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Abstract 

Underground wastewater collection systems degrade with time, necessitating utility owners to engage in ongoing 
evaluations and enhancements of their asset management frameworks to preserve the performance of their assets. 
The inspection and condition assessment of sewer pipes are crucial for the effective operation and maintenance 
of sewer systems. The closed-circuit television (CCTV) is frequently employed to examine sewer pipes in the United 
States. This procedure is both costly and laborious because of the extensive number of pipes in a metropolis. Prior-
itisation of inspection for sanitary sewage pipe segments requiring repair or maintenance can be done in advance 
depending on their past performance. Hence, the aim of this study is to construct a predictive model for the state 
of sanitary sewer pipes, utilising data collected from a city located in the southcentral region of the United States. The 
main contribution is that this study used multiclass classification and predicted PACP scores of the pipes. Condition 
prediction models were developed using extensively utilised supervised machine learning algorithms including logis-
tic regression (LR), k-nearest neighbors (k-NN), and random forest (RF). However, the bulk of the constructed models 
were assessed using a limited number of assessment measures, such as the receiver operator characteristic (ROC) 
curve and the area under the curve (AUC) value. This paper asserts that the assessment of the predictive capacity 
of these models cannot be determined only by relying on ROC and AUC values. Out of the three models evaluated 
in this study, the LR model had an AUC value of 0.76. However, this model had a higher number of misclassifications 
or inaccurate predictions compared to the other models. Consequently, these models were assessed using additional 
assessment measures, including precision, recall, and F-1 scores (which represent the harmonic mean of precision 
and recall). Curiously, the LR model achieved an F1-score of 0.28 on a scale ranging from 0 to 1. The RF model yielded 
an F1-score of 0.45 and an AUC value of 0.86. The existing model can be enhanced before it is employed by asset 
managers during the inspection phase to assess the state of their sanitary sewers and identify essential sewers 
that require immediate care.
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Introduction
The underground pipeline networks in the United States 
span vast distance and constitute a substantial percent-
age of the wastewater infrastructure resources (Najafi 
and Gokhale [21]). Considering that the significant 
amounts of U.S. wastewater infrastructures are approxi-
mately 60 years old, any major breakdown of these sys-
tems might have a significant and disruptive impact on 
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the surrounding areas regarding their economy, society, 
and environment (EPA [6] and EPA [7]). Furthermore, 
the remediation of malfunctioning sanitary sewers can 
impose a substantial financial burden on governments, as 
well as affect public health (Najafi and Gokhale [20]).

Based on a research conducted by the Environmen-
tal Protection Agency (EPA), several municipalities 
have sewers that are over 100 years old (EPA [7]). Over 
a period of time, underground infrastructure degrade, 
requiring utility owners to undertake continual changes 
and establlish asset management frameworks to pre-
serve the performance of their infrastructure (Najafi 
and Kulandaivel [22]). “Asset management is defined as 
managing infrastructure capital assets to minimize the 
total cost of owning and operating them, while delivering 
the service levels customers desire (Najafi and Gokhale 
[21]).” The primary duties of an asset management plan 
involve examining and evaluating the state of an asset 
(Tscheikner-Gratl et al. [26]).

In the past, municipalities were responsible for han-
dling the architecture, building, and administration of 
sanitary systems (Wirahadikusumah et  al. [28]). The 
Pipeline Assessment Certification Programme (PACP), 
designed by the National Association of Sewer Service 
Companies (NASSCO) in 2002, is widely used in the 
US to evaluate sanitary sewers. The PACP assigns dis-
tinct codes to every potential flaw in sewer systems, 
along with a rating from 1 to 5 that indicates the struc-
tural soundness of each pipe segment. Figure  1 depicts 
the arrangement of the PACP inspection equipment. 
A NASSCO-certified operator carefully reviews the 

recorded footage and meticulously adds problem codes 
to either computer program or a spreadsheet.

The PACP is preconfigured with predetermined scores 
for each category of fault and their corresponding level of 
seriousness (NASSCO 2018). The final score of the sewer 
pipeline can be estimated according to the information as 
presented in Table 1.

Nevertheless, the examination of a sewer pipe is a 
costly and laborious procedure due to the recommen-
dation of the PACP to limit the camera speed to a maxi-
mum of 30 feet or 9 m per minute. Consequently, because 
to the extensive number of assets that municipalities pos-
sess, it is not financially viable to conduct inspections on 
every individual sanitary sewage pipe (Malek Moham-
madi [16]). Furthermore, towns have the option to check 
sewer lines that are in good structural condition. Other-
wise, the significant budget allocated for this purpose 

Fig. 1  PACP inspection equipment setup (Loganathan [14])

Table 1  PACP condition rating (Loganathan [14])

PACP Description Predicted Failure Time

1 Excellent Highly improbable 
to experience failure 
in the near future

2 Good 20 years or more

3 Fair 10–20 years

4 Poor 5–10 years

5 Requires urgent attention Failed or imminent 
failure within the next 
five years
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might be directed towards repairing and renewing seg-
ments of sewer pipes that are in need. To accomplish 
efficient budget allocation, one could predict the state of 
pipelines by analysing their past performance (Logana-
than [14]). Therefore, accurately forecasting the state of 
sanitary sewer pipes would significantly advantage util-
ity owners throughout the evaluation stages of condition 
assessment.

Condition prediction of sanitary sewer pipes
Evidently, not every sewer line in an registry would be 
functionaly deficient or be on the verge of breakdown. 
The examination of sewage pipelines can be restricted by 
closely examining the pipelines that are in poor state by 
anticipating their deterioration beforehand (Wright et al. 
[29]). The anticipation of the state of a sanitary sewer 
line is not a novel idea. Ariaratnam et  al. in [4] created 
a binary classification model to forecast the proabability 
of a sewage infrastructure system being in a structurally 
inadequate condition. Hahn et al. in [10] built a sophis-
ticated knowledge-based assistance system to prioritise 
sewer pipe inspection.

In 2005, Najafi and Kulandaivel constructed a predic-
tive model for conditions utilising the Artificial Neural 
Network (ANN) approach. The model exhibited satisfac-
tory performance throughout the training phase, how-
ever its performance was deemed unsatisfactory during 
the testing phase. Syacharni et  al. ([25]) constructed a 
deterioration model for sewer pipes using a decision-tree 
approach. The study utilised a range of methodologies 
including regression analysis, neural networks and deci-
sion trees.

Harvey and McBean ([11]) established a predictive 
model to assess the structural quality of sewer pipelines. 
The random forests technique, which is a form of super-
vised machine learning, was employed to train the model. 
Hernandez et  al. ([12]) constructed a predictive model 
for structural condition utilising diverse machine learn-
ing algorithms. The study conducted a comparative anal-
ysis of the performances exhibited by different models. 
The work conducted by  Malek Mohammadi et al. ([17]) 
constructed predictive models for the quality of sanitary 
sewer lines using a range of machine learning methods. 
While the model demonstrated satisfactory accuracy, 
it categorised the condition ratings of pipes into binary 
classes instead of multiple condition ratings.

Various studies were performed to develop sanitary 
sewers condition prediction models using algorithms 
such as decision trees, k-nearest neighbors (k-NN), 
and so on (Ana et  al. [3], Vladeanu [27]). Figure  2 pre-
sents the distribution of various machine learning tech-
niques employed in considered studies. However, most 
of the developed models were either based on binary 

classification or validated based on more general metrics 
such as area under the curve (AUC) value and receiver 
operator characteristic (ROC) curve (Loganathan [14]). 
The main contribution is that this study used multiclass 
classification and predicted PACP scores of the pipes.

Methodology
Typically, condition prediction models are created using 
supervised machine learning methods. Machine learning 
(ML) is a broad concept that encompasses computational 
algorithms that utilise previous data to provide accurate 
predictions (Mohri et al. [18]).

Machine learning can be categorised into two main 
types: unsupervised learning and supervised learn-
ing. The majority of data analysis conducted in various 
research pertaining to condition prediction is categorised 
as supervised learning. This involves training a computer 
program to analyse past data that contains the output 
variable. Using the knowledge gained from the training, 
a forecast is made for a fresh collection of data or data 
that has not been previously recorded. The predominant 
strategies utilised in ML models are typically derived 
from classification, regression, or a fusion of the two. 
Algorithms can be classified by their underlying working 
principles, such as k-Nearest Neighbours (a clustering 
method), and decision trees. Classification and regres-
sion are widely recognised as the primary divisions of 
supervised learning algorithms. The regression method is 
appropriate when there is a need to forecast a continuous 
dependent variable using several independent variables 
(Müller and Guido [19]). The study utilises a categorical 
dependent variable with 5 distinct classes, necessitat-
ing the employment of a classification machine learning 
technique to construct prediction models.

Data collection
Closed Circuit Telivsions (CCTVs) are extensively Uti-
lized in the US to inspect sanitary sewage systems 
(NASSCO [23]). This work utilises historical data 

Fig. 2  ML techniques used in various research studies



Page 4 of 12Loganathan et al. J Infrastruct Preserv Resil             (2024) 5:9 

obtained from a city in the southcentral region of the 
United States to create a predictive model for assess-
ing the quality of sanitary sewer pipes. The model may 
be used to determine which pipes should be inspected 
first in future inspections. This study focuses exclusively 
on gravity flow sanitary sewage pipes, specifically ignor-
ing force main systems. The sewage system inventory is 
recorded in geographic information system (GIS) data-
bases, which contain detailed information about pipe 
installations, surrounding soil types, pipe placements on 
geographical maps, and other relevant data. The data-
set collected consisted of 32,854 distinct pipe segment 
details. Table  2 displays a representative sample of the 
gathered data.

Primary data analysis
GIS_ID is an exclusive identifying code assigned by the 
operator during the inspection process for referencing 
purposes.

INSTALL_DATE is the specific date when the pipe was 
installed for use.

INSPEC_DATE is the specific date on which the 
inspection was finished. The disparity between the date 
of installation and the date of inspection would pro-
vide a crucial attribute, namely the sewage pipeline age. 
Although the initial inspection data is from 2000, only 
500 sewer pipes were evaluated for condition till 2005.

INSPEC_LENGTH refers to the cumulative distance, 
measured in feet, that is examined from the starting 
manhole to the ending manhole of a certain section of a 
sanitary sewer. The inspection data indicate that the bulk 
of the sewer lines had a maximum length of 1,000 feet.

MAPSCOGRID serves as a geographic reference for 
the examined pipe segment. Since 1952, urban maps 
have been created using numbered grid systems and were 
commonly known as Mapscogrids.

DOWNELEV and UPELEV represent the heights, 
measured in feet above sea level, at the manholes located 
downstream, and upstream, respectively. This is crucial 
for determining the slope of the sewer line.

SUBAREA refers to the specific drainage basin in 
which the examined sewer line is situated. The subarea 
surrounding the sewage lines was identified using unique 
alphanumeric IDs based on the drainage basin. The initial 
two letters in the term SUBAREA indicate the specific 
basin type, including Village Creek (VC), Big Fossil (BF), 
Clear Fork (CF), and others.

The DIAMETER indicates the pipe’s size or diameter, 
measured in inches. The sewer lines had a diameter that 
varied from 4 to 96 inches. It was observed that pipes 
with a diameter over 60 inches did not possesses PACP 
score of 5. This suggests that pipes with bigger diameters 
were in relatively good structural condition in compari-
sion to pipes with smaller diameters.

The “MATERIAL” indicates the specific material uti-
lised in the production of the sewer pipe. Most of the 
sewage lines are made of Poly Vinyl Chloride (PVC), 
with the most of them being built after 1980. The sec-
ond greatest share consists of Vitrified Clay Pipes (VCP), 
which were primarily installed before 1980.

The collected data includes a PACP column that pro-
vides the PACP ratings for each length of the sewer line. 
The PACP scores range from 1 to 5, with 1 indicating a 
functionally good condition and 5 indicating a near fail-
ure condition, as previously mentioned.

Exploratory data analysis
The raw data obtained from the inventory of databases 
from one of cities in Texas were processed to utilize them 
for model development. The resulting dataset under-
went processing and consisted of 32,751 pipe segments. 
This dataset was used for further research and included 
7 independent factors and multi-class categorical 

Table 2  Sample of data collected for the study

GIS_ ID INSPEC_ DATE INSTALL_ DATE MATERIAL INSPEC_ 
LENGTH

MAPSCO  GRID DOWN  ELEV UP-ELEV SUBAREA DIAME-TER PACP

60,718 12/12/2010 8/18/1988 CONCRETE 844 93G 550.88 551.3 VC09_01 54 2

60,717 6/6/2011 7/25/1958 CI 460 93G 551.25 551.44 VC08_01 39 2

60,723 11/16/2012 12/3/1964 VCP 259 89 F 668.57 673.9 CF05_03 6 3

60,724 11/19/2012 12/9/1964 CONCRETE 503 89 F 673.9 689.06 CF05_03 6 2

60,732 11/13/2014 6/11/1947 VCP 203 47Y 716.86 723.7 MC03_06 6 2

60,728 8/9/2017 4/25/2002 PVC 444 106U 607.88 610.87 VC11_01 24 1

60,719 12/28/2017 7/17/2001 PVC 415 46 L 790.35 792 MC04_04 8 1

60,729 4/28/2017 2/28/2002 PVC 396 106 S 645.67 647.17 VC11_01 24 2

60,720 1/5/2018 7/1/2004 PVC 426 46 H 752.45 760.1 MC04_04 8 1

60,726 8/7/2019 3/1/2005 PVC 112 119G 640.73 641.37 VC11_03 8 1
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dependent variables. Table  3 displays the specific infor-
mation for each feature.

The initial data analysis involves extracting the age of 
the examined sewage pipeline segment. Figure 3 displays 
the distribution of independent variables. As depicted in 
Fig. 3(a), the age ranged up to a maximum of 107 years. 
As depicted in Fig.  3(b), the examined sewer pipe seg-
ment had a range of lengths, from 8 feet to 1,500 feet. 
Approximately 81% of the pipe segments were less than 
400 feet. Notably, several observations were discov-
ered to extend across a distance of more than 1,000 feet. 

Figure  3(c) demonstrates that the majority of the pipes, 
approximately 99%, were very flat with a maximum slope 
of 0.2%. The diameter distribution is depicted in Fig. 3(d), 
with over 90% of pipes having a diameter of less than 24 
inches, while around 1% of pipes had a diameter exceed-
ing 60 inches.

The distribution of pipe materials and their accompa-
nying PACP scores is depicted in Fig. 4. It was discovered 
that PVC makes up a significant proportion of the sewer 
pipes, accounting for approximately 60%. This is followed 
by VCP and concrete pipes, which account for 17% and 
9% respectively. Due to the prevalence of structurally 
compromised pipes across various pipe materials, the 
model development encompasses all sorts of pipe materi-
als. Notably, a substantial quantity of concrete pipes were 
experiencing degradation, as depicted in Fig.  4. Table  4 
displays a representative sample of the processed final 
dataset.

Figure  5 displays the distribution of the dependent 
variable, which is the PACP scores of individual pipes, for 
the condition prediction model. Approximately 90% of 
the pipelines are in a good structural condition, as indi-
cated by PACP values of 1 and 2. Furthermore, it is worth 
mentioning that over 70% of the pipes have a lifespan of 
less than 30 years.

Model development
Python programming language, is employed in this 
work for the purpose of constructing prediction mod-
els. Python is chosen due to its open-source nature and 
its ability to efficiently handle extensive data libraries. 
The study utilised different Python libraries, which are 
listed in Table  5 along with their respective functions. 
This study utilized three machine learning models Logis-
tic Regression (LR) as it provides a simple and interpret-
able model, k-Nearest Neighbours (k-NN) as it requires 
no assumptions about data distribution, and Random 
Forest (RF) as it offers high accuracy and robustness by 
combining multiple decision trees. This study did not 
consider support vector machine as they are well docu-
mented in the literature as the effective tools for binary 
classification (Burges, 1998; Shmilovici [24]). By utilising 
the specified libraries, machine learning methods like as 
LR, k-NN, and RF are trained using preprocessed data in 
order to create models for predicting conditions.

Logistic regression
Logistic regression (LR) is a frequently used statistical 
technique in the field of machine learning. The logistic 
regression approach is employed to examine the correla-
tion between several independent factors and a categori-
cal dependent variable. This approach involves fitting the 

Table 3  Details of extracted features

Variable Type Features Extracted Description (Data Types)

Independent 
(Response Vari-
ables)

Age Continuous Numerical

Length

Slope

Diameter

MAPSCOGRID Nominal

Material Nominal

SUBAREA Nominal

Dependent PACP Multi-class Categorical

Fig. 3  Frequency distribution based on pipe: (a) Age, (b) Length, (c) 
Slope and (d) Diameter
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Fig. 4  Distribution of pipe materials and PACP scores

Table 4  Sample of processed data used to train the algorithms

Sl.  No Age MAPSCO- GRID Length SUBAREA Slope Material Diameter PACP

1 13.5 46 H 426 MC04_04 0.018 PVC 8 1

2 14.4 119G 112 VC11_03 0.0057 PVC 8 1

3 15.2 106 S 396 VC11_01 0.0038 PVC 24 2

4 15.3 106U 444 VC11_01 0.0067 PVC 24 1

5 16.4 46 L 415 MC04_04 0.004 PVC 8 1

6 22.3 93G 844 VC09_01 0.0005 Concrete 54 2

7 33.3 103 H 95 SC09_05 0.0168 VCP 6 3

8 47.9 89 F 503 CF05_03 0.0301 Concrete 6 2

9 48 89 F 259 CF05_03 0.0206 VCP 6 3

10 67.4 47Y 203 MC03_06 0.0337 VCP 6 2
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data to a logistic curve, which is then utilised to predict 
the likelihood of an event.

LR can be utilised when the outcome variable is cate-
gorical and has more than two categories. The term used 
to describe this sort of logistic regression is multinomial 
logistic regression. When using logistic regression for 
multi-class classification, the probability of one class is 
estimated in comparison to all other classes. The final 
model for a multinomial logistic regression can be repre-
sented by Eq. 1 (Agresti [1]).

where:
X1, X2, …, Xp are independent variables.
α is the intercept for ith category.
𝛽 is the regression coefficient.
k-Nearest Neighbor (k-NN).
The k-NN algorithm is a guided method commonly 

used for classification issues. The training dataset is the 
sole need for constructing a k-NN model. The algorithm 
identifies the nearest neighbours within the training  
dataset to categorise a new data point (Guo et al. [9]). The 
k-NN algorithm, in its simplest form, examines simply 
the nearest neighbour, The established result for this data 
point is subsequently utilised to formulate the forecast. 
Nevertheless, in order to enhance precision, it is possible 
to take into account an indefinite number of neighbour-
ing data points, denoted as k (Müller and Guido [19]). 

(1)logit

[

π

1− π

]

= log (
P(Y = 1 | X1, X2, .Xp

1− P(Y = 1 | X1, X2, . Xp
) = α + β 1x1 + β 2x2 + ..+ β pxp

Here, the k represents the number of neighbours, is set 
to 3.

Random forests
RF are widely used tree-based machine learning models 
known for their exceptional performance in handling 
big datasets (Loh [15]). RF is a machine learning tech-
nique that utilises ensemble learning. Ensemble learn-
ing involves combining multiple classifiers to address 
complex problems and improve the performance of the 
model. RF, or Random Forest, can be described as a com-
pilation of diverse decision trees (DT), with each tree 
exhibiting slight variations from the others.

RF is known for its robustness in handling outliers 
and parameter spaces with large dimesionaity compared 
to other machine learning algorithms (Caruana and 
Niculescu-Mizil [5]). As a result, it is less prone to over-
fitting The Gini index (Gi) quantifies the ability of vari-
ables to predict outcomes in classification tasks (Alessia 
et al. [2]). The Gini index of a node ‘n’ is computed for a 
basic binary classification using Eq. 2.

Fig. 5  Distribution of PACP scores

Table 5  Python libraries used in this paper

Library Name Description

Pandas Access and alter numerical tables stored in spreadsheet files.

Scikit learn This collection offers a diverse range of categorization algorithms.

Matplotlib This library is often used for plotting graphs.

Seaborn It is a library used for visualising data.

Here Pj is the relative frequency of clas j in the node n.

Evaluation metrics
In order to assess the accuracy of trained models in fore-
casting the state of sewer lines, it is necessary to validate 
and evaluate them. The literature study revealed that the 
bulk of the research employed commonly used evalua-
tion measures, such as ROC curves and AUC values, for 
validation purposes. This work employs evaluation crite-
ria, including accuracy, recall, precision, and F1-score, to 
evaluate the functionality of the trained models.

Cross validation
This is a frequently utilised validation method in any 
predictive problem. The core principle that underlies 

(2)Gi (n) = 1− 2
j=1 pj

2
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cross-validation is to withhold a piece of the input data 
during training of a model, and thereafter utilise this 
withheld fraction for testing the created model. The pri-
mary rationale of this metric is to mitigate overfitting and 
ensure that all classes are adequately represented during 
model training. In this study, a 5-fold cross-validation 
technique is employed, wherein the entire dataset is 
divided into 5 equal halves. Out of the total of 5 parts, 4 
parts were allocated for training the model, while 1 part 
was reserved for testing the trained model.

Confusion matrix
This assessment metric is commonly accepted for assess-
ing the functionality of a trained model. A confusion 
matrix is cross table that records the number of occur-
rences between two raters, the true/actual classification, 
and the anticipated classification. The confusion matrix 
arranges the accurately identified objects along the main 
diagonal, which extends from the top left to the bottom 
right (Grandini et  al. [8]; Hossin and Sulaiman [13]). A 
confusion matrix provides a comprehensive assessment 
of a model’s performance through visual examination.

Receiver operating characteristics
Figure  6 depicts a commonly used metric, known as a 
graph, that illustrates the performance of a classification 
model. This graph provides insights into the efficiency 
of the model. The graph displays the false positive rate 
(FPR) on the x-axis and the true positive rate (TPR) on 
the y-axis. TPR, is calculated by dividing the number 
of True Positives (TP) by the sum of True Positives and 
False Negatives (FN). On the other hand, FPR is calcu-
lated by dividing the number of False Positives (FP) by 
the sum of True Negatives (TN) and False Positives.

ROC curve’s area. Another intriguing statistic derived 
from the ROC curve is the area under the curve (AUC), 
represented by the shaded region in Fig.  6. The AUC 
value, which runs from 0 to 1, indicates the performance 
of a model in prediction. A higher AUC number indicates 
greater model performance.

Precision
The term “precision” refers to the proportion of correctly 
identified positive elements out of the total number of 
units that were predicted as positive, expressed as TP / 
(TP + FP). The precision of a model is critical when accu-
rate predictions are necessary, especially when one class 
of the output variable is significantly less common than 
the other class (Grandini et al. [8]). Therefore, precision 
would be an important evaluation parameter to consider 
when selecting the model.

Recall
The fraction of positive elements accurately identified is 
measured as the ratio of true positives (TP) to the sum 
of true positives and false negatives (TP + FN). Assessing 
the model’s capacity to accurately represent all positive 
aspects in the dataset is crucial (Grandini et al. [8]). The 
importance of precision and recall is evident, leading to 
the introduction of a new metric known as the F1-score.

However, this article requires the prediction of the 
condition of a pipe from a set of 5 distinct classes. Con-
sequently, several measures of accuracy and complete-
ness were determined for each category based on the 
confusion matrix for numerous classes, and the related 
F1-scores were computed.

The F1‑score
The approach involved calculating the harmonic aver-
age of recall and precision, as demonstrated in Eq. 3. The 
F1-score is determined by taking a weighted average of 
precision and memory, with both factors carrying equal 
importance. This makes it a useful tool for finding the 
best balance between precision and recall (Grandini et al. 
[8]). The F1-score is a metric that measures the perfor-
mance of a model on a scale of 0–1. A number of 1 indi-
cates good functionality, while a lower value indicates 
poorer performance.

Performance of developed models
Processed final dataset was trained with ML algo-
rithms such as RF, k-NN and LR, and their results were 
compared using various metrics to determine the best 

(3)F1− Score = 2 ∗

(

Precision ∗ Recall

Precision+ Recall

)

Fig. 6  ROC curve for a binary classification



Page 9 of 12Loganathan et al. J Infrastruct Preserv Resil             (2024) 5:9 	

functioning model. Confusion matrices were constructed 
for each of the three models. In these matrices, the rows 
reflect the real class elements, which are based on PACP 
scores (1–5). The columns, on the other hand, indicate 
the anticipated class elements.

LR results
Confusion matrix for the model trained using LR algo-
rithm was found to be

In the confusion matrix above, PACP scores of 4 and 
5 represnted by columns 4 and 5, respectively, are all 
recorded as zeros. This indicate that the model was 
unable to capture any of the sewer pipes that belonged 
to PACP scores 4 and 5. The confusion matrix can be 
visualized as shown in Fig. 7. The histogram displays the 
frequencies of each class that were incorrectly identified 
by the model as different classes. The greater the rate 
of incorrect classification of a model, the lower the reli-
ability of that model. For example, approximately 5,000 
observations were anticipated to have a PACP score of 1, 
however, over 1,000 observations were actually classified 
as having a PACP score of 2. Similarly, a significant num-
ber of observations that were identified as having a PACP 
score of 2 were actually incorrectly classified from classes 
1, 3, and 4.

Based on estimated TPR and FPR from confusion 
matrix, ROC curves were plotted, and corresponding 
AUC values were obtained for all classes. Despite the 











3575 177 12 0 0
1383 611 65 0 0
171 336 79 0 0
25 71 25 0 0
5 11 5 0 0











model not making any predictions for classes 4 and 5, the 
estimated AUC values for these two classes were 0.89 and 
0.80, respectively. The evaluation metrics are presented 
in Table 6.

k‑NN results
Processed dataset was trained with k-NN algorithm, and 
the resulting confusion matrix was

Similar to the LR confusion matrix, PACP score 5 
observations are not captured by the trained model. On 
the other hand, the model captured PACP score 4 pipes 
to an extent. Nevertheless, the frequency of occurrences 
in both false positives and false negatives surpasses that 
of true positives. Hence, it may be inferred that the model 
is more likely to make incorrect classifications. The Fig. 8 
depicts the error rate in prediction.

In addition to evaluation metrics, AUC values were cal-
culated for 5 PACP classes, as presented in Table 7. Since 











3248 509 37 5 0
1094 832 106 4 0
149 249 145 9 0
30 64 40 8 0
8 10 3 1 0











Fig. 7  Error prediction rate for LR model

Table 6  Evaluation metrics for LR.

PACP Score AUC​ Precision Recall F1-score

1 0.78 0.693 0.950 0.801

2 0.66 0.507 0.297 0.374

3 0.85 0.425 0.135 0.205

4 0.89 0.000 0.000 0.000

5 0.80 0.000 0.000 0.000
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no observation was classified as PACP score 5, recall, 
precision, and F1-score are all zeros. It can be seen that 
majority of projected classifications under PACP score 4 
were from other classes, which resulted a minimal recall 
score.

RF results
Thirdly, processed dataset was trained with RF algorithm 
and the resulted confusion matrix was

As seen in the matrix, false positives and false negatives 
are comparatively lesser compared to confusion matrices 
of other two models. Interestingly, the model captured 
few observations under PACP score 5. However, it is evi-
dent that each class has misclassifications in it, which is 
illustrated in Fig. 9.

Based on estimated TPR and FPR from confusion 
matrix, ROC curves were plotted, and corresponding 
AUC values were obtained for all classes. Though recall, 
precision, and F1-score for PACP score 5 was minimal 
among 5 classes, AUC value was found to be 0.78, which 
is listed in Table 8. It should also be noted that AUC value 











3388 368 41 2 0
737 1176 117 6 0
75 236 222 18 1
20 40 53 27 2
5 8 5 3 1











of PACP class 4 was found to be the highest with 0.94 
while the same class experienced major misclassification.

Though the RF model represented PACP class 5 unlike 
other models, total false negatives comparatively out-
numbered true positives and hence, the recall was esti-
mated to be 0.048. Due to merely 0 recall and a precision 
of 0.25, the resulted F1-score was nearly zero too, which 
indicated that the model is unreliable for PACP class 5.

Discussion and conclusion
The main contribution of this study is to employ multi-
class classification and predict PACP scores of the pipes. 
Processed sanitary sewer dataset was tested with mul-
tiple supervised machine learning models and results 
were obtained. To effectively evaluate the functionality of 
generated models, precision, recall and F1-score values 
of all classes were averaged for each model. As shown in 
Fig.  10, LR model exhibited the lowest F1-score of 0.28 
followed by k-NN and RF models with 0.33 and 0.44, 
respectively. Though it is evident from estimated metrics 
that LR model is not reliable for classification, the average 
AUC value was found to be 0.80, which is inconsistent. 
Therefore, it can be understood that AUC values cannot 
be considered as a single evaluation metric for condition 
prediction ML models.

It was revealed that the LR model was not able to cap-
ture both PACP 4 and 5 classes while k-NN was able to 

Fig. 8  Error prediction rate for k-NN model

Table 7  Evaluaton metrics for k-NN

PACP Score AUC​ Precision Recall F1-score

1 0.76 0.709 0.859 0.777

2 0.67 0.503 0.399 0.445

3 0.76 0.436 0.242 0.344

4 0.66 0.250 0.058 0.094

5 0.54 0.000 0.000 0.000

Fig. 9  Error prediction rate for RF model

Table 8  Evaluation metrics for RF

PACP Score AUC​ Precision Recall F1-score

1 0.85 0.772 0.886 0.825

2 0.78 0.617 0.518 0.563

3 0.89 0.517 0.382 0.440

4 0.94 0.382 0.215 0.275

5 0.78 0.250 0.048 0.080
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represent PACP class 4. The RF model was able to repre-
sent PACP class 5 but, false negatives outnumbered true 
positives. When compared to all three developed model, 
performance of RF model is found to be better than other 
two models. The developed models can be used by the 
asset managers during the inspections to assess the state 
of their sewage network and identify essential sewers that 
require immediate care. Implementing predictive models 
for assessing the condition of sanitary sewer pipes has 
significant practical implications for utility owners and 
city managers. These models enable a proactive mainte-
nance approach, allowing for the early identification and 
prioritization of sewer pipe segments that require imme-
diate attention. By focusing on pipes that are more likely 
to fail, utility companies can reduce the frequency and 
scope of extensive CCTV inspections, which are both 
costly and labor-intensive. This not only leads to signifi-
cant cost savings but also optimizes the use of financial 
and human resources. Furthermore, predictive models 
enhance the overall asset management framework by 
providing a data-driven basis for decision-making, lead-
ing to more informed strategies for maintaining and 
upgrading sewer infrastructure. The poor performance of 
the ML models is due to skeweness of the data. For future 
studies, the research will consider the sampling tech-
niques to remove the skeweness of the data.
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