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Abstract 

Accurate crack detection is crucial for maintaining pavement integrity, yet manual inspections remain labor-intensive 
and prone to errors, underscoring the need for automated solutions. This study proposes a novel crack segmentation 
approach utilizing advanced visual models, specifically Detectron2 and the Segment Anything Model (SAM), applied 
to the CFD and Crack500 datasets, which exhibit intricate and diverse crack patterns. Detectron2 was tested with four 
configurations—mask_rcnn_R_50_FPN_3x, mask_rcnn_R_101_FPN_3x, faster_rcnn_R_50_FPN_3x, and faster_
rcnn_R_101_FPN_3x—while SAM was compared using Focal Loss, DiceCELoss, and DiceFocalLoss. SAM with Dice-
FocalLoss outperformed Detectron2, achieving mean IoU scores of 0.69 and 0.59 on the CFD and Crack500 datasets, 
respectively. The integration of Detectron2 with faster_rcnn_R_101_FPN_3x and SAM using DiceFocalLoss involves 
generating bounding boxes with Detectron2, which serve as prompts for SAM to produce segmentation masks. 
This approach achieves mIoU scores of 0.83 for CFD dataset and 0.75 for Crack500 dataset. These results highlight 
the potential of combining foundation models with Detectron2 for advancing crack detection technologies, offering 
valuable insights for enhancing highway maintenance systems.
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Introduction
 Roads are one of the most critical infrastructures, which 
must be maintained at a high quality of service. Cost-
effective road pavement assessment is crucial for this 
purpose. Cracks frequently occur as a type of damage 
in asphalt pavement caused by environmental factors or 
traffic [1]. Engineering consensus indicates that untreated 
cracks can cause severe structural damage, shorten-
ing the pavement’s service life and leading to premature 
overhaul or reconstruction [2]. Periodic crack detec-
tion and assessment are thus vital for asphalt pavement 
operation and maintenance. Classical techniques, such 

as onsite visual inspections, are labour-intensive, time-
consuming, ineffective, and could compromise inspector 
safety. Furthermore, the proficiency and experience of 
the inspectors have a major role in their efficacy. There-
fore, in order to improve pavement performance and help 
managers cut budget expenses, safer and more effective 
pavement crack detection and assessment procedures are 
desperately needed. The automatic recognition of road 
cracks is vital for early detection, mitigating potential 
economic losses despite the inherent complexity and var-
iability of crack characteristics. Leveraging advancements 
in computer vision and machine learning, several detec-
tion methodologies have emerged, encompassing image 
processing [3], traditional machine learning, deep learn-
ing [4], transfer learning [5], and more recently, founda-
tion models. However, the challenge of selecting the most 
appropriate model for specific crack datasets persists, 
necessitating ongoing iterative experimentation.
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Recent studies underscore the efficacy of transfer 
learning in the domain of crack detection, marking it as 
a pivotal subset of machine learning that has garnered 
substantial traction, especially with the emergence of 
large-scale pre-trained foundation models in artificial 
intelligence. These foundation models, such as large lan-
guage models (LLMs), are characterized by extensive 
training on vast and diverse datasets, enabling excep-
tional generalization and adaptability across a wide 
range of applications, from content generation to con-
versational AI. However, in the recent past, the advent of 
foundation models has driven a paradigm shift towards 
transformers for visual recognition tasks. These models, 
equipped with pre-trained transformer networks and 
lightweight decoders optimized for edge computing, have 
made multi-modal zero-shot inference in both natural 
language and images a reality. Notable examples include 
Generative Pre-trained Transformers (GPTx), the Lan-
guage Model for Dialogue Applications (LaMDA), Vision 
Transformer Detectron (ViTDet), and the Segment Any-
thing Model (SAM).This progression has catalyzed new 
opportunities for advanced pixel-wise detection and 
segmentation, driving our research to focus on cutting-
edge foundation segmentation models, notably Meta AI’s 
SAM and Detectron2, an open-source framework engi-
neered by Facebook AI Research (FAIR). Detectron2, 
built on the PyTorch platform, offers robust implemen-
tations of state-of-the-art models such as Faster R-CNN, 
Mask R-CNN, and RetinaNet, establishing it as a power-
ful tool for object detection and segmentation.

In our investigation, we emphasize SAM as a foun-
dation model, which, due to its extensive pre-training, 
demonstrates unparalleled generalization capabilities, 
particularly in pixel-wise segmentation tasks. Detec-
tron2 complements this approach by providing a flexible 
and sophisticated framework for precise crack pixel wise 
detection. Traditional methodologies often struggle with 
the morphological variability of cracks and face chal-
lenges in generalizing effectively across diverse datasets. 
In contrast, SAM and Detectron2 mitigate these limita-
tions by leveraging the robust architectures of transfer 
learning and foundation models, thereby significantly 
enhancing model robustness and adaptability across 
varied operational scenarios. This comprehensive analy-
sis, based on experiments conducted on two benchmark 
datasets, rigorously evaluates the practical applicability 
of these models in crack pixel detection, validating their 
potential to deliver accurate, efficient, and scalable solu-
tions in this domain.

In conclusion, the transformative potential of SAM and 
Detectron2 in crack detection is rooted in their ability to 
leverage large-scale pre-trained datasets for exceptional 
generalization and precise pixel-level segmentation. Our 

empirical analysis, conducted using two benchmark data-
sets, validates the efficacy of these models in delivering 
accurate, efficient, and scalable crack pixel detection 
solutions.

The notable contributions of this study are delineated 
as follows:

1. Fine-tuning two state-of-the-art models character-
ized by distinct architectural configurations adapt-
ing them to the task of crack segmentation namely, 
Detectron2 framework on four baselines and SAM 
model trained using three loss functions.

2. we integrate Detectron2 with SAM (Combine object 
detection with Segmentation), train the Detectron2 
model using images and masks to generate approxi-
mate boundary boxes around the objects of interest 
is given as input prompt for SAM models to generate 
segmentation masks.

 The subsequent sections of this manuscript are organ-
ized as follows: Related works section elucidates the 
methodological framework employed in this study. Meth-
odology section, encapsulates the results obtained and 
offers an in-depth analysis thereof. Finally, Results and 
discussion section  encapsulates the conclusion drawn 
from the findings elucidated in the preceding sections.

Related works
In the past, traditional image processing methods, such 
as histogram-based thresholding [6], local analysis, and 
filtering techniques like adaptive filtering and Gabor fil-
ters combined with morphological operations [7, 8], have 
been extensively utilized for crack detection. While these 
techniques are computationally efficient and straightfor-
ward, they often yield high rates of false positives and 
incomplete detections. Early efforts in machine learning, 
employing algorithms such as Support Vector Machines 
(SVM) [9, 10], Markov Models [11], and Random Forest 
[12], showed promise in crack detection tasks. However, 
these methods often struggle to generalize in complex 
environments with background noise, such as shad-
ows or stains, leading to false positives and incomplete 
detections. To address these shortcomings, deep learn-
ing (DL) models have emerged as a more effective alter-
native, automatically learning hierarchical features from 
large datasets. Unlike traditional approaches, DL mod-
els such as Convolutional Neural Networks (CNNs) can 
directly learn complex patterns from raw data, signifi-
cantly improving detection accuracy in challenging sce-
narios. In environments with shadows, noise, or diffusion 
points, DL-based approaches [13–15] greatly outperform 
traditional machine learning techniques, both in terms of 
accuracy and computational efficiency. Unlike machine 
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learning models, which depend on handcrafted features, 
DL models can autonomously learn multiple levels of 
abstraction, enabling the detection of intricate patterns 
directly from large datasets.

Transfer learning has been effectively leveraged in 
crack classification and detection, with models such 
as EfficientNetB0 [16] and InceptionV3 [17] exhibiting 
superior performance. For instance, Cao et al. [18] inte-
grated object detection frameworks like Faster R-CNN 
and SSD with deep convolutional neural networks, 
attaining the highest mean Average Precision (mAP) of 
53.06% when using Faster R-CNN in conjunction with 
Inception V2. This approach capitalizes on knowledge 
transfer from analogous domains, enabling the fine-tun-
ing of extensive datasets to optimize models like VGG 
and MobileNet for crack classification, and employing 
YOLO [16], Faster R-CNN, and SSD for crack detection, 
as well as FCN, UNet, and SegNet [18] for crack segmen-
tation. The accuracy of these systems is further enhanced 
through the application of advanced attention mecha-
nisms, such as transformer-based multi-scale fusion 
models [19], SegCrack [20], and transformer encoder-
decoder architectures [21]. Additionally, segmentation 
models proposed by NHT Nguyen et al. [19], along with 
transformer-based fusion models, have substantially 
improved pixel-level crack detection accuracy. Zou et al. 
[21] introduced DeepCrack, a model that proficiently 
captures the hierarchical features of cracks, achieving a 
pixel-level detection F-measure of 0.89.

The YOLO framework has been employed for the 
identification of cracks, where crack dimensions are 
determined by leveraging the precise positions of laser 
beams projected onto structural surfaces. Huyan et  al. 
[20] introduced the CrackU-Net model, which achieved 
an exceptional precision of 0.986 in the detection of 
pavement cracks. Similarly, Kim et  al. [21] proposed a 
crack detection methodology using a shallow Convolu-
tional Neural Network (CNN) architecture, wherein the 
hyperparameters of the LeNet-5 model were optimized 
to achieve a peak accuracy of 99.8%, while minimizing 
the parameter count for improved computational effi-
ciency. Despite the strong performance of these models 
in feature extraction and classification across various 
applications, significant challenges remain in enhancing 
detection accuracy, particularly in environments with 
complex backgrounds. Although these models have sub-
stantially advanced crack detection techniques, the chal-
lenge of selecting the most optimal model architecture 
for specific datasets remains unsolved. The need for fur-
ther experimentation is paramount, especially within the 
domain of autonomous systems and advanced computer 
vision techniques, to continually refine detection accu-
racy and broaden the applicability of these models. This 

paper explores the efficacy of transfer learning in deep 
feature extraction for crack detection, highlighting a sig-
nificant improvement in performance.

While architectures such as U-Net, SegNet, and Fully 
Convolutional Networks (FCN) have demonstrated com-
mendable success in pixel-level crack segmentation, they 
often face limitations in detecting smaller, finer cracks or 
require a considerable volume of labeled data to maintain 
performance. Detectron2, an advanced object detection 
framework, addresses these limitations by precisely local-
izing crack regions through bounding box generation, 
which can then be used as inputs for more accurate seg-
mentation tasks. The Segment Anything Model (SAM), 
a foundational model, further enhances segmentation by 
harnessing its generalized learning across diverse data-
sets, outperforming other models in environments with 
complex or noisy backgrounds. Notably, prior research 
has not explored crack pixel detection through the com-
bined application of object detection, segmentation 
models, and foundational models. This study pioneers 
the integration of state-of-the-art computer vision tech-
nologies, specifically Detectron2 and the Segment Any-
thing Model (SAM), for crack pixel segmentation and 
detection. To the best of our knowledge, this is the first 
study to apply the integration of Detectron2 with SAM 
explicitly for crack detection. Although prior works have 
utilized YOLO for object detection in conjunction with 
segmentation networks, the combination of Detectron2 
and SAM introduces a novel paradigm. Unlike conven-
tional approaches that focus on object detection or seg-
mentation in isolation, our methodology leverages the 
advanced object detection capabilities of Detectron2 to 
generate bounding boxes that serve as prompts for SAM, 
facilitating a more refined and precise crack pixel seg-
mentation process. This innovative integration, not pre-
viously applied to any dataset or domain, distinguishes 
our work from existing research, significantly improving 
both detection accuracy and segmentation precision in 
complex environmental conditions.

Methodology
Proposed method
We propose an automated crack segmentation frame-
work that integrates Detectron2 and the Segment Any-
thing Model (SAM). The process begins with data 
preparation, where the dataset is split into training, val-
idation, and test sets. The validation set is used to fine-
tune model hyperparameters, while the test set evaluates 
the model’s performance on unseen data. Four baseline 
models are trained using Detectron2, and further refined 
with SAM by applying various loss functions to optimize 
the predictions. During testing, Detectron2 generates 
bounding box prompts, which are directly fed into SAM 
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for segmentation, producing the final prediction masks. 
This integration of Detectron2’s object detection capa-
bilities with SAM’s segmentation enhances the accuracy 
of crack detection in pavements as depicted in Fig. 1. The 
focus on how Detectron2’s bounding boxes drive SAM’s 
segmentation process is a core contribution of the study, 
resulting in improved segmentation performance.

Data preparation
Our research utilizes two benchmark datasets for crack 
segmentation: the CFD dataset (the smallest) and the 
Crack500 dataset (the largest), ensuring a comprehen-
sive evaluation. The data was systematically partitioned 
into training, validation, and testing subsets following an 
80:10:10 ratio, selected after extensive experimentation 
to achieve optimal balance between model learning and 
evaluation. This partitioning, executed with a seed value 
of 42 to ensure reproducibility, consistently delivered 
superior accuracy. Pre-processing involved normalizing 
pixel values to the 0–1 range and resizing all images to 
256 × 256 pixels for uniformity, facilitating robust model 
training and evaluation, as represented in Fig. 2.

CFD dataset
The CFD dataset [10] comprises 118 RGB road images 
captured in Beijing using an iPhone 5, each with a reso-
lution of 480 × 320 pixels. The dataset consists of 250 

training images, 50 validation images, and 200 test 
images. These images include a variety of noise elements, 
including oil marks, shadows, and water stains. The data-
set focuses specifically on pavement texture and cracks, 
intentionally excluding irrelevant objects such as garbage 
or cars on the road. This diversity in noise and environ-
mental conditions poses a significant challenge for eval-
uating crack detection algorithms, making it a suitable 
reflection of real-world urban road surface conditions.

Crack500 dataset
Crack500 [12] is a dataset consisting of 500 crack images 
that were captured at Temple University using cell 
phones. Each image has a size of 2000 × 1500 pixels and 
pixel-level annotated binary maps. The data set includes 
250 training, 50 validation, and 200 test images in the 
dataset. After each image is split into 16 non-overlapping 
sections only the sections with cracks longer than 1,000 
pixels are preserved. This yields 348 validation images, 
1,124 test images, and 1,896 training images. With pixel-
by-pixel annotations, Crack500 is the largest pavement 
crack dataset that has been made available to the public 
for research purposes.

Crack segmentation methods
The Patch-level classification for crack segmentation can 
rapidly and accurately locate and count surface cracks on 

Fig. 1 Flowchart illustrating the proposed methodology
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monitored pavement sections. However, these methods 
have difficulty providing precise information on individ-
ual crack parameters such as length, width, and severity, 
which are vital for a comprehensive pavement condi-
tion assessment. Conversely, pixel-level pavement crack 
detection delivers detailed crack parameters necessary 
for thorough pavement condition evaluation, establishing 
it as the preferred approach for crack assessment.

a) SAM model

The Segment Anything Model (SAM) by Meta AI has 
gained attention for its impressive zero-shot performance 
and capability to produce high-quality object masks from 
diverse input prompts. The primary advantage of SAM 
compared to other state-of-the-art segmentation models 
lies in its ability to generalize across a wide range of tasks 
without task-specific fine-tuning. This adaptability makes 
SAM a versatile tool, especially when high accuracy is 
needed across diverse datasets. However, the specific 
visual examples in the figure might not fully convey this 
strength, and we will consider adding more representa-
tive images to better illustrate SAM’s capabilities. SAM 
functions as a class-agnostic segmentation model, utiliz-
ing a Vision Transformer (ViT) for image encoding and 
a sophisticated two-layer mask decoder. Trained on the 
extensive SA-1B dataset, which includes over 11 million 
images and 1.1 billion masks, it stands as the largest seg-
mentation dataset to date. SAM’s architecture features 
an image encoder with ViT to extract detailed embed-
dings, a prompt encoder to interpret various user inputs, 
and a lightweight mask decoder for precise pixel-level 

segmentation decisions. This design enables SAM to 
effectively adapt to new segmentation tasks with minimal 
additional training, ensuring high accuracy.

In this work, ViT-H, an advanced variant of ViT 
enhanced with self-attention mechanisms, proves crucial 
for capturing intricate pixel relationships in images. ViT-
H’s higher resolution and scalability compared to other 
variants enable it to handle complex spatial dependen-
cies effectively. The bounding box prompts are employed 
in SAM-based crack segmentation is essential for accu-
rately delineating the Region of Interest (ROI), derived 
from ground truth masks and adjusted randomly during 
training. These prompts are generated from bounding 
boxes from ground truth segmentation masks by identi-
fying the smallest enclosing rectangle around the object 
of interest. This is achieved by locating all non-zero pix-
els in the mask, which correspond to the crack object, 
and calculating the bounding box coordinates [xmin, ymin, 
xmax, ymax] based on the minimum and maximum x and y 
indices of these pixels. During training, bounding boxes 
are deliberately randomized in size and position to intro-
duce variability, thereby enhancing SAM’s robustness 
and improving its adaptability and generalization across 
diverse datasets. This approach ensures SAM’s efficacy 
in performing precise segmentation tasks across a broad 
range of applications.

In the testing phase, the model relies on bounding 
boxes generated from input images, where ground truth 
data are unavailable. The model’s training with varied 
bounding boxes equips it to accurately predict the Region 
of Interest (ROI) during testing, allowing it to effectively 
manage variability. This method enhances the model’s 

Fig. 2 Sample images and corresponding ground truths from CFD dataset and Crack500 dataset
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ability to generalize to novel and unseen data, aligning 
with our goal of achieving precise segmentation across 
different datasets and conditions. When segmenting a 
new image with our trained model, a prompt is required. 
Given that the object locations are unknown, bounding 
boxes cannot be directly utilized. Instead, we employ a 
grid of points to generate the bounding box, which serves 
as the segmentation prompt.

A systematic grid of points is initially generated across 
the image, with each point corresponding to a specific (x, 
y) coordinate. These coordinates are then converted into 
a PyTorch tensor for subsequent processing. The grid is 
meticulously constructed by partitioning the image into 
a predetermined number of evenly distributed coordi-
nates, ensuring comprehensive coverage of the image’s 
spatial domain. Significant regions within this grid are 
delineated by bounding boxes, which play a pivotal role 
in the segmentation process of the SAM model. These 
bounding boxes, defined by the minimum (top-left) and 
maximum (bottom-right) coordinates of the grid, serve 
as input prompts that guide the SAM model’s attention 
to targeted regions, thereby enhancing segmentation pre-
cision. For instance, a random patch within the image 
can be selected by determining its grid indices, which 
are then used to generate bounding boxes that focus the 
model’s attention on specific areas, thereby optimizing 
the segmentation performance of the SAM model, the 
algorithm is explained in Table 1.

In Fig. 3, the “Image Encoder” and “Prompt Encoder” 
represent integral components of the Segment Anything 
Model (SAM). The Image Encoder is tasked with process-
ing the input image to distill essential features, while the 
Prompt Encoder interprets the bounding box prompts 

that strategically guide the segmentation process. The 
“Mask Decoder” subsequently integrates these encoded 
representations to produce the final segmentation mask.

During training, experiment is performed using three 
different loss function are used such as Focal Loss, Dice-
CELoss, and DiceFocalLoss. Focal Loss, DiceCELoss, and 
DiceFocalLoss are loss functions designed to enhance 
semantic segmentation, particularly in the presence of 
class imbalance. The choice of loss/objective function 
depends on to minimize the difference between pre-
dicted and actual labels, thereby quantifying their dis-
crepancy. The loss functions was chosen because of their 
effectiveness in handling class imbalance and improving 
segmentation accuracy.

Focal loss
Focal loss [22] is good for multiclass classification where 
some classes are easy and other difficult to classify, Focal 
Loss is tailored to address the challenge of class imbal-
ance by decreasing the relative loss for well-classified 
examples and placing greater emphasis on difficult-to-
classify instances, thus helping the model learn from dif-
ficult samples and improving performance on minority 
classes.

DiceCELoss
DiceCELoss [23]combines Dice Loss, which evaluates the 
overlap between predictions and ground truth segmen-
tations, with Cross-Entropy Loss (CE), enhancing the 
model’s ability to handle both boundary and classification 
accuracy simultaneously and return their weighted sum.

DiceFocalLoss
DiceFocalLoss [24] merges the benefits of Dice Loss and 
Focal Loss, then return their weighted sum, ensuring pre-
cise boundary segmentation while emphasizing difficult 
cases and smaller regions, thus effectively managing class 
imbalance and varying object sizes. These loss functions 
are crucial for semantic segmentation as they improve 
the model’s ability to accurately segment complex scenes, 
address class imbalances, and enhance performance on 
challenging segmentation tasks.

b) Detectron2

(1)FL(pt) = −αt.(1− pt)γ .log(pt)

(2)
DiceCELoss = alpha ∗ DiceLoss + (1− alpha) ∗ CELoss

(3)
DiceFocalLoss = alpha ∗ FL(Dice(ytrue , ypred))+ (1− alpha) ∗ FL(ytrue , ypred )

Table 1 Algorithm to generate the grids of points

Algorithm: Generating and Reshaping Grid Points for Input to a 
Model

Input: A  2D image array size and grid size
Output: bounding box prompt for the prompt encoder.

1.Define the size of your array and grid:
Set array_size to 256.
Set grid_size to 10.
2. Generate grid points:
Use np.linspace(0, array_size-1, grid_size) to generate linearly spaced 
values for both ‘x’
and  ‘y’ coordinates within the range of array_size.
3.Create a grid of coordinates:
Use np.meshgrid(x, y) to create a grid from the x and y coordinates.
4.Combine and Convert to Tensor:
       Combine the (x, y) coordinates into a list of list of lists.
       Convert the combined grid points directly to a PyTorch tensor using  
torch.tensor(input_points).view(1, 1, grid_size*grid_size, 2).
5.Final Output: Return the reshaped input_points tensor, ready to be 
used as a bounding box prompt by 
       the prompt encoder.
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Introduced by Facebook AI Research in 2019, Detec-
tron2 [25] includes various computer vision models such 
as Faster R-CNN, Mask R-CNN, and more, designed for 
tasks like object detection and segmentation. Its archi-
tecture features a backbone for feature extraction, a neck 
for feature pyramid construction, an RPN for region gen-
eration, and a head for detection with non-maximal sup-
pression. We employ instance segmentation baselines 
such as mask_rcnn_R_50_FPN_3x, mask_rcnn_R_101_
FPN_3x, and object detection baselines such as faster_
rcnn_R_50_FPN_3x, and faster_rcnn_R_101_FPN_3x 
due to their proven performance and versatility in object 
detection and segmentation tasks and their ability to bal-
ance computational efficiency. Faster R-CNN and Mask 
R-CNN are selected for their state-of-the-art perfor-
mance and high accuracy. ResNet-50 provides a balance 
of performance and efficiency, while ResNet-101 captures 
more complex features. Feature Pyramid Networks (FPN) 
ensure robust multi-scale detection. The “_3x” notation 
signifies that the model was trained for three times the 
standard number of iterations or epochs typically associ-
ated with a 1x schedule. This extended training duration 

helps ensure effective convergence, especially when deal-
ing with complex data or model architectures. These 
models are trained on the COCO 2017 [26] dataset, 
which includes 200,000 images annotated with 80 object 
categories, enhancing their generalization capabilities.

To prepare crack CFD dataset annotations for Detec-
tron2, we convert them from standard image format to 
COCO JSON format using a customized Python script. 
This process involves using OpenCV to extract contours 
from binary masks, which represent object boundaries. 
These contours are then converted into annotations, 
including bounding boxes, area, and segmentation infor-
mation. Each annotation is associated with an image 
ID, category ID, and other properties required by the 
COCO format. Details such as image ID, height, width, 
file name, category ID, and bounding box coordinates are 
extracted from individual images and their label files, and 
then compiled into a single JSON file.

During training, the model configuration files are 
adjusted for pixel segmentation alignment. The train-
ing process uses a batch size of 4, a base learning rate 
of 0.00025, and runs for up to 1000 epochs. Since the 

Fig. 3 Proposed network (Crack-SAM) employing the Segment Anything Model (SAM)
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dataset includes only one class (‘crack’), the number of 
classes is set to 1. The model’s ROI head score is com-
puted using CrossEntropyLoss, while smooth L1 loss is 
used for coordinate value regression.

Performance evaluation metrics
The evaluation aims to assess the effectiveness of the pro-
posed method for detecting cracks in asphalt pavement. 
Various metrics are utilized, including Intersection over 
Union (IoU), Accuracy, Precision, Recall, and F1 score. 
Precision measures the accuracy of identifying true posi-
tive crack pixels, while recall evaluates the proportion 
of actual crack pixels detected. The F1 score, as the har-
monic mean of precision and recall, provides a balanced 
performance assessment. Accuracy represents the ratio 
of correct predictions to total predictions. IoU assesses 
the overlap between ground truth and predicted crack 
pixels, while Mean Intersection over Union (MIoU) is 
used for semantic segmentation evaluation.

and

Results and discussion
The experiments were carried out in an environment 
with Nvidia T4 GPU support, using models implemented 
in PyTorch (2.1) ,Cuda (cu121), detectron2(0.6) and Ten-
sorFlow within a Python 3.7 environment. We leveraged 
libraries such as Keras, SimpleITK, and scikit-learn for 
development. Detectron2, implemented in PyTorch and 
CUDA, delivers robust, high-speed, and highly accurate 
results. The dataset images were kept at their original size 
of (256, 256) for the four baselines from Detectron2 and 
the SAM model. The segmentation task was established 

(4)Precision =
TP

TP + FP

(5)Recall =
TP

TP + FN

(6)F1 Score =
2 ∗ TP

2 ∗ TP + FP + FN

(7)Accuracy =
Number of correct predictions

Total Number of predictions

(8)IOU =
area of Pa intersection Pb

area of Pa union Pb

(9)mIoU =
Intersection over Union

n

as the core objective. The Segment Anything Model 
(SAM), configured with multiple loss functions, was 
first scrutinized for segmentation accuracy. Following 
this, Detectron2’s Mask R-CNN baseline was evaluated 
for crack segmentation. Despite SAM’s superior seg-
mentation performance, Detectron2 excelled in object 
detection, yielding high Average Precision (AP) scores. 
To enhance overall performance, the bounding box out-
puts from Detectron2 were subsequently employed as 
prompts for SAM, facilitating the integration of both 
models.

We undertook a comprehensive manual hyperparam-
eter tuning process to refine learning rates, batch sizes, 
and the number of epochs for each model, guided by 
validation metrics, with a focus on accuracy and loss. 
Various hyperparameter configurations were systemati-
cally evaluated, and optimal values were identified when 
validation performance plateaued, indicating diminishing 
returns. The selection of loss functions played a pivotal 
role in shaping model performance. Within the Segment 
Anything Model (SAM), we rigorously assessed several 
loss functions, including Focal Loss, DiceCELoss, and 
DiceFocalLoss, to gauge their impact on efficacy. Focal 
Loss mitigates class imbalance by emphasizing hard-
to-classify examples, enhancing sensitivity to minor-
ity classes. DiceCELoss integrates Cross-Entropy and 
Dice Loss, delivering pixel-level accuracy and improved 
overlap, making it well-suited for tasks requiring precise 
boundary delineation and robust predictions. DiceFo-
calLoss, a fusion of Dice and Focal Losses, excels under 
severe class imbalance, providing superior boundary seg-
mentation while prioritizing underrepresented classes. 
These loss functions are critical for boosting SAM’s gen-
eralization and performance across diverse tasks, with 
DiceFocalLoss proving the most versatile for complex, 
imbalance-sensitive scenarios.

Performance of individual models
SAM Model
The SAM model was trained using images divided into 
patches with a size of 64 and a step size of 64. The models 
were optimized using the Adam optimizer with a learn-
ing rate of 1e-5 for 100 epochs, and no weight decay. We 
demonstrate the effectiveness of incorporating various 
loss functions including Focal Loss, DiceCELoss, and 
DiceFocalLossforthe Segment Anything Model (SAM). 
The numerical performance of the methods for different 
loss functions as shown in the Fig. 4.

When fine-tuned with Focal Loss, DiceCELoss, and 
DiceFocalLoss, the SAM model shows that DiceFocal-
Loss achieves lower and more stable mean loss values 
quickly, indicating efficient learning, while Focal Loss 
and DiceCELoss struggles with higher, fluctuating 
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values, and proves ineffective for crack segmentation. 
As the number of epochs increases, the validation mean 
loss for all three loss functions decreases, suggesting 
ongoing learning and improvement, with DiceFocal-
Loss consistently performing best, followed by DiceCE-
Loss and FocalLoss. The decreasing rate of mean loss 
slows after 60 epochs, indicating the models may be 
approaching convergence.

Figure 5 illustrates the Precision-Recall curves for three 
loss functions applied to CFD and Crack500 Datasets. 
The Focal Loss curve (blue) starts with high precision 
and recall but dips noticeably towards the end, indicating 
a drop in precision at higher recall values due to its focus 
on hard-to-classify examples. The DiceCELoss curve 
(green) follows a similar pattern but maintains a slightly 
better balance between precision and recall, especially 
in the mid-range. The DiceFocalLoss curve (orange) 
performs the best overall, maintaining higher precision 
over a broader range of recall values by combining the 
strengths of Dice and Focal Losses, providing the best 
trade-off among the three.

The SAM model’s performance is highlighted by the 
standard deviation Accuracy (0.004 to 0.010) and IoU 
scores (0.005 to 0.009) across both datasets, indicating 
consistent and reliable segmentation of crack regions. 
The higher variance in Accuracy scores suggests sen-
sitivity to different image characteristics, highlighting 
potential areas for optimization. Additionally, cross-
dataset validation demonstrates the model’s adaptability 
and potential for deployment in varied scenarios, further 
showcasing its strong generalization capability.

From Table  2, SAM-Focal Loss performs well on the 
dataset it was trained on, especially CFD dataset, but 
drops significantly on different datasets. SAM-Dice-
CELoss shows better performance across all scenarios, 
particularly in maintaining accuracy and IoU scores on 
different datasets. SAM-DiceFocalLoss consistently out-
performs the other two, demonstrating the best gener-
alization ability with the highest intra- and cross-dataset 
performance. Therefore, the SAM model for crack seg-
mentation is fine-tuned with DiceFocalLoss, which effec-
tively addresses class imbalance and difficult-to-classify 

Fig. 4 The performance metrics comparison of SAM model on CFD dataset and Crack500 dataset with different loss functions

Fig. 5 Precision-Recall curve of our method on different loss functions
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examples, enhancing gradient signals during training and 
improving model performance. DiceFocalLoss combines 
Dice Loss’s strength in handling imbalanced classes and 
Focal Loss’s ability to manage easy negatives, making it 
well-suited for segmentation models, particularly with 
datasets where foreground objects are much smaller than 
the background. In Fig.  6 we demonstrate the effective-
ness of incorporating DiceFocalLoss Loss into Segment 

Anything Model (SAM) and output is shown for the 
patch image.

Detectron2 model baseline performance
The performance of the baseline models, including Mask 
R-CNN (mask_rcnn_R_50_FPN_3x, mask_rcnn_R_101_
FPN_3x) for instance segmentation tasks and Faster 
R-CNN (faster_rcnn_R_50_FPN_3x, faster_rcnn_R_101_
FPN_3x) for object detection tasks, was evaluated using 

Table 2 Crack segmentation accuracy assessed by mean accuracy and IoU (mean ± standard deviation)

Method Train 
Dataset

Test 
Dataset

Precision Recall F1 Score Accuracy IoU scores Training 
Duration 
(hh: mm: 
ss)

Inference 
Time

SAM- Focal 
Loss

CFD dataset CFD dataset 92.42 ± 0.003 91.49 ± 0.004 92.41 ± 0.003 91.83 ± 0.005 0.64 ± 0.005 04:39:01 0.291

CFD dataset Crack500 
dataset

70.65 ± 0.003 75.12 ± 0.002 72.96 ± 0.003 73.46 ± 0.009 0.49 ± 0.007 04:41:05 0.339

Crack500 
dataset

Crack500 
dataset

85.16 ± 0.003 83.68 ± 0.006 86.32 ± 0.005 88.51 ± 0.004 0.56 ± 0.005 05:17:54 0.346

Crack500 
dataset

CFD dataset 77.29 ± 0.002 75.41 ± 0.001 76.12 ± 0.001 76.90 ± 0.008 0.50 ± 0.008 05:17:09 0.328

SAM- Dice-
CELoss

CFD dataset CFD dataset 94.92 ± 0.003 92.41 ± 0.006 93.55 ± 0.006 92.85 ± 0.006 0.64 ± 0.007 04:42:24 0.310

CFD dataset Crack500 
dataset

78.31 ± 0.002 76.83 ± 0.005 77.34 ± 0.002 77.49 ± 0.005 0.51 ± 0.006 04:59:10 0.346

Crack500 
dataset

Crack500 
dataset

89.53 ± 0.003 85.71 ± 0.006 88.74 ± 0.005 87.99 ± 0.006 0.58 ± 0.008 05:11:36 0.358

Crack500 
dataset

CFD dataset 79.42 ± 0.005 76.64 ± 0.007 77.34 ± 0.003 78.54 ± 0.008 0.53 ± 0.009 05:19:21 0.340

SAM- Dice-
FocalLoss

CFD data-
set

CFD data-
set

96.30 ± 0.002 93.91 ± 0.006 95.34 ± 0.002 95.54 ± 0.004 0.69 ± 0.005 04:48:43 0.350

CFD dataset Crack500 
dataset

79.90 ± 0.005 82.42 ± 0.005 80.43 ± 0.003 80.90 ± 0.008 0.55 ± 0.008 04:57:10 0.361

Crack500 
dataset

Crack500 
dataset

90.42 ± 0.004 92.53 ± 0.005 90.48 ± 0.003 91.53 ± 0.006 0.59 ± 0.006 05:34:45 0.384

Crack500 
dataset

CFD dataset 83.72 ± 0.003 80.18 ± 0.001 82.53 ± 0.002 81.88 ± 0.004 0.56±
0.005

05:56:34 0.394

Fig. 6 Visualization depicting the model’s predictions on a patch of the input image alongside the corresponding probability map on CFD dataset
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COCO metrics in Detectron2. Detectron2 typically uses 
the Mask R-CNN model for crack segmentation tasks, 
which extends Faster R-CNN by adding a branch that 
outputs binary masks for each detected crack object, 
enabling precise crack segmentation. All baseline models 
were trained using a learning rate of 0.00025 and a batch 
size of 8. The training was conducted over a maximum 
of 1,000 iterations, effectively representing the number of 
epochs, to ensure the models were adequately trained on 
the dataset. Evaluation metrics included Average Preci-
sion (AP) and Average Recall (AR) based on Intersection 
over Union (IoU) thresholds, assessing overlap between 
predicted and ground truth bounding boxes. IoU thresh-
olds of 0.50 (AP50), 0.75 (AP75), and the range 0.50:0.95 
were used to evaluate alignment accuracy, with AP 
[27] and AR values calculated for different object sizes 
(small, medium, large) and detection limits. Bounding 
box results report AP metrics for various IoU thresh-
olds and object sizes, including AP, AP50, AP75, and AP 
for small (APs), medium (APm), and large objects (APl). 

The classification of small (APs), medium (APm), and 
large objects (APl) was based on the pixel area of bound-
ing boxes surrounding the detected cracks. Specifically, 
cracks were classified as small if their bounding box area 
was less than 32 × 32 pixels, medium if between 32 × 32 
and 96 × 96 pixels, and large if exceeding 96 × 96 pixels. 
This approach ensures precise and scalable evaluation 
across varying object sizes.Loss components analysed 
include classification loss (loss_cls), bounding box regres-
sion loss (loss_box_reg), and mask loss (loss_mask), cor-
responding to object classification accuracy, bounding 
box localization accuracy, and segmentation mask accu-
racy, respectively. Figures  7 and 8 illustrates the deg-
radation of these loss metrics across epochs, showing 
minimal learning after 200 epochs; however, training was 
continued for 1,000 epochs to ensure precise localization 
of crack damage coordinates.

The Figs.  7 and 8 depict a comparative performance 
evaluation of diverse model architectures—Mask R-CNN 
and Faster R-CNN, utilizing ResNet-50 and ResNet-101 

Fig. 7 Analysis of Detectron2’s training metrics as a baseline on CFD dataset

Fig. 8 Analysis of Detectron2’s training metrics as a baseline on Crack500 dataset
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backbones—across three key loss metrics: classifica-
tion loss (loss_cls), bounding box regression loss (loss_
box_reg), and mask loss (loss_mask) over 1000 training 
epochs. The convergence trends exhibit notable per-
formance disparities, especially in the bounding box 
regression loss, where Faster R-CNN with ResNet-50 
(FPN) shows a substantial decrease. Moreover, the clas-
sification and mask loss metrics underscore the enhanced 
convergence stability afforded by the deeper ResNet-101 
backbone, indicating its superior efficacy in feature rep-
resentation and model training.

 Tables  3 and 4 summarize object detection perfor-
mance, reported as Average Precision (AP) across differ-
ent IoU thresholds, using various backbone architectures. 
“bbox” denotes the bounding box-based approach, 
while “segm” refers to the instance segmentation-based 
approach.

The analysis reveals that the faster_rcnn_R_101_
FPN_3xexhibits superior bounding box performance 
on CFD dataset, achieving the highest AP (92.53), AP50 
(94.21), and AP75 (96.93), underscoring its exceptional 
object detection capabilities. Conversely, the Mask 
R-CNN R-101 FPN 3x excels in segmentation with the 
highest segmentation AP (91.62). On Crack500 data-
set, the Fast R-CNN R-50 FPN 3x demonstrates optimal 

performance on small objects (APs 91.91) and the low-
est inference time per image (0.3170s), while the Mask 
R-CNN R-50 FPN 3x achieves the shortest training 
duration (0:48:44), indicating superior computational 
efficiency. Models with the ResNet-101 backbone gen-
erally achieve higher AP values due to enhanced feature 
representation and learning capacity, despite increased 
training and inference times. Overall, the Faster R-CNN 
R-50 FPN 3x excels in object detection across both data-
sets, whereas the Mask R-CNN R-101 FPN 3x excels in 
segmentation, emphasizing the trade-off between model 
complexity and computational demands.

In conclusion, summarized results in Tables  3 and 4 
indicate high average precision for both models, with the 
Faster R-CNN R-101 FPN 3x performing slightly better 
overall. Performance can be further enhanced by adjust-
ing IoU and maximum detection settings. The models 
exhibit limitations in segmentation tasks but demon-
strate proficiency in object detection using bounding 
boxes as shown in Figs. 9 and 10.

Integration of Detectron2 model with SAM model
The integration of Detectron2 with the SAM frame-
work is a cornerstone of our methodology. Despite 
Detectron2’s advanced architecture tailored for object 

Table 3  Evaluation of the performance of Detectron2baselines using CFD dataset

Baselines Approach AP AP50 AP75 APs APm APl Training 
Duration (hh: 
mm: ss)

Test Duration/
image (seconds)

Max Memory/ 
Epoch (MB)

mask_rcnn_R_50_FPN_3x bbox 88.46 89.32 92.84 88.76 91.32 93.43 0:48:44 0.310 8297

Segm 90.65 91.63 93.09 91.42 93.75 95.31

mask_rcnn_R_101_FPN_3x bbox 89.21 91.89 93.44 90.96 92.21 94.79 1:11:44 0.325 12933

Segm 91.62 92.87 95.12 92.42 94.75 94.93

faster_rcnn_R_50_FPN_3x bbox 91.82 93.04 95.93 89.50 91.52 94.21 0:57:44 0.289 9564

faster_rcnn_R_101_FPN_3x bbox 92.53 94.21 96.93 90.28 93.42 93.04 1:03:30 0.292 13843

Table 4  Evaluation of the performance of Detectron2baselines using Crack500dataset

Baselines Approach AP AP50 AP75 APs APm Apl Training 
Duration (hh: 
mm: ss)

Test Duration/
image (seconds)

Max Memory/
Epoch (MB)

mask_rcnn_R_50_FPN_3x bbox 83.67 86.32 87.84 82.76 85.32 86.43 1:16:31 0.3170 9341

segm 85.21 89.89 90.44 84.96 86.21 89.79

mask_rcnn_R_101_FPN_3x bbox 84.62 87.87 88.12 83.42 88.75 89.21 1:58:72 0.3425 10073

segm 86.65 88.63 90.09 88.83 89.49 90.72
faster_rcnn_R_50_FPN_3x bbox 88.82 90.51 90.93 88.42 89.52 90.29 1:36:31 0.3389 9761

faster_rcnn_R_101_FPN_3x bbox 87.74 89.04 90.64 88.37 90.27 90.64 1:47:80 0.3491 11903
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detection, it consistently exhibited suboptimal perfor-
mance in crack segmentation tasks across various data-
sets, resulting in markedly lower mean IoU, Precision, 
Recall, and F1-scores compared to SAM models. This 
performance gap arises primarily due to Detectron2’s 
design, which is optimized for object detection rather 
than the nuanced demands of instance segmentation, 
particularly when dealing with complex and heterogene-
ous crack patterns.

Detectron2 is trained to produce segmentation masks 
corresponding to the detected objects within the input 
images. These segmentation masks serve as a prelimi-
nary step in approximating bounding boxes that define 
the regions of interest. Throughout both training and 
inference phases, the model processes input data to 
generate these masks, effectively delineating the spa-
tial extent of detected objects. For each identified 
object, bounding box coordinates are derived through a 
detailed analysis of the segmentation masks’ geometric 

properties. This analysis is performed using the region-
props function from the skimage.measure library, 
which computes the properties of the labeled regions 
within the masks, yielding precise bounding box coor-
dinates that encompass the detected objects.

To enhance performance, we eschewed the conven-
tional grid-based approach for bounding box genera-
tion during the testing phase in favor of employing the 
faster_rcnn_R_101_FPN_3x architecture from Detec-
tron2. This model was specifically deployed to generate 
bounding boxes around regions of interest, which were 
subsequently used as input prompts for the Segment 
Anything Model (SAM). SAM capitalized on these 
Detectron2-derived prompts to produce high-resolu-
tion segmentation masks, refining the initial boundaries 
with greater precision. This method not only stream-
lined the crack segmentation process but also yielded 
substantial improvements in accuracy, as corroborated 
by the superior performance metrics observed when 

Fig. 9 Evaluation of the Detectron2 Faster R-CNN R-101 FPN 3x baseline models on CFD dataset. (a), (c) are the original images and (b), (d) are 
the predicted images
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Fig. 10 Evaluation of the Detectron2 Faster R-CNN R-101 FPN 3x baseline models on Crack500 dataset. (a), (c) are the original images and (b), (d) 
are the predicted images
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leveraging Detectron2-generated prompts as depicted 
in Fig. 11.

The Detectron2 model with baseline faster_
rcnn_R_101_FPN_3x is employed to detect the ROI, and 
SAM model is fine-tuned with DiceFocalLoss.The perfor-
mance metrics of the Detectron2-SAM model are pre-
sented in Fig. 12.

The bar chart analysis illustrates that the CFD data-
set, utilizing the advanced Detectron2-SAM model, 
consistently surpasses the Crack500 dataset across all 
key metrics, including Precision, Recall, Accuracy, and 

mIoU. The CFD dataset demonstrates superior per-
formance with higher metric scores and reduced vari-
ability, reflecting greater robustness and consistency. 
Its higher median values and more constrained ranges 
indicate reliable detection and segmentation capabili-
ties, minimizing performance fluctuations. Conversely, 
the Crack500 dataset shows increased variability, par-
ticularly in Recall and mIoU, suggesting less stable 
performance. The Detectron2-SAM model’s hybrid 
architecture, which integrates state-of-the-art object 
detection and fine-tuned segmentation, significantly 

Fig. 11 Workflow of integration of Detectron2 model with SAM model

Fig. 12 Performance metrics of Recall, Precision, Accuracy, and mean Intersection over Union (mIoU) for CFD dataset and Crack500 dataset
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enhances its efficiency and precision in handling 
boundary-sensitive tasks, as evidenced in the results for 
the CFD dataset depicted in Fig. 12.

Overall, the Segment Anything Model (SAM) achieves 
the highest accuracy in detecting all three types of cracks 
in both CFD dataset and Crack500 dataset, with CFD 
dataset specifically containing images of small-width 
cracks. Despite Detectron2 having the lowest segmenta-
tion accuracy, it excels in detecting longitudinal, trans-
verse, and alligator cracks. Accurate crack detection is 
crucial for proactive pavement maintenance, helping to 
protect property and reduce the need for labour-intensive 
manual inspections. However, the proposed method faces 
significant challenges in terms of generalization, model 
complexity, and sensitivity to different environmental 
conditions and image features. The model’s performance 
may decline when applied to varied datasets, especially 
those with different object types, sizes, or imaging con-
ditions, leading to higher error rates. Additionally, inte-
grating SAM with Detectron2 increases computational 
demands, resulting in longer processing times, higher 
memory usage, and greater power consumption, making 

it less suitable for environments with limited resources. 
External factors like changes in lighting, weather, and 
image quality can further weaken the model’s reliabil-
ity, potentially leading to inaccurate detections and poor 
segmentation. Addressing these challenges through 
techniques like data augmentation, transfer learning, or 
adaptive learning is essential for improving the method’s 
reliability and effectiveness across different real-world 
situations. The process is further complicated by chal-
lenges such as complex texture backgrounds, tiny cracks, 
and varying lighting conditions, which make it difficult to 
automate and accurately detect cracks (Fig. 13).

The proposed crack detection approach, integrating 
Detectron2 with the Segment Anything Model (SAM), 
faces notable challenges when applied to road surfaces 
with visually noisy backgrounds, such as shadows and 
complex textures. As shown in Fig.  14 (a), the model 
struggles with low-contrast regions, resulting in inaccu-
rate bounding box predictions and under-segmentation. 
In Fig. 14 (b), it fails to differentiate between cracks and 
noise patterns, often generating false positives due to 
the resemblance of noise to crack structures. The CFD 

Fig. 13 Crack detection outputs for three types of cracks observed in CFD dataset. Each row displays the Original Image, Ground Truth, 
Detectron2’s Bounding Box Output, SAM’s Segmentation Output for the patch image, and its corresponding Probability Map
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dataset shows a 4% failure rate for thin cracks, while the 
more complex Crack500 dataset reaches a 7% misclas-
sification rate. These challenges highlight the need for 
architectural enhancements, such as multi-scale fea-
ture extraction and attention mechanisms, as well as 
improved data augmentation to increase robustness and 
segmentation accuracy in noisy environments.

While the SAM model outperforms Detectron2 in 
segmentation accuracy, its real-world impact extends 
beyond mere performance metrics. SAM’s enhanced pre-
cision in detecting road cracks not only accelerates the 
identification process but also significantly reduces the 
operational costs, labor, and time traditionally associ-
ated with road maintenance. By minimizing the need for 
manual inspections, the model enables data-driven pri-
oritization of repair tasks, yielding considerable financial 
savings and preventing redundant maintenance efforts. 
However, its limitations become apparent when dealing 
with lower-quality images or complex crack patterns. 
In conditions involving suboptimal lighting, occlusions, 
or highly fragmented cracks, the model’s accuracy may 
deteriorate. To address these challenges, future research 
will focus on augmenting the model’s robustness against 
diverse environmental conditions, exploring adaptive 
techniques to improve its performance in more demand-
ing and heterogeneous datasets encountered in real-
world scenarios.

State of art comparison
The compared models are being used for a segmentation 
task. Our method demonstrates significantly better per-
formance compared to other state-of-the-art techniques 
in this task, showcasing strong generalization capability 
(Table 5).

The comparative analysis between SAM, Detectron2, 
and baseline models for crack detection underscores 
several key technical distinctions, particularly in terms 
of performance optimization and real-world applicabil-
ity. While traditional models like U-Net and CrackDiff 
exhibit commendable outcomes across metrics such as 
F1 score and mIoU, SAM and Detectron2 surpass these 
benchmarks through their advanced architectures, excel-
ling in boundary-sensitive segmentation tasks. SAM’s 
refined segmentation precision, when coupled with 
Detectron2’s state-of-the-art object detection frame-
work, delivers significantly enhanced boundary deline-
ation, especially in handling complex, irregular crack 
geometries. Although SAM’s grid-based segmentation 
introduces higher computational demands, its remark-
able scalability and adaptability across heterogeneous 
datasets far surpass the capabilities of models like DAU-
Net, which are computationally intensive and less ver-
satile. Furthermore, SAM and Detectron2 offer a highly 
optimized balance between computational efficiency 
and segmentation granularity, rendering them ideal for 
large-scale, complex crack detection challenges. Their 
inherent capacity to generalize across diverse datasets 
and maintain precision without sacrificing computational 
efficiency positions them as the superior choice for real-
world deployment, where scalability, boundary accuracy, 
and versatility are critical.

Conclusion
This study introduces an advanced deep crack segmenta-
tion framework that leverages Detectron2 and the Seg-
ment Anything Model (SAM) for precise segmentation 
of crack defects in pavement images. We explored vari-
ous baselines from the Detectron2 framework, including 

Fig. 14 (a) Bounding boxes predicted by the Detectron2 model for the CFD dataset. (b) Bounding boxes predicted by the Detectron2 model 
for the Crack500 dataset
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mask_rcnn_R_50_FPN_3x, mask_rcnn_R_101_FPN_3x, 
faster_rcnn_R_50_FPN_3x, and faster_rcnn_R_101_
FPN_3x. Additionally, we compared the SAM model 
with different loss functions such as Focal Loss, Dice-
CELoss, and DiceFocalLoss for crack pixel segmenta-
tion. Experimental evaluations on two distinct crack 
datasets indicate that the enhanced SAM model, opti-
mized with DiceFocalLoss, surpasses Detectron2, 
achieving mean IoU scores of 0.65 and 0.59 on the test 
sets of CFD dataset and Crack500 dataset, respectively, 
with minimal standard deviation. Although Detectron2 
demonstrates higher average precision in crack detec-
tion, its segmentation performance is comparatively 
lower, with the Faster R-CNN R-101 FPN 3x baseline 
showing slightly better results than other baselines. The 
proposed integrated approach utilizes bounding box 
outputs from Detectron2 as input prompts for the SAM 
model, facilitating accurate pixel-level crack detection 
in asphalt pavements. This methodology achieved mean 
IoU scores of 0.83 and 0.75 on the test sets of CFD data-
set and Crack500 dataset, respectively, underscoring its 
efficacy in automatic crack detection and quantification 
for maintenance applications. These advancements have 
the potential to significantly impact the field of pave-
ment maintenance by enabling more reliable and precise 
assessments of pavement condition. This, in turn, can 

lead to more timely and targeted maintenance interven-
tions, ultimately extending the lifespan of infrastructure 
and reducing long-term maintenance costs. The integra-
tion of these models into automated inspection systems 
could streamline the process of crack detection, making 
it more efficient and consistent across different environ-
ments. However, we also recognize the need for future 
research to further validate these findings across diverse 
datasets and environmental conditions, ensuring that 
the proposed methods are robust and generalizable for 
widespread use in real-world applications.
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Table 5  The results and comparative analysis of the methods
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DAUNET (Deep Augmented UNet) [30] Crack500 dataset mIoU = 0.565

CrackDiff [31] Crack500 dataset mIoU = 0.841

U-Net [32] CFD dataset F1 SCORE = 0.9494

deeply supervised modules [33] Crack500 dataset ODS = 0.627

U-Net [34] Crack500 dataset ODS = 0.757
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