. We
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Table 6 Comparison of direct inference of Nygnge On different

sample sizes

No of STD Mean

samples True Estimate True Estimate
5 836 321 8240 7080

15 898 202 8455 7732

30 1039 147 8626 7986

50 1000 116 8580 8165

will use these estimated values as input for the model to
do inference of the likelihood distribution for the
number of cycles to failure in the next section.

Estimating probability and cycle of failure

Here we will follow the similar steps as we did for plate
problem to estimate the distribution for the number of
cycles to failure, N,4,g. Using the methodology dis-
cussed in section “Estimating probability and cycle of
failure” for plate problem we will estimate the distribu-
tion of number of cycles to failure. As shown in Fig. 12
(top) the direct inference on N,,,,e. distribution is shown
for various sample sizes. We can see the progressive ap-
proach of the predictions towards the true sample distri-
bution from 5 samples (blue) to 50 samples (red). The
ground truth of the sample distribution is shown in
black dashed line. As with previous observation using
direct inference we can see that while the standard de-
viation is not accurately captured the mean or expected
value of number of cycles to final crack size is very well
captured. The summary of data for this model is
presented in Table 6.

Using hyper parameters to perform estimations we will
have the joint marginal likelihood distribution of mean
and standard deviation of number of cycles to failure,
shown in Fig. 12 (bottom left).

Integrating along mean and standard deviation sep-
arately we have marginal distribution for mean and
standard deviation of number of cycles to failure sep-
arately. Using the expected value of the latter distri-
butions we construct the distribution for number of
cycles to failure. These distributions for various num-
ber data points or samples are shown in Fig. 12 (bot-
tom right). We can see that as more data points are

Table 7 Comparison of inference of Nygnge With hyper
parameters on different sample sizes

No of STD Mean

Samples True Estimate True Estimate
5 3885 4620 6966 6800

15 3195 3320 6363 6400

30 2876 2900 6918 6800

50 2657 2620 7136 7000
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added to the model, from samples (blue curve) to 50
samples (red curve), the estimated distribution very
closely matches the true sample distribution shown in
black dashed line. The results for various sample sizes
are summarized in Table 7.

Conclusions and discussions

In this paper a Bayesian inference methodology was im-
plemented to accurately estimate the time (cycle) when
the structure (pipe or plate) has the most probability of
failure based on observed crack growth measurements
and cycle data (equivalent to field inspection) which was
generated synthetically. A methodology to estimate
Equivalent Initial Flaw Size (EIFS) was introduced and
the distribution for number of cycles to failure was
predicted.

A base model was initially developed based on edge
crack growth in a steel plate and verified the method-
ology. Then the method was expanded to model predic-
tions for two-dimensional crack growth in pipe wall
thickness. Finite Element (FE) Modeling was employed
to calculate stress intensity factor (SIF) at finite pints of
crack length and depth combinations. Two surrogate
models were used to interpolate the SIF values at the
points in which FE simulations were not conducted. The
Bayesian inference was performed with and without
hyper parameters and the result demonstrated the gain
in accuracy with use of hyperparameters.

Comparison of estimation and true values showed that
the proposed methodology has strong grounds for accur-
ately predicting most critical time (cycle) when the
structure may become susceptible to failure as more in-
spection data is collected and input into the model. The
model can be further customized and more variables can
be inferred simultaneously. Consequently, the more vari-
ables of the model to be inferred, the more complex and
certainly more computationally expensive it becomes.
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