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Abstract

This study aims to characterize the vulnerability of road networks to fluvial flooding using a network diffusion-based
method. Various network diffusion models have been applied widely for modeling the spreading of contagious
diseases or capturing opinion dynamics in social networks. By comparison, their application in the context of
physical infrastructure networks has just started to gain some momentum, although physical infrastructure networks
also exhibit diffusion-like phenomena under certain stressors. This study applies a susceptible-impacted-susceptible
(SIS) diffusion model to capture the impact of flooding on the road network connectivity. To that end, this paper
undertook the following four steps. First, the road network was modeled as primal graphs and nodes that were
flood-prone (or the origins of the fluvial flood) were identified. Second, temporal changes in the flood depth within
the road network during a flooding event were obtained using a data-driven geospatial model. Third, based on the
relationship between vehicle speed and flood depth on road networks, at each time step, the nodes in the road
network were divided into two discrete categories, namely functional and closed, standing for Susceptible and
Impacted in the SIS diffusion model, respectively. Then, two parameters of the SIS model, average transition
probabilities between states, were estimated using the results of the hydraulic simulation. Fourth, the robustness of
the road network under various SIS diffusion scenarios was estimated, which was used to test the statistical
significance of the difference between the robustness of the road network against diffusions started from the
randomly chosen nodes and nodes with different high centrality measures. The methodology was demonstrated
using the road network in the Memorial super neighborhood in Houston. The results show that diffusive
disruptions that start from nodes with high centrality values do not necessarily cause a more significant loss to the
connectivity of the road network. The proposed method has important implications for applying link predictions on
road networks, and it casts significant insights into the mechanism by which cascading disruptions spread from
flood control infrastructure to road networks, as well as the diffusion process in the road networks.
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Introduction under increasing pressure [26]. In the meantime, failures

Changes in the earth climate, potential global warming,
and unprecedented and ever-increasing urbanization,
coupled with the increased interdependence among dif-
ferent sectors, are putting critical infrastructure systems
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in critical infrastructure systems are becoming prohibi-
tively costly, mainly due to the possible cascading fail-
ures that are initiated from one sector and subsequently
cause a series of failures in other dependent sectors.
Thus, the resilience of interdependent critical infrastruc-
ture (ICI) systems is one of the grand challenges facing
engineers and policy-makers in the twenty-first century
[13, 22, 33]. Over the past two decades, the body of
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knowledge on ICI resilience has advanced in the do-
mains of modeling, simulation methods, and theoretical
frameworks. Despite the growing literature [10, 12, 25]
on ICI resilience, our understanding of the dynamics
and mechanisms of disruptions in ICI systems that shape
resilience patterns in these complex networks is some-
what limited. This lack of understanding is particularly
evident in urban areas where transportation systems are
frequently affected by weather-related hazards.

Flooding, especially ones due to excessive and intense
rainfall precipitation, has been the predominant cause of
weather-related disruptions to the transportation infra-
structure [23]. Such events could undermine the vital
functionality of transportation systems, especially road
networks. Many studies have shown that roads are
among the major causes of deaths in cities during flood-
ing; this is mainly due to the vehicles being driven
through flooded roadways [3, 9, 11, 16]. Locations, such
as Texas, where road mobility through cars is the pri-
mary mode of passenger transportation, are especially
vulnerable to the impact of flooding [5]. The advantage
of having one of the largest road networks in the U.S.
could become a curse when the majority of the roads
are closed due to flooding and there are few other alter-
natives to go around the city, as was the case during
Hurricane Harvey in 2017 [2]. In addition, during disas-
trous events, the road network functions as a lifeline sys-
tem for rescuing people and assets and plays a vital role
in repairing and restoring other infrastructure systems
when they are disrupted. In order to cope with disrup-
tions efficiently and take active precautionary measures,
it is critical to understand the mechanisms and patterns
with which the disruptions unfold in the transportation
network. Due to the planar nature of transportation net-
works, they tend to lend themselves readily to being rep-
resented as graphs, and therefore graph theory-based
approaches have been one of the standard tools to study
the vulnerability in transportation systems [32]. Graph
theory reduces a road network to a mathematical matrix
where the vertices (nodes) represent road intersections
and the edges are the road sections between these nodes
[18]. This type of matrix abstraction of road networks
not only facilitates the accessibility and connectivity ana-
lysis but also assists in the identification of critical loca-
tions using available graph-theoretic centrality measures.
However, there are two crucial challenges in network
modeling of transportation networks. On the one hand,
transportation networks, similar to many other critical
infrastructure networks, are spatially embedded [4] and
the configurations of the environment in which network
elements (nodes or edges) operate are inherently hetero-
geneous. This fact, when coupled with the possible
spatial or temporal variance of the magnitude of the dis-
ruptive events, makes failure probabilities significantly
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variable from node to node. On the other hand, the top-
ology of most critical infrastructure networks is intrin-
sically dynamic and evolving, especially during disruptive
events. Understanding the patterns for temporal shifts in
the functional topology of critical infrastructure net-
works during disastrous events is a crucial step in devis-
ing efficient plans to reduce their vulnerabilities.
However. the almost complete absence of the time di-
mension in such problem definitions is a problem that
can be attributed to (1) the graph theory ancestry of the
field, and (2) the limited number of dynamic data
sources available when the area of complex networks
analysis emerged [27].

Flooding in urban roadways is a process that presents
both of the challenges mentioned above. The flood-
induced disruption to the road network is realized by
rendering certain components of the roadway system
non-functional. For example, certain road sections or in-
tersections could suffer from high water levels and be
forced to be closed. Another important disruption mech-
anism of floods to the road network is the scouring of
bridges [7, 19, 34], which can cause both short-term or
long-term damage to road network connectivity. Rele-
vant studies in the literature that are aimed at tackling
the flood vulnerability of critical infrastructure networks
could be categorized into two main types: (1) graph-
theory based topological approaches that focus on topo-
logical integrity of the network; and (2) hydrological ap-
proaches that model the flood propagation process in
(or around) critical infrastructure in urban areas [31].
Each of these methods considers the flood vulnerability
problem from different angles; consequently, each ap-
proach only reflects some parts of the whole picture.
Most of the studies attempted to apply dynamic network
modeling approaches focused on complete or random
graphs to demonstrate their applicability in real-world
network failure problems. However, transportation net-
works are neither random nor complete. They have a
unique configuration manifested in a relatively small
range of node-degrees and spatial constraints that are
not observed in other types of networks. The aforemen-
tioned historic decoupling between the two types of
methods could largely be attributed to the lack of granu-
lar flood data that could be input to network models.

Recently, for identifying the probability of flooding in
a road network, the coupling of remotely sensed data
with hydrodynamic models has been used. Such an ap-
proach was used to identify the most critical and vulner-
able nodes (intersections) in a transportation network.
Sadler et al. [28] combined storm surge levels associated
with different return periods, provided by the Federal
Emergency Management Administration (FEMA), with
High-resolution Digital Elevation Models (DEMs), com-
piled from data collected by Light Detection and
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Ranging (LiDAR). The authors then compared the surge
elevations with the road elevations to assess different
scenarios and reported the most vulnerable roadway seg-
ments based on the frequency of flooding. In another
study, Kalantari et al. [14] developed a LiDAR-based
data-driven model to quantify the risk of flooding and
sediment transport at different roadway intersections in
Sweden. While these efforts are essential to study the
impacts of the most severe inundation scenarios, they do
not provide enough information on how the internal
components of the system behave during a flood event.
This limitation is mainly due to the use of only one
snapshot of the flood rather than a time series of water
depth. In contrast, other researchers have coupled the
results of hydrodynamic models with remotely sensed
elevation data to estimate the probability of heavy inun-
dation during flooding events. Courty et al. [8], Lagmay
et al. [17], and Pyatkova et al. [24] coupled the results of
MIKE FLOOD, LISFLOOD-FP, and FLO-2D GDS PRO,
respectively, to LIDAR elevations and reported the risk
of inundation for roads during flooding events. Though
more accurate hydrodynamic models are useful tools in
storm surge and flood simulation/prediction, they are
costly because of lengthy computational time, expensive
equipment, and the need for skilled users. In addition,
an extensive calibration of the model using observed
data is required to enhance model reliability. In sum-
mary, existing methods are either focused on a single
point in the duration of the disastrous event and there is
a lack of understanding about the internal mechanism of
the disruptive events on road networks; or are computa-
tionally or operationally too expensive. This study aims
to bridge the gaps mentioned above between these two
closely related fields. Furthermore, given the improved
computational powers and relatively wide availability of
the data, the condition is mature enough to do a more
granular and detailed temporal analysis on the road net-
work. This study is motivated by these factors; in the
study, a simple methodology was developed to have both
the reliability of using field measured data directly and
the advantage of using time series water depth instead of
one snapshot. To be more specific, the measured high-
water marks (HWMs) after a flooding event were com-
bined with the observed pattern in water surface eleva-
tion (WSE) of nearby rivers recorded by the United
States Geological Survey (USGS) to create a WSE time
series at the location of the HWMs. Each time series
was then compared with LiDAR elevations to calculate
the water depth at any given point.

When it comes to analyzing the effect of flooding on
network vulnerability, it is important to know how a
phenomenon spreads through a network. Based on au-
thors’ interviews with stakeholders of critical infrastruc-
ture systems in Houston, after runoff conveyance
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infrastructure systems (bayous, channels, creeks, and
stormwater systems) reach their capacity under an ex-
cessive rainfall, road networks become part of the con-
veyance system and play the role of moving excessive
water into lower elevation areas and/or releasing water
into other storm-water drainage systems. In this context,
the process of spreading the floodwater around the road
network could be assumed as a diffusion process, which
is analogous to the spread of contagious diseases among
human beings. The origin of diffusion modeling could
be traced back to the spread of epidemics and mathem-
atical modeling of epidemics predates most of the stud-
ies on networks by many years [20]. The traditional
diffusion modeling approaches avoid discussing contact
networks by making use of fully mixed or mass-action
approximation, in which it is assumed that every individ-
ual (node in the network) has an equal chance, per unit
of time, of coming into contact with every other node
[21]. Based on the assumptions of this approach, nodes
(people) mingle and meet completely at random, which
is not a realistic representation of most real-world net-
works. This un-realistic representation is because nodes
in real-world networks are spatially embedded and have
a heterogeneous exposure to diffusion mechanisms (the
reader is referred to Shakarian et al. [30] for a compre-
hensive review of network diffusion). In summary, the
majority of the research in the field of network vulner-
ability is focused on theoretical networks; a fewer num-
ber of published research papers are focused on real-
world networks. Due to their unique topological struc-
ture and configuration, road networks represent one
unique type of real-world networks. Understanding,
characterizing, and conceptualizing these networks could
bridge the gap between advancement in the field of the-
oretical networks and real-world networks. The pro-
posed method facilitates the assessment of the
vulnerability of the road network to flooding which con-
tributes to the advancement of network science in the
realm of real-life networks. Given that flooding and in-
undation of road networks occurs frequently and all
around the globe, the findings from this research are dir-
ectly applicable to other road networks and of interest to
many.

Methodology

A summary of the methodology used in the study is pre-
sented in Fig. 1. The first step was modeling the road
systems as the primal graph, which is followed by a
simulation of the hydraulic process in the areas where
roads are located in order to obtain the granular (node-
level) flood depth data. A diffusion model that is com-
monly used to study the spread of communicable dis-
ease, Susceptible-Impacted-Susceptible (SIS Model), is
proposed to model the propagation of the flood in road
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Fig. 1 Research Methodology

Assessing the
Impacts of
Diffusion on
Connectivity

Estimating the
Parameters of the
Diffusion Model

networks. Parameters of the SIS model were estimated
using the temporal flood depth for the nodes in the road
network. Finally, the impact of both the number and lo-
cations of the seed nodes on the connectivity of the road
networks during diffusion was evaluated.

Road network Modelling

The road network was modeled as a non-planar primal
graph, where nodes represent the intersections in the
road network while edges represent the actual road sec-
tions. As a proxy for flood vulnerability, the elevation of
each node in the road network was also retrieved using
Google Application Programming Interfaces (API). Road
network topological data and other auxiliary information
were obtained from OpenStreetMap using the OSMnx
python package [6]. As the vulnerability of roads that
used for vehicular travel is the primary focus of this
study, we chose to focus on road types that are used for
passenger and service vehicles and didn’t include the
roadways intended for biking or walking, which is also
available through OSMnx.

Simulation of the hydraulic process

In this study, the depth of flooding at nodes within the
road network was used as a proxy for their functional
status. Therefore, obtaining the granular temporal flood
depth information in the road network during the case
study event- Hurricane Harvey, was crucial. During Har-
vey, flooding in the study started at 20:00:00 on August
26, 2017. The temporal changes in the flood depth at
the node location in the road network was obtained for
a temporal scale of 17 days, observations are in hourly
intervals, from 12 AM, 25 August 2017 to 11PM, 10
September 2017. This study looked into the time be-
tween 22:00:00 on August 26, 2017, and above peak
period, which is 11:00:00 on August 30, 2017.

The methodology applied in this study to calculate the
water depth at each node of the road network is similar
to what Kiaghadi et al. [15] developed. In brief, a geospa-
tial model was developed in ArcMap using the many
existing tools including Feature to Polygon, Intersect,
Topo to Raster, Extract by Mask, Mosaic to New Raster,
Resample, and Raster Calculator. Catchment shapefiles
and HWMs points were used in the developed mode as
inputs to generate a continuous WSE raster at 1 m by 1
m resolution were generated. The land elevation repre-
sented by the LIDAR DEM raster was then subtracted

from the continuous WSE raster to develop the inunda-
tion raster with depth information at the desired reso-
lution. To isolate the effect of flooding existing
waterbodies were eliminated from the generated inunda-
tion raster. The final product was used as a static snap-
shot of the event that represents the worst-case flooding
scenario. The main difference was converting the ob-
served HWMs (one snapshot of the flood representing
the maximum WSE) into a time series. In other words,
in the current study, a water surface elevation over the
time of the flooding event (i.e. Hurricane Harvey) was
used instead of a static snapshot of the event. Due to a
smaller study area, all calculations were undertaken at
the catchment level and only HWMs within the catch-
ments covering the study area were used. Catchment
boundaries were extracted from the watershed delinea-
tion in the Tropical Storm Allison Recovery Project
(TSARP). Figure 2 shows the catchments and associated
HWMs used in the study. A total of 11 HWMs were
used.

To convert the single measured HWM values into a
WSE time series, the observed temporal pattern in the
WSE at the closest USGS gage was used. Since the ma-
jority of the HWMs were measured close to the banks of
rivers and were caused by the river overtopping its
banks, it was assumed that the WSE time series at the
location of the HWM was similar to the river behavior.
The HWM represents the highest level of water ob-
served at the specific location that is equivalent to the
peak of the WSE time-series recorded by USGS. For the
period of simulation and for each USGS gage, the ratio
between the WSE at each time step and the peak were
calculated and multiplied by the reported values of
nearby HWMs to generate the WSE time series at the
location of each HWM. For HWMs located on the
tributaries (see HWM2 in Fig. 2), the pattern observed
in the difference between recorded discharges from two
USGS gages (one upstream and one downstream) was
applied to the HWMs. Here, it was assumed that the dif-
ference in the discharge rates was solely caused by the
input from the tributary and not by direct runoff from
the drainage areas between the two USGS gages. To
automate the process of generating a WSE at each time
step (1 h), a model was built in ArcMap. Several existing
tools in ArcMap were applied to (1) Convert the HWMs
within the catchments into a WSE raster with a reso-
lution of 1 m by 1 m for each time step; (2) Subtract the
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Fig. 2 Study area and location of High-Water Marks (HWMs) used in the study

surface elevation raster (LiDAR DEM) from the WSE
raster to calculate the water depth at time steps; (3) Ex-
tract the water depths at the locations of specific nodes
(intersections) for each time step; (4) Filter the depths to
only consider nodes with a positive depth. A negative
value indicates that the river water is contained within
the original river bank; (5) Export the excel file contain-
ing the locations and associated water depths. A
MATLAB code was developed to combine all the excel
files and create a metafile with the locations of the nodes
and water depth at each time step over the length of the
simulation.

Estimation of the parameters of the SIS network
diffusion model

It was hypothesized that the propagation of the flooding
impacts in the road network can be modeled using the
SIS diffusion approach. Based on a separate study in
which authors proposed a Bayes-rule based percolation
approach for the road network during flooding [1],
highly flood-prone areas tend to be inundated first due
to overflow of flood control infrastructure. The disrup-
tion propagates to adjacent areas based on factors like
relative elevation, drainage condition, terrain, the level
and type of vegetation, soil type, intensity and duration
of rainfall, among many others. Due to the complex and
stochastic nature of the propagation of the floods, a
probability-based approach should be used to model its
disruptions on the road network. At the propagation

stage, due mainly to gravity, a node is more likely to be
inundated because of the existence of an inundated adja-
cent node. The same above factors might also cause the
receding of the flood at a certain location, which makes
that particular node functional again. The binary transi-
tions between the functional or non-functional statues
of the nodes in the road network could be captured
using a basic diffusion model called SIS diffusion. In SIS
diffusion, there are two types of nodes (Susceptible and
Infected), and the rate of change between these two sta-
tuses is characterized by two parameters labeled beta
and gamma (See Fig. 3). The main reason to focus on
the nodes, instead of links is because once a node is
flooded enough to be removed from the network, the
edges connected to that node will be rendered as non-
functional and will no longer be part of the connected
network component.

The first task in developing the SIS diffusion model is
to categorize the study population (nodes in this con-
text) into different classes using certain criteria defined
by the user. In the context of the current study, it is ap-
propriate to categorize the nodes in the road network
into functional or closed categories. During a flooding
event, the closed or functional status of the road net-
work is a binary value, but the flooding (depth) status in
different parts of the road network is a continuous vari-
able. It is possible to relate the flood depth to the closed
or functional status of roads via vehicle speed. Re-
searchers have studied the relationship between the
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Susceptible (S)

Fig. 3 Schematic representation of the SIS Diffusion Model
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depth of the flooding and the speed of the vehicles driv-
ing on the roads during the flooding event. Pregnolato
et al. [23] have estimated the relationship between the
depth of standing water and the speed of different types
of vehicles as:

v(w) = 0.0009w*~0.5529w + 86.9448 (1)

where:
v(w)is the vehicle speed (km / h), and w is the depth

of the floodwater on the road(in mm).

Using Eq. (1), nodes in the road network at any given
point in time were divided into two categories based on
the vehicle speed. (1) Susceptible Nodes (S): The sus-
ceptible group is a node in the network that is either in-
tact at a given point or the flood depth in the node
location is less than 140mm. On such types of nodes,
the passenger vehicle speed is more than or equal to
20km/h. (2) Infected Nodes (I): The Impacted group is
the nodes that have been heavily impacted by the flood
and are rendered non-functional. The speed of vehicles
on these types of nodes is less than 20km/h. The next
step in SIS diffusion modeling is to identify the seed
nodes, the portion of the nodes in the network that were
already impacted when diffusion started. During a fluvial
(or riverine) flooding event, the nodes located within the
flood-prone areas initiate a flood-induced diffusion
phenomenon in the road network. Estimating the flood-
proneness of the nodes can be based on the floodplain
type, proximity to flood control infrastructure and rela-
tive elevation of the nodes [1]. The last step is to esti-
mate the other two essential parameters of the SIS
diffusion, B,and y. Parameters of the diffusion model are
solved for using egs. (2) and (3) from Newman [21]:

ds
o =y @)

(B-y)e

0 = %0 g brelBy)

(3)

where:
B and y: transition parameters of diffusion; S: number
of susceptible individuals (nodes) at a given point in

time; I: number of infected individuals (nodes) at a given
point in time; x(¢): the fraction of infected nodes at a
given point in time; xy: the fraction of susceptible nodes
at the beginning of diffusion.

Assessing the diffusion profile and connectivity
under different scenarios

Connectivity profiles of the road network under two
types of disruptions were studied. (1) The impacts of the
flood-induced network diffusion that started at different
locations on the connectivity profile of the same road
network; (2) The impact of diffusion on the overall con-
nectivity of the road network during the flood propaga-
tion process in the road network by studying the road
network in all 88 neighborhoods in the case study area.

Connectivity profile

This study first estimated the parameters of SIS diffusion
under different thresholds: 140 mm represents the max-
imum flood depth in which sedan cars can travel on the
road while 300 mm represents the depth for SUV vehi-
cles, whereas 600 mm represents the threshold flood
depth for the fire trucks. Then using the SIS diffusion
parameters under the 140 mm threshold, connectivity
profile of the road network under different scenarios
were examined. The diffusion scenario which starts from
randomly selected seed nodes was considered as a base-
line scenario. Due to diverse colocation patterns between
road networks and flood control infrastructure networks,
it is possible for the fluvial flooding to occur at any loca-
tion in the road network. Because of the unique topog-
raphy and layout of the road networks, nodes with high
centrality measures represent unique locations on the
road networks. The impacts of diffusion on road net-
works was quantified using the relative (to original net-
work size) size of the giant connected component (GCC)
[29] in the road network. Five considered scenarios in-
clude: (1) diffusion is initiated from a certain number of
randomly selected nodes; (2) diffusion started from a
certain number of nodes with the highest betweenness
centrality (BC); (3) diffusion started from a certain num-
ber of nodes with the highest degree centrality (DC); (4)
diffusion started from a certain number of nodes with
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highest closeness centrality (CC); (5) diffusion started
from a certain number of nodes with highest eigenvector
centrality. For this analysis, the road network in the Me-
morial super neighborhood was used in the analysis
(Fig. 4). A super neighborhood in the case study region
is geographically designated area in which different
stakeholders work collectively to address the needs and
concerns of the community.

Overall connectivity

While the connectivity profile could cast some insights
into the sensitivity of diffusion at different levels on the
connectivity of the road network, it is not an aggregate
measure of the overall impact of flooding on the road
connectivity. Therefore, a measure called overall con-
nectivity (OC) is introduced to assess the connectivity of
the network during the diffusive disruptive events. The
connectivity changes due to diffusive disruptions are
quite uneven under different scenarios. In order to make
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the magnitude of the impacts of different diffusions on
road network comparable, the area under the perform-
ance curve was calculated. OC is defined using Eq. 4
below:

oC = / ! GC(t)dt (4)

to

where:

to-the starting time for the disruptive event;
t;-the time the disruptive event ends;
GC(t)-the relative size of the connected giant
component in the road network.

In order to examine the impacts of the location of the
initial diffusive set seeds on the vulnerability of the road
network, a two-sample significance test was conducted.
The working hypothesis was that the road network is
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more vulnerable to the contagious disruptions that start
from the significant nodes (with high centrality measures).
This vulnerability is because the removal of the significant
nodes alone usually caused a greater magnitude of loss to
the connectivity of the network. If we classify road net-
works under the disruptions of random diffusive failures
as group 1, road networks under the targeted diffusive fail-
ures (failures originating from those nodes which are con-
sidered significant, ie. high degree centrality, high
betweenness, nodes with low closeness centrality and
nodes with high Eigenvector centrality) would be classified
as group 2. The overall connectivity of the network in the
two groups was studied in this research as were the OC
values for each of the 88 super neighborhoods in the study
area.

Results and discussion

Road network and hydraulic process

The road network in the Memorial super neighborhood
has 4073 nodes and 9762 edges, with an average node
degree of 2.397. A snapshot of the road network when
the most severe flooding occurred can be seen in Fig. 4,
which happened at 11:00:00 on August 30th, 2017, when
the maximum number of nodes (937 nodes out of 4073)
flooded in the network. A flood depth observation for
each node in the road network, at the hourly interval,
was made for 408 h. A temporal change in the fraction
of flooded nodes (as long as a node is under non-zero
flood water, it was considered as flooded) can be seen in
Fig. 4. In Using the size of the giant connected compo-
nent in the network as measure of overall connectivity,
the temporal change in the performance of the network
during the flooding, under different closure thresholds
for node-removal (a condition that corresponds to road
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closure for different types of vehicles,140 mm-sedan cars,
300 mm-SUVs, and 600 mm-common fire trucks) was
presented in Fig. 5. As could be seen in Fig. 5, the vul-
nerability of the road network connectivity under differ-
ent thresholds is quite different. Understanding the
mechanism behind the sudden drop in the relative size
of the giant connected component at the 140 mm
threshold has important implications for improving the
resilience of the road network to flooding events.

Obtaining the network diffusion parameters

Three parameters were estimated for the SIS diffusion
model. The initially impacted parameter was estimated
based on the number of nodes within a certain type of
flood plain. The transition rate parameters (f and y)
were estimated by minimizing the residual sum of the
squares method. In other words, the sum of squares of
the difference between predicted and observed node
numbers in each category is minimized. Table 1 presents
a summary of the parameter estimation for the SIS
model under the four different flood threshold scenarios,
that corresponds to maximum threshold for the flood
depth for certain types of vehicle, as discussed in the
methodology section of the paper.

In order to characterize the vulnerability of road net-
work to various diffusive disruptions, two types of simu-
lation experiments were conducted, as discussed in the
methodology section.

Experiment one: assessing the impact of diffusion on
connectivity profile

This study first estimated the parameters of the SIS diffu-
sion based on the actual hydraulic process in the road net-
work, which facilitated simulations of the road network
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Fig. 5 Size of GCC in road network under different closure thresholds
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Table 1 Summary of diffusion parameters under different
diffusion threshold

Diffusion Threshold (in mm)  Beta (8) Gamma (y) Initially Impacted
(% of nodes)

0 0.025 0.02 1

140 0.02 0013 0.8

300 0.03 0.024 0.5

600 0.02 0.015 04

diffusion under various hypothetical fluvial flooding
events. A better understanding of the impact of parame-
ters of the SIS diffusion model on the diffusion profile of
the road networks is crucial as different combinations of 3
and y values represent a different flooding profile, like the
intensity of precipitation, runoff, the capacity of the flood
control infrastructure or drainage systems. Furthermore,
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once an estimate of the values for the SIS diffusion param-
eters, Beta (5) and Gamma (y), are obtained, it is possible
to conduct scenario analysis by initiating the diffusion
from different locations in the road network, which repre-
sents areas fluvial flooding most likely starts. Figure 6
(highlighted in red) shows a set of randomly chosen nodes
that serve as the seed nodes for the diffusion. In order to
facilitate a comparison between different scenarios, 5% of
the total node number were selected for all the scenarios
and diffusions are simulated in the same network in Me-
morial Super Neighborhood.

Figure 7 depicts the connectivity profile of the road net-
work in the case study area under different diffusion sce-
narios, where diffusions are initiated from nodes with high
centrality measures. The extent of diffusion was simulated
until about 20% of the nodes were removed from the road
network. In order to facilitate a comparison between the

Fig. 6 Locations of Seed Nodes in Road Network

C: High Degree Centrality Seeds

E: High Closeness Centrality Seeds
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impacts of diffusive disruption and targeted disruptions
on road network connectivity, the authors simulated five
intentional disruptions. Figure 8 shows the connectivity
profile of the road network when the nodes in the network
are intentionally removed at a decreasing order of corre-
sponding node centrality measure.

As could be seen from Fig. 7, the rate at which the
connectivity of the road network is reduced under differ-
ent diffusion scenarios varies significantly. There is an
apparent non-linear pattern of reduction in the connect-
ivity of road networks when diffusion in the road net-
work is initiated from nodes with high betweenness,

degree and closeness centralities. The connectivity of the
road network is particularly vulnerable to the diffusion
initiated from nodes with high betweenness centrality
(BC), as removal of less than 5% of nodes from the net-
work reduced the size of GCC into less than 70% of the
original size. When the fraction of removed nodes
reaches 10%, the size of GCC becomes less than half of
its original size. However, under this scenario, the im-
pact of disruption on connectivity becomes less severe
as the fraction of removed nodes increases. This is prob-
ably due to the fact that, once the significant nodes (with
high BC values) are removed and disruption propagates
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Fig. 8 Connectivity Profile of Road Network under Different Targeted Disruption Scenarios
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Table 2 Results of the hypothesis tests (on the different networks)

Initial Seed Type Working Hypothesis Z-statistics Conclusion (at a=0.1)
high DC Hap < Hrandom 0.214921 Fail to reject the Null
high BC Hac < Hrandom 2078136 Reject the Null

high CC Uce < Hrandom 0677877 Fail to reject the Null
high EC Uec < Urandom 1.780124 Reject the Null

into less significant nodes, further removal of nodes
doesn’t cause a sharp reduction on the network connect-
ivity, which is validated by the quick reduction of con-
nectivity under high BC scenario in Fig. 8. At different
magnitudes of disruption (as the fraction of removed
nodes varies in x-axis), the overall reduction of the con-
nectivity of the road network is also different. As the
area under the high-BC curve is significantly smaller
than areas under any other scenario. The particularly se-
vere impact of nodes with high betweenness centrality
on the connectivity of the road network could be ob-
served from both Figs. 7 and 8.

Experiment two: characterization of road network
vulnerability to diffusive disruptions

A separate simulation of diffusion on the road network
was conducted for each of the scenarios (random, BE,
DC, CC, and EC). The working hypothesis is that a dif-
fusion starts from nodes with high centrality values will
cause a greater loss in the connectivity. According to
this hypothesis, the average connectivity of the road net-
work under these scenarios (4ap, Uac, Hco Hec) is less
than connectivity of the road network under a diffusive
failure which starts from a set of nodes randomly
chosen. The parameters of the diffusion are initially

impacted seed size a (o= 1%, 5% and10%), 8 =0.04, y =
0.02. This process was conducted for 88 super neighbor-
hoods in Houston, in order to get the sample of the road
network connectivity under these scenarios. Independence
between samples was assumed, as the number of samples
is more than 30, the z-test was used for testing the hy-
pothesis. Table 2 presents a summary of the hypothesis
testing when the seed size parameter is a=10%. When
larger seed size values (1% and 5%) are used, the results
for tall high centrality scenarios (high DC, EC, CC and
BC) centrality scenarios are not significantly different from
the diffusion initiated from randomly chosen seeds.

As could be inferred from the results in Table 2,
contrary to the initial belief, diffusion started from
high significance nodes do not cause the expected
greater decrease in the network connectivity. Diffu-
sion which originates from seeds of nodes that have
high betweenness and high eigenvector centrality
causes greater loss to the connectivity loss when the
seed size is large, compared to ones that started from
randomly selected nodes. In contrast, diffusion which
originates from seeds of nodes that have high close-
ness centrality seems to cause less loss to the con-
nectivity of the network than a diffusion started from
the randomly chosen nodes.

Overall Connectivity
IS S e
—_ S} w BN W (o)} ~ O

(=}

Fig. 9 Average Network Connectivity under different Diffusion Scenarios
.
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Average connectivities in road networks (for the
above-mentioned five cases) under different seed-size
scenarios were also studied (see Fig. 9). Diffusion which
originates from seeds of nodes that have high eigen-
vector and betweenness centrality seems to cause more
significant loss to the connectivity loss when the seed
sizes are respectively 2% and 4%. It is also observed that
if diffusion starts from a larger number of nodes (above
7% of total nodes) with high betweenness centrality, the
impacts on the network connectivity would be higher
than that of diffusion originated from the randomly
chosen nodes with the same size.

The above findings have important implications for
flood management. The figures indicate that to ensure
the connectivity of the graph or the transportation net-
work, it is crucial to maintain the functionality of a
number of critical nodes in the network. This paper il-
lustrates that the SIS diffusion model can be used to
identify critical nodes in transportation road networks.
This paper also presented a sensitivity analysis of the im-
pact of the number of initially flooded nodes. The sec-
ond application of the finding is that network size
increase may not necessarily result in improved robust-
ness in the network. This also means that just adding
extra lanes to the roadways may not improve the flood
resilience of the road network. Instead, working on en-
suring the functionality of a few nodes in road networks
is critical to the robustness of the road network.

Conclusions

This paper presented the use of the SIS diffusion model to
study diffusion phenomena in the road network under the
influence of the fluvial flooding during heavy rainfall. The
results show that there is significant variability in the
sensitivity of the road network connectivity to the diffusive
disruptions initiated from different locations. The results
indicate that the road network is particularly vulnerable
for disruptions that occur at nodes with high betweenness
centrality. Both the diffusion-based disruptions and
intentional disruptions show the variance on the impacts
disruptions at different locations. It was found that a road
network does have critical threshold values for the fraction
of removed nodes, being above which could lead to the
loss of most of the connectivity in the road network. En-
suring the fraction of removed nodes under a certain
threshold could lead to disproportionate benefits in terms
of the social and economic well-being of communities
whose mobility depends on the network. It has been ob-
served that the sensitivity of the robustness of the road
network is different for the intentional disruptions and dif-
fusive disruptions. It has been observed that, in general,
the rate of the reduction in the connectivity is faster under
the intentionally targeted disruptions than the SIS diffu-
sive phenomenon. In summary, if we are able to predict
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the configuration of the road network under a given flood-
ing scenario, then we would be able to predict various
types of accessibilities. There is also a threshold value for
the node removal portion for the robustness decrease,
while the change in the robustness (measured in terms of
the size of the largest connected component) under the
random percolation is relatively moderate. The critical
threshold value for the removal fraction of the nodes
under the diffusion phenomenon is about 25%. This has
two critical implications on road network resilience. The
first, marginal utility of the investment in improving the
vulnerability of the road network is different at different
disruption levels. The dividend, in terms of ensuring the
connectivity of the road network, on investing to avoid the
node-removal is particularly high for the nodes with high
betweenness centrality.

Even though this study was aimed at bridging the gaps
between findings in the realms of theoretical networks
and performance of real-life networks. There are several
areas that need further study in order to render the find-
ings and conclusions in this study even more realistic. For
example, the depth of the standing floodwater in the road
network is an important indicator for it's being safe to
travel or not, there could be numerous other factors that
also should be taken into account for predicting safe travel
speed. These factors could include vehicle conditions (tire
pressure, roadworthiness etc.), condition of the pavement,
visibility and aptitude and behavior of the driver during
the flooding events because all of these could contribute
to whether a road network is being “closed” or not. In
addition, this study demonstrated the applicability of SIS
diffusion model for characterizing the vulnerability of road
network against fluvial flooding and results are highly
specific to the case study, as the parameters of the SIS dif-
fusion are dependant on numerous factors, like topology
of the road network, spatial and temporal variability in the
magnitude of flood and the temporal unit selected for the
diffusion analysis. The static diffusion parameters this
study estimated is an abstraction of the dynamic process
in the road network. Therefore, extrapolating the results
from one location (under a given flooding scenario at a
given threshold) to other flooding scenario or other loca-
tions might not be feasible. In terms of the granularity of
the data, this study has used the hourly flood depth data
as input for the diffusion. Based on the rainfall intensity
and other factors, less or more granular data could be
needed in order to predict the transitions between node
statuses. This process is not captured in the SIS
transition process. It is also possible to train diffusion
models using the data for multiple super neighborhoods
or under multiple types of flooding scenarios, which could
enable the identification of the diffusion model that is best
able to model the floodwater diffusion in road networks
during a given flooding event.
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