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Abstract 

We propose a novel Deep Reinforcement Learning (DRL) architecture for sequential decision processes under uncer-
tainty, as encountered in inspection and maintenance (I &M) planning. Unlike other DRL algorithms for (I &M) plan-
ning, the proposed +RQN architecture dispenses with computing the belief state and directly handles erroneous 
observations instead. We apply the algorithm to a basic I &M planning problem for a one-component system sub-
ject to deterioration. In addition, we investigate the performance of Monte Carlo tree search for the I &M problem 
and compare it to the +RQN. The comparison includes a statistical analysis of the two methods’ resulting policies, 
as well as their visualization in the belief space.
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Introduction
Reliable civil infrastructure, such as power, water and 
gas distribution systems or transportation networks, is 
essential for society. Large efforts are therefore spent on 
properly maintaining these systems. However, at present 
such maintenance is based mainly on simple legacy rules, 
such as fixed inspection intervals, combined with expert 
judgement. There is a significant potential for optimal 
inspection and maintenance (I &M) planning that makes 
best use of the information at hand to ensure safe and 
reliable infrastructure while being sustainable and cost-
efficient [1–3].

I &M planning is a sequential decision making problem 
under uncertainty. One challenge in deriving optimal I 
&M decisions is the presence of large epistemic and alea-
toric uncertainties associated with the system properties, 
load, representation model, and measurements [4–7]. 
Another major challenge is the exponential increase in 

possible I &M strategies with the number of components 
and the considered time horizon [4, 8]. Standard practice 
for dealing with these challenges is the use of established 
decision heuristics, e.g., safety factors during design, 
predetermined scheduled inspections, and threshold- or 
failure-based replacement of components [9–11]. The 
parameters of these heuristics can then be optimized to 
find good I &M strategies [4, 8]. However, heuristics can 
be suboptimal and finding good heuristics is challenging.

Another approach to embed uncertainty into the inher-
ently sequential nature of inspection and maintenance 
problems, is to integrate probabilistic models into deci-
sion process models [12–14]. Under certain conditions, 
these sequential decision problems under uncertainty 
can be modeled as Partially Observable Markov Decision 
Processes (POMDPs), which provide an efficient frame-
work for optimal decision making, and can additionally 
account for measurement errors [15–17]. The POMDP 
is in general intractable [18]. Many approaches for solv-
ing the POMDP use the belief state representation, 
which incorporates the entire information, i.e., actions 
and observations up to the current point [15, 19–22]. 
However, these methods require an explicit probabilis-
tic model of the environment to calculate the transition 
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probabilities between states as well as the belief states, 
which is not always available. In addition, they typically 
are not computationally efficient beyond small state and 
action spaces [19]. This hinders their application to I &M 
planning of infrastructure systems, where the investi-
gated systems are usually consisting of a larger number of 
components.

Reinforcement learning approaches to solve POMDPs 
have gained in popularity, including Deep Reinforce-
ment Learning (DRL) with neural networks (NNs), and 
Monte Carlo Tree Search (MCTS). There exist numer-
ous variants of NNs for discrete [23–25] and con-
tinuous [26–28] action space control, employing for 
example Deep Q-networks (DQNs) [29, 30], Double 
DQNs (DDQNs) [31, 32] or actor-critic architectures 
[33]. Although MCTS was originally formulated for fully 
observable domains with great success [34, 35], it has 
also been applied to POMDPs [36, 37].

Both NNs and MCTS have been heavily researched in 
the field of computer games, which provide a safe (i.e., 
no real-life consequences) and controllable environment 
with a variety of complex problems to solve (2D, 3D, 
single-agent, multi-agent, etc.) with an infinite supply of 
useful data that is much faster than real-time [38]. The 
success of these methods in this application has moti-
vated researchers to apply them to I &M planning (e.g., 
[16, 20, 39, 40]). However, this problem’s specific charac-
teristics e.g., sparse rewards due to low probability of fail-
ure, can pose a challenge to DRL methods, the efficiency 
of which remains to be systematically assessed.

The literature on solving POMDPs with DRL in the 
context of I &M is fairly limited. Most studies have 
focused on fully observable MDPs, for instance cou-
pling Bayesian particle filters and a DQN for real-time 
maintenance policies [41], employing a DDQN for pre-
ventive maintenance of a serial production line [42], 
coupling a pre-trained NN for reward estimation with 
a DDQN for maintenance of multi-component systems 
[43], and adopting a DDQN for rail renewal and main-
tenance planning [44]. Concerning POMDPs, Andriotis 
and Papakonstantinou [20] developed the Deep Central-
ized Multi-agent Actor Critic (DCMAC) architecture for 
multi-component systems operating in high-dimensional 
spaces, with extended applications for roadway network 
maintenance [39]. The corresponding decentralized ver-
sion (DDMAC), where each agent has a separate policy 
network [16], has been applied to life cycle bridge assess-
ment [40] and 9-out-of-10 systems [45]. However, both 
DCMAC and DDMAC take the belief state of the system 
as an input, which is in general computationally expen-
sive to obtain for a system with many components and 
arbitrary state evolution processes. Thus, newer studies 
(e.g., [46, 47]) have shifted the focus to observation-based 

DRL. However, a problem setting concerning continu-
ous state and continuous erroneous observations has not 
been considered, yet.

In a similarly limited manner, MCTS has been applied 
to maintenance planning problems modeled as MDPs. 
Examples with MCTS include, for instance, finding sto-
chastic schedules in active distribution networks [48], in 
combination with genetic algorithms for condition-based 
maintenance [49], or combined with NNs for wind tur-
bine maintenance [50]. To the best of our knowledge, 
MCTS has not been applied to POMDPs in the context 
of I &M.

The purpose of this paper is twofold. Firstly, we pro-
pose a DRL architecture for POMDP and I &M planning, 
which does not require the computation of the belief 
state. The proposed NN combines the features of the 
Action-specific Deep Recurrent Q-Network [25] and the 
dueling architecture [51]. The resulting +RQN architec-
ture is able to deal directly with erroneous observations 
over the whole life cycle of the system.

Secondly, we investigate the performance of MCTS 
when applied to I &M planning. In this context, we per-
form a systematic comparison of the proposed +RQN 
and MCTS. The investigated problem is a one-compo-
nent system subject to deterioration and is formulated 
as a POMDP, for which an exact solution is available, 
because of linear Gaussian assumptions for the model 
dynamics. Component deterioration models are often 
used for investigations in infrastructure I &M planning 
(e.g., [21, 52, 53]) and are applied for I &M planning in 
practice (e.g., [54, 55]). The analysis includes a compari-
son of performance, i.e., the achieved optimized expected 
life cycle costs (LCC) and the computation time. It is 
carried out for different measurement errors. We also 
review the information carried by two metrics to com-
pare the resulting policies of the two methods, namely via 
a statistical analysis and a visualization in the belief space. 
The solutions from both methods are compared to the 
exact POMDP solution.

The structure of the paper is as follows. Basic mainte-
nance problem section introduces the investigated prob-
lem as well as sequential decision making along with the 
key definitions and metrics needed for the employed RL 
methods. Neural networks  section explains the work-
ings of the NN architecture used herein, and MCTS sec-
tion illustrates how the MCTS method has been adapted 
for solving the proposed problem. Metrics for compari-
son  section is dedicated to the metrics we employ to 
compare the NN and MCTS solutions, and Computation 
time, Performance, and Policy comparison sections con-
tain the respective results. Discussion  section discusses 
the obtained solutions and policies, and gives insight into 
the advantages and disadvantages of the two approaches.



Page 3 of 20Koutas et al. J Infrastruct Preserv Resil             (2024) 5:6  

Basic maintenance problem
Investigated system
For the numerical investigations in this paper, we study 
a one-component system subject to deterioration, taken 
from [56]. It is modeled with two random variables (RVs): 
D representing the deterioration state and K representing 
the deterioration rate. The subscript t indicates timesteps, 
where t = 0, 1, 2, ..., Tend , with finite time horizon Tend . 
The generic deterioration model is given as

where D0 and K0 are normally distributed and independ-
ent. Equation (1) shows that the deterioration process is 
modeled as a Markov process through state space aug-
mentation. The deterioration Dt is observable with a 
Gaussian measurement noise, through the measurement 
random variable Ot , i.e., Ot ∼ N (Dt , σE).

Four actions a0 − a3 are available for counteracting the 
deterioration and ultimately the failure of the structure. 
The action At is taken after observation Ot and affects 
Dt+1 and/or Kt+1 (see Appendix 1). The effects of the 
actions on the system are detailed in Appendix 1: Table 2. 

(1)Dt = D0 + t · K0 ⇐⇒
Dt = Dt−1 + Kt−1

Kt = Kt−1

,

The structure fails when the deterioration exceeds the 
critical deterioration dcr . In the failed state, an annual 
failure cost is incurred until the system is either repaired 
or replaced (no automatic setback of the system to the 
initial state). In addition, each action ai has a specific cost 
cai incurred at time t.

Figure  1 depicts the generic influence diagram of the 
corresponding POMDP.

This case study is set up such that linearity, and hence 
also the normality of any set of RVs, is conserved (see 
Appendix 1: Table  2). As a result, the belief state and 
all transitions of the belief-MDP can be computed 
analytically.

Moreover, in our case, the covariance matrix does not 
depend on the observations and the actions taken, and can 
hence be pre-computed for all timesteps. Thus, the actions 
and observations only influence the prior and posterior 
means of Dt and Kt , respectively (see Appendix 1).

The model assumption allows for the system to regen-
erate if Kt is negative. However, 1) we set up the numeri-
cal values so that we limit this effect, 2) it is a useful 
assumption for obtaining a reference solution and 3) the 
solution methods introduced hereafter do not require it.

Fig. 1 Complete influence diagram of the model, especially depicting the starting and end operations, where Tend = 21 . The first action is taken 
at t = t1
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Sequential decision making
At every timestep, the operator has to decide which 
action to choose based on the history of observations 
and actions; hence they try to solve a sequential decision 
making problem. Specifically, as the deterioration state 
Dt is only observable through erroneous measurements 
Ot , and the deterioration rate Kt is not observable at all, 
the investigated setup falls under the category of a Par-
tially Observable Markov Decision Processes (POMDP) 
[15]. One can transform a POMDP into a belief MDP by 
replacing the states with the belief (vector) as the vari-
able of interest, and then employ conventional methods 
for solving MDPs, such as value iteration (VI) or policy 
iteration [57]. We utilize this belief state representation 
to obtain a reference solution for the numerical investi-
gations (see POMDP reference solution and Results sec-
tions). However, the focus of this paper is specifically on 
reinforcement learning (RL) techniques that can directly 
deal with observation-action sequences and hence do not 
need the belief state representation.

The goal is to find a sequence of actions that minimizes 
the expected life cycle cost (LCC), which is defined as the 
sum of discounted expected action and failure costs:

In standard literature, the two costs associated with 
action and failure are summarized in a single cost C(s, a), 
which is the immediate cost resulting from executing 
action a in state s of the system. Hence, will adopt this 
notation in the following.

The decision-making rule, which determines the action 
to take in function of the available information, is called 
the policy π . In general, the policy is time- and history-
dependent [15, 58]. There exists a mapping from the 
current observation-action history ht = (o1:t , a1:t−1) 
to the time-agnostic belief over the set of system states 
b(st) = p(st |o1:t , a1:t−1) , where b(s) represents the prob-
ability of the system being in state s, when the agent’s 
belief state is b [59]. Hence, the policy as well as other 
functions can be expressed in terms of both:

Accordingly, the ideal policy π∗ determines the ideal 
action to take to reach the set goal. For finite-hori-
zon problems (as for our case study), π∗ is generally 
time-dependent. In our case, the set of ideal policies 
{π∗

t , t = 1, 2, ..., Tend − 1} is the one that minimizes LCC . 
To find an expression for π∗

t  , we substitute the global LCC 
measure (Eq. 2) with recursively defined value functions.

A state value function assigns a value to a particular 
(belief ) state at a specific point in time. We denote with 

(2)LCC = E[LCC] =

Tend
∑

t=0

γ t · E[C(At)+ C(Ft)].

(3)π = πt(ht) = πt(b).

V π
t (b) the sum of expected discounted costs when fol-

lowing policy π starting from belief b at time t [60]. The 
optimal value function is then defined as [59]:

where bao is the belief that results from b after execut-
ing action a and observing o, and can be obtained from 
the POMDP model and Bayesian updating (e.g., demon-
strated in [57]). Note that P(o|b, a) can be expressed as a 
function of the belief transition probability P(bao|b, a) , and 
the sum over o can be transformed into a sum over b (see 
POMDP reference solution section).

One can also define an action-value function 
Qπ
t (bt , a) , which denotes the value of action a at belief 

state b under policy π at time t and continuing opti-
mally for the remaining timesteps until the end of the 
system lifetime [57]. The optimal value function V ∗ can 
be expressed as a minimization over the action-value 
function Q, and the optimal action-value function Q∗ 
satisfies the Bellman equation [15, 57, 61]:

Lastly, the advantage function Aπ
t (b, a) is a measure of 

the relative importance of each action [51]:

where the advantage of the optimal action a∗ is 0 [51]:

The optimal policy at every timestep can be easily 
extracted by performing a greedy selection over the 
optimal Q-value [57]:

which is also the value- and advantage-minimizing action 
from Eqs. (4) and (6), respectively.

The solution methods presented in Neural networks 
and MCTS sections have the goal of approximating V, Q, 
or A, from which the optimal policy can be extracted.

POMDP reference solution
To evaluate the performance of approximate solutions, 
we also provide a reference solution for the POMDP 
model of Investigated system section. It is computed with 
standard value iteration applied to a discretized belief 
MDP. The belief, in our case, is a vector comprising the 
posterior mean values of D and K from Eqs. (27) and (28):

(4)

V
∗
t (b) = min

π
V

π
t (b)

= min
a∈A

[

∑

s∈S

C(s, a) · b(s)+ γ ·
∑

o∈O

P(o|b, a) · V∗
t+1(b

a
o)

]

,

(5)

Q
∗
t (b, a) =

∑

s∈S

C(s, a) · b(s)+ γ ·
∑

o∈O

P(o|b, a) · min
a′∈A

Q
∗
t+1(b

a′

o , a
′),

(6)Aπ
t (b, a) = Qπ

t (b, a)− V π
t (b),

(7)Qπ
t (b, a

∗) = V π
t (b) =⇒ Aπ

t (b, a
∗) = 0.

(8)π∗
t (b) = argmin

a∈A
Q∗
t (b, a),
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The adapted version of Eq. (4) for discretized beliefs is 
then [56, 59]:

where C(b, a) =
∑

s∈S

C(s, a) · b(s) (see Eqs. (4) and (5).

Due to the linear Gaussian transition dynamics of this 
case study, the transition probabilities P

(

b′|b, a
)

 can be 
calculated analytically. The discretization of the belief and 
the computation of the probability tables is done accord-
ing to [62]. Equation (10) is solved by backward induction 
for each discrete belief state. The resulting LCC is verified 
by MCS. The discretization scheme is chosen such that 
1) the value function of Eq. (4) is estimated with a small 
error (compared to MCS on continuous belief space) and 
2) such that the resulting policy is quasi-optimal (it per-
forms better than every other solution found).

Note that in the general case, obtaining a reference 
solution with dynamic programming, e.g., via value itera-
tion, is not feasible due to the super-exponential growth 
in the value function complexity [63]. Hence, the prob-
lem investigated in this work represents a special case.

Neural networks
Architecture
Our aim is an NN approach that is able to handle imper-
fect observations without the need for computing the 
belief. The NN needs to account for the time dependence 
of the value function for the finite horizon problem. This 
can be achieved by a network architecture that is able to 

handle sequential data, i.e., the observation-action his-
tory. For that, we adopt the basic structure of the action-
specific deep recurrent Q-network [23].

The final NN architecture proposed in this work 
is depicted in Fig.  2, which we name Action-specific 
Deep Dueling Recurrent Q-network (+RQN). At each 
timestep t, the two inputs of the network are the one-hot 
encoded action [64] taken at t − 1 and the scalar obser-
vation obtained at t. The outputs of the network are the 
estimated Q-values for each action at t. The inputs are 
fed through two fully connected (FC) layers for feature 

(9)b =

[

µ′′
D,t

µ′′
K ,t

]

(10)V
∗
t (b) = min

a∈A



C(b, a)+ γ ·
�

b
′∈B

P
�

b
′|b, a

�

· V∗
t+1(b

′),





extraction. The core of the network is formed by the Long 
Short-term Memory (LSTM) layer, which can resolve 
short as well as long-term dependencies through the 
hidden and cell states, respectively [65]. Depending on 
the observation-action history, these states take differ-
ent values. Hence, the LSTM layer can be interpreted as 
a high-dimensional embedding of the history or a high-
dimensional approximator of the belief state. The LSTM 
output is then fed through another FC layer for further 
feature extraction. To estimate the Q-values, the value 
and the advantage functions are first estimated separately 
and combined using a modified version of Eq. (6), which 
is discussed in the section below. Wang et al. [51] report 
that this configuration has superior performance com-
pared to standard DQNs.

Q‑values, loss, cost and weight updates
Instead of directly using Eq. (6), Wang et al. [51] propose 
to introduce the mean over the advantages as a correction 
term, which improves the stability of the optimization of 
the network parameters. Let θ jt denote the parameters of 
all layers prior to the value-advantage split, υ j denote the 
parameters of the value stream, and αj the parameters 
of the advantage stream. The superscript j = 1, 2, ...,Ne 
refers to the weights at a certain iteration/epoch and 
hence highlights iterative convergence towards a set of 
weights that best approximate the true Q-value. Herein, 
an epoch consists of passing through the whole life cycle 
of a batch of sample trajectories, after which the weights 
get updated, and the next epoch starts. Since θ does also 
include the hidden and cell states of the LSTM layer, it 
is dependent on the observation-action history, which 
is denoted with the subscript t. By contrast, α and υ stay 
constant for the whole life cycle (epoch). The modified 
approximation for the Q-values is then [51]:

where Qjt(ot , a | θ
j
t−1,α

j ,υ j) is the Q-value estimate for 
the action a at time t and epoch j after observing ot and 
given the previous action at−1 , the weights θ jt−1 (which 
embedded o1:t−1 and a1:t−2 through the hidden and cell 
states), αj and υ j . Accordingly, Vjt(ot | at−1, θ

j
t−1,υ

j) does 
not use the weights of the separate advantage stream αj 
and vice versa.

To evaluate the performance of the network, i.e., the 
accuracy of the predicted Q-values, we need a target value 
for each pair of sample observation and action o(i)t , a

(i)
t−1 , 

which are passed as inputs to the network. To obtain a 

(11)
Q
j
t(ot , a | at−1, θ

j
t−1,α

j ,υ j) = V
j
t(ot | at−1, θ

j
t−1,υ

j) +
(

A
j
t(ot , a | at−1, θ

j
t−1,α

j)−
1

|A|

∑

a′∈A

A
j
t(ot , a

′ | at−1, θ
j
t−1,α

j)

)

,
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target value, we use the fact that the optimal Q-values fol-
low the Bellman equation (Eq. 5). Therefore, we define the 
NN output y(i),jNN,t and the target value y(i),jTar,t for a sample (i) 
at a specific point in time t and epoch j as [25]:

where asel. denotes the selected action under the behav-
iour policy ( ǫ-greedy, see Appendix 2: Optimized NN 
parameters section) at j; c(i)t  is the total cost sample at t 

(12)y
(i),j
NN,t = Q

j
t(o

(i)
t , asel. | at−1, θ

j
t−1,α

j
,υ

j)

(13)y
(i),j
Tar,t = c

(i)
t + γ · min

a′∈A
Q
j
t+1(o

(i)
t+1, a

′ | at , θ
j,−
t ,α

j,−
,υ

j,−)

which includes the cost of a potential failure at t and the 
cost of the latest selected action at t − 1 under the behav-
iour policy at j. Moreover, Qjt+1(o

(i)
t+1, a

′ | θ
j,−
t ,αj,−,υ j,−) 

denotes the Q-value estimate at t + 1 and epoch j, after an 
action has been taken under the behaviour policy at t and 
j which, upon interaction with the environment, resulted 
in observation o(i)t+1 . The “−” indicates that the parameters 
θ
j,−
t ,αj,−,υ j,− belong to a separate target network [25]. 

More details on the sampling procedure and the target 
network are provided in Training procedure section.

For training, we use the mean-squared error (MSE) loss 
function [66]:

Fig. 2 Snapshot of our NN architecture depicting the information flow through the network from t → t + 1 . A is the action taken at the previous 
timestep in one-hot encoded form, e.g., a0 = [1 0 0 0]

T  , O is the current observation, V, A & Q are the Value, Advantages, and action-values, 
respectively. The “Env.” above the arrow denotes an interaction with the environment. The gray layers represent FC layers and the orange 
layer represents the LSTM layer with its hidden state and cell states h,c . The  represents the concatenation operation. The number of circles 
inside some layers depicts the fixed number of nodes, and the relative sizes of the layers qualitatively show the number of nodes; adapted 
and merged from [25, 51]
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For stochastic gradient descent, a batch of Nb samples is 
passed through the network to speed up training [67]. On 
this basis, the MSE cost function accumulated over the 
whole life cycle is evaluated as

The NN weights are updated based on this cost function. 
The simplest gradient-based update scheme is [66, 68]:

where η is the learning rate. The weights αj+1 and θ j+1 are 
computed accordingly. Alternative update schemes such 
as RMSProp or Adam are available (e.g., [68]).

Training procedure
Each epoch j is composed of a data collection and a training 
phase. The data collection part consists of simulating a 
batch of Nb trajectories with the current network with 
weights θ j ,αj ,υ j . We start by drawing initial samples d(i)

0  
and k(i)0  from their initial distributions and check for result-
ing failure costs c(i)f ,0 . The actions a(i)0  are fixed to a0 (with 
action costs c(i)a,0 = 0 ), as observation-based action selection 
starts at t = 1 . Then, d(i)

0  , k(i)0  , a(i)0  are passed to the environ-
ment which returns d(i)

1
 , k(i)1  and c(i)f ,1 according to the 

dynamics in Appendix 1: Table  2. For t = 1, ...,Tend−1 , 
observations o(i)t  are generated from N (d

(i)
t , σE) and passed 

with a(i)t−1 to the network which outputs the Q-values. The 
behaviour policy at epoch j selects the next action according 
to the ǫ-greedy scheme, where a random action is selected 
with probability ǫ (for exploration) and the action with mini-
mal Q-value is selected with probability 1− ǫ (for exploita-
tion). The chosen action a(i)t  together with d(i)

t  and k(i)t  is 
passed to the environment that simulates the system for one 
timestep and returns d(i)

t+1 , k
(i)
t+1 and c(i)f ,t+1 . This alternating 

interaction between network and environment continues 
until the end of the system lifetime is reached. The samples 
o
(i)
1:Tend−1

 , a(i)0:Tend−2
 and c(i)0:Tend

= c
(i)
f ,0:Tend

+ c
(i)
a,1:Tend−1

 are 
then stored for the training phase.

Once a batch of sample trajectories has been collected, the 
training phase starts. Herein, the batch is again fed through 
the network sequentially, and the cost is accumulated over 
the whole life cycle. For the computation of the individual 
MSE loss terms, a target network is defined such that the 
values of the target network weights are clones of the origi-
nal network weights: θ j,− = θ j , αj,− = αj , υ j,− = υ j . At 
each time t, o(i)t  and a(i)t−1 are the inputs of the network; o(i)t+1 
and a(i)t  are the inputs of the target network. The target NN 

(14)LMSE

(

yNN, yTar
)

:=
(

yNN − yTar
)2
.

(15)

C
LCC
MSE

(

y
(1:Nb)

NN , y
(1:Nb)

Tar

)

:=
1

Nb

Tend−1
∑

t=1

Nb
∑

i=1

LMSE

(

y
(i)
NN,t, y

(i)
Tar,t

)

.

(16)υ
j+1 = υ

j − η∇υC
LCC
MSE,

outputs are greedily selected over the respective Q-values (as 
opposed to the ǫ−greedy behaviour policy used for trajec-
tory sampling, hence this is off-policy learning [69]) accord-
ing to Eqs. (12 and (13). The batch cost at t is computed with 
a batch-averaged version of Eq. (14) and added to the total 
cumulative cost. This process continues until the end of the 
life cycle is reached, and the LCC MSE cost has been com-
puted according to Eq. (15). Then, the LSTM is unrolled, the 
loss is backpropagated through time [65] and the weights 
are adjusted according to the chosen update scheme (e.g., 
Eq.  (16). After updating, the learning procedure continues 
with the next epoch until the weights have converged. The 
weights of the target network are updated periodically every 
p epochs to ensure stable optimization [30].

The hyperparameter tuning procedure, either by grid 
search or by some heuristics, is outlined in Appendix 2.

MCTS
Functionality
Monte Carlo tree search (MCTS) arises from the combina-
tion of tree search and Monte Carlo sampling [70]. Classi-
cally, games have been modeled with game trees, where the 
root is the starting position, leaves are possible ending posi-
tions, and each edge represents a possible move [71]. To 
select the best action at a given node (position), one needs 
to know its consequences. Small games can be solved by 
constructing the full game tree and using backwards induc-
tion [72]. However, for more complex games (e.g., chess, 
Go), this is practically impossible. Hence, one needs an esti-
mator of the preference for each resulting position. Defin-
ing the value of each node as an expected outcome given 
random play opened the door for the use of Monte Carlo, 
which specifies node values as random variables and char-
acterizes game trees as probabilistic [73]. In [36], MCTS 
was extended to partially observable environments.

The MCTS algorithm consists of four main steps: selec-
tion, expansion, rollout, and backpropagation. In the selec-
tion step, the algorithm traverses the tree from the root to a 
leaf node using a selection policy (see UCT for action selec-
tion  section). In the expansion step, the algorithm adds a 
child node to the selected leaf node. In the rollout step, the 
algorithm performs a simulation from the newly added 
node until the end of the lifetime by choosing uniformly 
random actions, i.e., p(ai) = 1

4 . In the backpropagation 
step, the algorithm updates the statistics of all nodes along 
the path from the selected node to the root node based on 
the simulation outcome [74]. The Q-value of an action a for 
a given observation-action history h at time t is the updated 
statistic at an action and is computed as:

(17)Qt(h, a) ≈
1

N (h, a)

N (h,a)
∑

i=1

q
(i)
t (h, a),
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where N(h,  a) is the total number of samples used for 
the estimation, or the current visitation counter of the 
respective action node, and q(i)t (h, a) are the individual 
(backpropagated) results at time t.

UCT for action selection
To make use of the exploitation-exploration tradeoff 
[58], we implement the Upper Confidence Bound for 
Trees (UCT) algorithm. The UCT selects the next action 
At based on minimizing the estimation of the Q-value 
for each action (exploitation) minus an exploration term 
[75]:

where c is an adjustable constant that enables a trade-
off between exploration and exploitation, and N(h) 
is the visitation counter of the parent node such that 
N (h) =

∑

a N (h, a) . A pseudocode for the implementa-
tion of MCTS for POMDPs is given in [36].

Each simulation starts by sampling an initial state 
from the current belief state, which is, for our case study, 
described in Eq. (19):

Silver and Veness [36] propose a samples-based approxi-
mation of the belief state for the general case when the belief 
state is not analytically available. We have not implemented 
this in the case study, hence one should keep in mind that an 
MCTS without the belief is likely to perform worse.

The tuning of the MCTS parameters is outlined in 
Appendix 3.

Results
Metrics for comparison
We employ several metrics to assess the performance of 
the NN and the MCTS approaches and to compare the 
results to the POMDP reference solution.

Firstly, we evaluate the computation time needed by 
the methods, including training and testing times.

Secondly, their computational performance is compared 
through the LCC’s expected value and the standard devia-
tion for the identified policies. Thereby, LCC is approxi-
mated with Monte Carlo (MC) samples for both methods. 
The optimal solution curve obtained by evaluating the 
POMDP with VI (see POMDP reference solution section) 
serves as a reference. We additionally provide the perfor-
mance of a benchmark policy that consists of choosing 
action a1 in every timestep, irrespective of the observation.

(18)

At = argmin
a∈A

UCTt (h, a) = argmin
a∈A

Qt (h, a)− c ·

√

lnN (h)

N (h, a)
,

(19)

[

Dt

Kt

]

∼ N

([

µ′′
D,t

µ′′
K ,t

]

,

[

σ ′′2
D,t ρ′′

t σ
′′
D,tσ

′′
K ,t

ρ′′
t σ

′′
D,tσ

′′
K ,t σ ′′2

K ,t

])

.

Thirdly, we investigate the policies obtained from each 
method. The analysis comprises a statistical representa-
tion of the actions taken at each timestep to reveal poten-
tial tendencies, as well as a depiction in the belief space 
for policy extraction.

Computation time
All computations are performed on a Fujitsu Celcius 
R970 PC comprising an NVIDIA GP104GL (Quadro 
P4000) 8118 MB GPU and Intel Xeon Silver 4114 2.20 
GHz: 10 Cores 20 Logical Processor. To accelerate the 
computation, training and testing of the NNs is con-
ducted on the GPU, whereas MCTS is implemented with 
CPU parallelization.

With these specifications, the process of training and 
testing a single NN took 45 seconds (25 seconds of training 
and 20 seconds of testing 106 sample trajectories). In train-
ing, we consider different hyperparameter configurations 
following Appendix 2: Optimized NN parameters section, 
which leads to a total training time of approx. 150min.

By contrast, with MCTS there is no distinct training 
phase. Nevertheless, it is necessary to find good MCTS 
parameters, as described in Appendix 3: Tunable MCTS 
parameters section. This is a time-consuming process, 
because testing is expensive with MCTS. With the chosen 
parameter setting, generating 1000 trajectories for test-
ing takes 20 minutes. For this reason, NN training is ulti-
mately significantly cheaper and more straightforward.

Once the NN is trained or the MCTS setting is fixed, 
evaluating the policy is efficient. For NN, the computational 
time is negligible; for MCTS, it is in the order of seconds.

Performance
Figure  3 shows the mean LCC achieved by the +RQN, 
MCTS, VI, and the basic benchmark in function of the 
observation error. Firstly, all curves have a characteristic 
shape which consists of two saturation regions σE < 0.5 
(essentially corresponding to perfect observations) and 
σE > 103 (uninformative observations) and a smooth tran-
sition in-between. Both the NN and MCTS methods per-
form worse than the optimal solution. However, the NN 
consistently outperforms the MCTS method, which per-
forms especially poorly under high observation errors.

Figure 4 shows the standard deviation of the resulting 
LCC in function of the observation error. The standard 
deviation increases with increasing observation error, 
which is to be expected. The NN generally leads to a 
slightly higher LCC standard deviation than the VI ref-
erence solution, although with some exceptions. By con-
trast, the MCTS results in a low LCC standard deviation 
for small σE and in a very large one for large σE.
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Policy comparison
Figure  5 depicts the identified strategy profiles for the 
+RQN, MCTS, and VI in a statistical sense for the 
selected cases of σE = {0.5, 50}.

The reference VI method utilizes mainly a1 in the first 
half of the system lifetime and employs a2 in the second 
half. More maintenance is performed when the obser-
vation error is larger; for σE = 50 , action a1 is imple-
mented early on in all cases, i.e., independent of the 
observation. Action a3 is avoided, presumably due to its 
large cost.

The actions selected by the NN, as shown in panels (c) 
and (d), differ significantly from those of the reference 

solution. Note that the policies obtained with the NN 
vary substantially among repeated training runs, even 
if they lead to similar LCC . The results in Fig.  5 corre-
spond to a single trained NN for each observation error; 
with other trained NN instances, different proportions of 
a0, a1, a2 are observed. In all trained NN, we observe that 
for σE < 200 , the NN employs solely a2 for failure pre-
vention; a1 is involved only for higher observation errors.

By contrast, MCTS has a similar strategy profile over 
all observation errors: about 30% use a1 at every timestep. 
The only difference observed for larger observation errors 
is the increased use of a2 in the second half of the system 
lifetime with increasing measurement errors. Interestingly, 

Fig. 3 Comparison of achieved mean LCC of +RQN (blue), MCTS (red), value iteration (green), and our a priori benchmark (black) for different 
measurement errors, where the policies of the +RQN, MCTS and VI are averaged over 106 , 2× 103 and 2× 106 trajectories, respectively

Fig. 4 Comparison of achieved LCC standard deviation of +RQN (blue), MCTS (red), value iteration (green) for different measurement errors, 
where the policies of the +RQN, MCTS and VI are averaged over 106 , 2× 103 and 2× 106 trajectories, respectively
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Fig. 5 Temporal evolution of the action statistics represented by bar charts for VI (a) & (b), +RQN (c) & (d), and MCTS (e) & (f ) generated 
with 2× 106 , 106 , 2× 103 and MC samples, respectively
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for small σE , the statistic of the selected actions with 
MCTS is closer to the reference solution than the one of 
NN, even if the expected LCC achieved with the NN is 
smaller than the one achieved with MCTS.

To investigate and compare the resulting policies, we 
illustrate how the strategies manifest in the belief space. 
Figure 6 depicts the policies resulting from VI for the ref-
erence case of σE = 50 and t = {1, 10, 18, 20} . The occa-
sional islands in otherwise continuous action bands in 

panels (a) and (b) result from the sampling-based estima-
tion of the belief transition probabilities outlined in [62].

For comparison, we show the output of one run of the 
MCTS method (one for each b and t) in Fig.  7. The poli-
cies are similar to the VI policies in the choice of a2 and 
a3 , i.e., the regions close to or beyond failure are primarily 
occupied with strips of a2 and a3 . The extent of variation is 
determined by the magnitude of the measurement error as 
well as the remaining time until the end of the life cycle, e.g., 

Fig. 6 Evolution of the VI optimal actions represented on a 60× 20 belief grid for t = 1 (a), t = 10 (b), t = 18 (c), and t = 20 (d) for an observation 
error of σE = 50 , where the cell mid-points are chosen as representatives for each cell region, respectively
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almost no variation for σE << 1 & t > 10 , and high vari-
ation with no apparent structure for σE > 100 ∀t . By con-
trast, the region far away from failure almost always shows 
high variability, and it seems that the choice between actions 
a0 and a1 is taken more or less randomly (except for very 
low σE at t = 20 ). The already mentioned variation tenden-
cies for a2 and a3 also hold for a0 and a1 . The large variance 
of MCTS (which could be reduced with increasing compu-
tational cost, see Appendix 3: MCTS parameter optimiza-
tion technique section) leads to suboptimal policies.

For the NN, mapping all belief states to the optimal 
actions is not straightforward, as it takes observations and 
not beliefs as an input. However, the belief state can be 
tracked over time for sample trajectories, as shown in Fig. 8.

Once the trajectories in the belief space are available 
(Fig.  8), we can select a specific timestep and plot the 
actions taken by NN. This results in a point cloud in the 
belief space, which is shown in Fig. 9.

Fig. 7 Evolution of the MCTS recommended actions, same set-up as in Fig. 6
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Discussion
In this work, we develop a tailored NN architecture for 
solving the sequential decision making problem asso-
ciated with maintenance of a component subject to 
deterioration. We evaluate its performance on a single 
component maintenance problem with continuous state 
space. We also compare the performance of an MCTS 
approach on this example.

There are several deep reinforcement learning approaches 
in the literature, some of which also solve the optimal inspec-
tion and maintenance problem for systems with many 
components [16, 20, 39, 40, 45]. These approaches work on 
discrete state spaces and compute the belief to translate the 
problem into a Markov decision process. The motivation for 
investigating the comparably simpler problem in this paper 
is our interest in approaches that work with continuous state 
spaces without a belief (even if the problem that we consider 

Fig. 8 Evolution of a batch of 500 trajectories through time, where each color represents a specific timestep according to the colorbar; generated 
with the NN trained on σE = 50

Fig. 9 NN snapshot of the suggested actions in the belief space for σE = 50 and 500 sample points at t = 10
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actually has an easily tractable belief, which facilitates the 
evaluation of the algorithms in our investigation).

Computation time-wise, the NNs vastly outperform 
MCTS. This can be partly attributed to the implemen-
tation: PyTorch tensor operations on the GPU for NNs 
are much faster compared to standard Python list imple-
mentation on multiple CPUs for MCTS. The other part 
can be attributed to the nature of the methods: passing a 
state-action pair through the NN and retrieving the next 
action via the Q-values is much faster than performing a 
tree search for the next action at every timestep.

The results of our numerical investigation show that 
both the NN architecture as well as the MCTS approach 
perform suboptimally compared to the reference solution 
found by value iteration. It is possible to improve the per-
formance of both approaches, in the case of NN, by addi-
tional training and hyperparameter tuning, and in the case 
of MCTS, by employing a larger number of samples. How-
ever, our results reflect an honest assessment of the capa-
bilities of these methods.

The NN’s solution highly depends on the local minimum 
found during training. This explains the non-smooth stand-
ard deviation curve and the large differences of resulting sta-
tistical strategy profiles in different training runs, as reflected 
in Fig. 4. Generally, the NN’s strategy profile changes consid-
erably for σE > 100 as the NN approaches the solution for 
the case of uninformative observations.

As evidenced by Fig. 9, the NN’s policy is stochastic in the 
belief space, although it is deterministic in the observation 
space. As the optimal policy is deterministic in the belief 
space (as given by the VI solution shown in Fig. 6), one can 
observe that the trained NN is not yet able to capture implic-
itly the underlying belief space, which is one reason for its 
suboptimality. Thus, if the belief can be computed, it should 
be used as an input to the NN, as this will strongly enhance 
its performance (see, e.g., [46]) and facilitate interpretability.

The MCTS provides suboptimal but still decent 
results for σE ≤ 50 , where it trades LCC for lower var-
iance. This can also be seen in Fig.  5, where the NN 
employs only a2 leading to an overall lower mean cost 
but higher variance due to the acceptance of occasional 
failures. For higher observation errors, the MCTS per-
formance decreases significantly, showing a limited 
ability to handle uninformative observations. This is 
exemplified by slightly changing strategy profiles with 
increasing σE in Fig. 5. Interestingly, Figs. 7 and 6 show 
that the MCTS’ general solution is similar to the VI 
optimal solution provided. However, the inherent sto-
chasticity of the method results in a stochastic policy 
in the belief space. This property is most apparent at 
the beginning of the life cycle, where the long-term 
effects of some actions are difficult to estimate.

A disadvantage of the MCTS approach is that it has no 
memory; thus, each sample trajectory has to be computed 
independently and expensively. By contrast, NNs, once 
trained, contain all the information in the weights, and the 
evaluation can be performed swiftly. In addition, we specu-
late that this memorylessness of the MCTS leads to worse 
performance compared to the NNs, which can learn the 
degradation behaviour through observed trajectories.

Overall, and possibly expected, the neural networks are the 
preferred choice. However, there are numerous opportunities 
for further enhancements of both solution approaches.

The performance investigation of the NN could be 
extended, for example, by studying its dependence on the 
network size, its generalization capabilities (e.g., increased 
lifetime, different distributions), or by using the belief as an 
input instead of the observations for comparison. Moreo-
ver, the NN architecture can be extended by incorporating a 
double deep Q-network (DDQN) or by replacing the LSTM 
architecture with transformers (see, e.g., [46, 47]).

The MCTS method could be extended by, e.g., using 
erroneous observations instead of exact beliefs [36] for 
performance comparison or by switching to continuous 
state MCTS to dispense with discretization. NN and 
MCTS can also be combined by adding a planning step 
to the NN-based solution.

Conclusion
In this work, we propose the +RQN architecture for 
POMDP and I &M planning, which requires merely the 
erroneous observations and the previous action taken as 
an input. The resulting neural networks are computation-
ally fast and achieve good performance for measurement 
errors over several magnitudes through policy adaption. 
However, NNs, in general, inherently suffer from interpre-
tation difficulties. The trained model consists already for 
small problems of thousands of weights. Interpreting the 
results or gaining underlying physical insights and proper-
ties of the system is non-trivial. This characteristic is evi-
dent in policy extraction, which is challenging to conduct 
in the belief space, as beliefs cannot be imposed but only 
tracked along the NN’s trajectories.

By contrast, computing many histories with the 
MCTS method is computationally much slower. In 
addition, it is inherently based on constructing a tree 
that exponentially grows with increasing depth, which 
needs large amounts of memory. The results of the 
MCTS are comparable to the NNs for small to medium 
observation errors. However, for high observation 
errors, the MCTS method fails to adapt its policy and 
achieves significantly worse results compared to the 
NNs and VI. The key advantage of the MCTS method 
lies in the evaluation of their policies. Any belief 
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combination can be specified as a starting point which 
greatly facilitates the interpretation of the results.

Appendix 1: Model Info
Model data
The specific parameters for the model used in this work 
are outlined in Appendix 1: Table 1.

Table 1 Summary of model and cost parameters

Model Costs

Parameter Value Parameter Value

µD0
−132.64 ca0 0

µK0
6.4 ca1 1

σD0
20.85 ca2 5

σK0 1 ca3 100

�d 10.5 cF 150

�k 0.2 γ 1
1.02

Effect of actions
The (belief) state of the system is influenced by the four avail-
able actions, whose effects are detailed in Appendix 1: Table 2.

Table 2 Mathematical description of the action ai effects on 
individual D and K states as well as their corresponding beliefs 
µD and µK . At a3 , the replacement is conducted by drawing new 
samples D̃0 and K̃0 (from the distribution in Eq. (20)) and not by 
reusing the samples from the current simulation

Action Effect State level Belief level

a0 do Dt = Dt−1 + Kt−1 µ′
Dt

= µ′′
Dt−1

+ µ′′
Kt−1

nothing Kt = Kt−1 µ′
Kt
= µ′′

Kt−1

a1 reduce Dt = Dt−1 + Kt−1 −�k µ′
Dt

= µ′′
Dt−1

+ µ′′
Kt−1

−�k

det. rate Kt = Kt−1 −�k µ′
Kt
= µ′′

Kt−1
−�k

a2 improve Dt = Dt−1 + Kt−1 −�d µ′
Dt

= µ′′
Dt−1

+ µ′′
Kt−1

−�d

det. state Kt = Kt−1 µ′
Kt
= µ′′

Kt−1

*a3 replace Dt = D̃0 + K̃0 µ′
Dt

= µ′′
D0

+ µ′′
K0

system Kt = K̃0 µ′
Kt
= µ′′

K0

Action a3 consists of sampling new values for the deterio-
ration state and deterioration rate from the following mul-
tivariate normal distribution:

where we denote with “ ′  ” and “ ′′ ” the prior and posterior 
distributions, respectively. The corresponding analytical 
terms are detailed in the following.

(20)

[

Dt

Kt

]∣

∣

∣

∣

∣

a3,t−1

∼ N2

([

µD0
+ µK0

µK0

]

,

[

σ ′2
Dt

ρ′
tσ

′
Dt
σ ′
Kt

ρ′
tσ

′
Dt
σ ′
Kt

σ ′2
Kt

])

,

Transition probabilities ‑ state level
At every timestep t ≥ 1 , after observing Ot , the updated 
distribution of Dt and Kt is a binormal distribution, with 
mean µ′′

D,t , µ
′′
K ,t , standard deviations σ ′′

D,t , σ
′′
K ,t and correla-

tion coefficient ρ′′
t .

Prior and posterior covariance matrix of Dt and Kt
For the covariance matrix, the transition from ′′t−1 to ′′t  does 
not depend on Ot or At , hence is deterministic:

Posterior mean values of Dt and Kt
Conversely to the covariance matrix, the posterior mean val-
ues of Dt and Kt depend on the value of the observation Ot

Transition probabilities ‑ belief level
The covariance of Dt and Kt is fully known (does not 
depend on Ot ). The means of the distributions are fully 
observed at each timestep (see Eqs.  (27) and (28)). The 
belief Bt at time t is composed of the two posterior means, 

(21)σ ′
D,t =

√

σ ′′2
K ,t−1 + σ ′′2

D,t−1 + 2ρ′′
t−1σ

′′
K ,t−1σ

′′
D,t−1

(22)σ ′′
D,t =

σEσ
′
D,t

√

σ 2
E + σ ′2

D,t

(23)σ ′
K ,t = σ ′′

K ,t−1

(24)σ ′′
K ,t =

σ ′
K ,t

√

σ 2
E + σ ′2

D,t

(

1− ρ′2
t

)

√

σ 2
E + σ ′2

D,t

(25)ρ′
t =

ρ′′
t−1σ

′′
D,t−1 + σ ′′

K ,t−1
√

σ ′′2
K ,t−1 + σ ′′2

D,t−1 + 2ρ′′
t−1σ

′′
K ,t−1σ

′′
D,t−1

(26)ρ′′
t =

ρ′
tσE

√

σ 2
E + σ ′2

D,t

(

1− ρ′2
t

)

.

(27)µ′′
D,t =

σ ′′2
D,t

σ 2
ǫ

Ot +
σ ′′2
D,t

σ ′2
D,t

µ′
D,t

(28)µ′′
K ,t =

ρ′
tσ

′
D,tσ

′
K ,t

σ 2
ǫ + σ ′2

D,t

(Ot − µ′
D,t)+ µ′

K ,t .
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µ′′
D,t and µ

′′
K ,t . From Eq. (27) and Ot |Dt ∼ N (Dt , σǫ) , which 

gives Ot ∼ N (µ′
D,t ,

√

σ 2
ǫ + σ ′2

D,t) , we obtain that

One can show that µ′′
K ,t is fully correlated with µ′′

D,t 
conditional on the belief at t1:

Appendix 2: Neural network specifications
Fixed NN parameters
The number of hidden layers loosely follows the archi-
tecture from [25]. It is possible that the network achieves 
better performance or equal performance with shorter 
training time with other configurations.

The output dimensions of O, a, A, V , and Q are fixed by 
our problem formulation, i.e., we have one observation vari-
able and four available one-hot encoded actions. The output 
dimensions of all other layers - the three FC layers and the 
LSTM layer - can be freely chosen. The dimensions of all cus-
tomizable layers have been selected heuristically. The fully 
connected layers are numbered according to the order in 
which they appear from left to right, i.e., there are two FC1 
and FC2 layers. The sizes of FC2 (and FC1) have been chosen 
to have the same dimension to not impose an ad hoc ranking 
of importance before they enter the LSTM layer. The exact 
values for the number of nodes in each layer and all other 
parameters set heuristically are given in Appendix 2: Table 3.

Table 3 Summary of new heuristically chosen network and 
optimizer parameters

Network Optimizer

Parameter Value Parameter Value

FC1 size 20 Optim. type Adam [76]

FC2 size 25 Learning rate 0.001 [77]

Hidden state size 80 Betas (0.9, 0.999) [77]

FC3 size 160 AMSGRAD Included [78]

FC activation funcs. Leaky ReLU Batch size 500

Leaky ReLU slope 0.3 Epochs 500 (at most)

Target update 3 ǫ decrease 0.1

The total number of parameters of our NN architecture for 
the specific values given in Appendix 2: Table 3 is 57,195.

We train the networks for at most 500 epochs. How-
ever, early stopping is also implemented, i.e., training is 
interrupted if the training loss does not further decrease 
over an extended period [68].

(29)

µ′′
D,t |Bt−1,At ∼ N



µ′
D,t(Bt−1,At),

σ ′2
D,t

�

σ 2
ǫ + σ ′2

D,t



.

(30)µ′′
K ,t =

ρ′
tσ

′
K ,t

σ ′
D,t

(µ′′
D,t − µ′

D,t)+ µ′
K ,t .

Optimized NN parameters
Our chosen parameters to optimize are given in the fol-
lowing list. 

1. Weight decay parameter � (L2 regularization) [68]
2. Maximum ǫ value (coupled with a decrease)
3. Learning rate step size
4. Learning rate multiplication factor

Including weight decay, the loss function gets an addi-
tional term:

where W  is a matrix containing all network weights, R 
denotes the regularization function, which is the squared 
sum of all network weights ( L2 ), and � is a scaling param-
eter determining the relative importance of the regulari-
zation term compared to the MSE loss. We search for an 
optimal value of �.

We implement our behaviour policy, i.e., the policy 
with which we select the next action when generating a 
batch of trajectories, as a decreasing ǫ-greedy method 
which starts with the value ǫ in the beginning to fuel 
exploration but decreases to 0 for exploitation of the 
final policy. However, one can also choose a different 
minimum ǫ-value (e.g., 0.1 in [25]) to always force some 
exploration. Our update scheme takes the form of:

Therefore, our scheme implements a simple linear 
reduction. The starting value of ǫ is optimized.

We also implement a learning rate scheduler, where 
the learning rate starts at a high value and periodically 
decreases, which helps both generalization and optimi-
zation [79]. We implement a simple step decay schedule 
that reduces the learning rate by a constant factor η every 
constant number of epochs m [80]. Hence, we search for 
the optimal values of m and η.

There are plenty more common practices for training 
NNs, e.g., weight initialization, batch normalization, and 
dropout. For most of these, we follow the default settings 
of PyTorch; these will not be further explained here.

NN Optimization technique
Several search techniques can be employed to find 
good NN hyperparameters. The most common one is 
manual search, which is simple and effective for find-
ing reasonable estimates (e.g., initial learning rate), but 
becomes unstructured and ineffective when the search 
space of the parameters to tune grows. Therefore, we 
use grid search, where we define a set of points for each 
of our desired hyperparameters and iterate over all 
possible combinations [68]. During the procedure, we 

(31)L = LMSE + � · R(W ),

(32)ǫ ←− ǫ − 0.1.
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track the performances of each network and select the 
best-performing one.

Appendix 3: MCTS tuning
A number of parameters influence the performance of 
the tree search method and hence need to be optimized. 
The disadvantage of MCTS compared to NNs is that 
parameters cannot be passed as an input, and the method 
finds the optimal values by itself. In addition, it takes 
too much time to generate an accurate representation of 
the performance of the tree; therefore, we cannot use an 
extensive grid search as we did with the NNs (Appendix 
2: NN Optimization technique section). Thus, we try to 
minimize the number of parameters we need to optimize. 
The remaining parameters are then analysed sequentially 
with appropriate assumptions.

Fixed MCTS parameters
The variable c in Eq.  (18) is also called the explora-
tion constant, since it expresses the weight of explo-
ration (second term) compared to exploitation (first 
term). When c = 0 , one has a purely greedy policy [81]. 
On the other hand, when c −→ ∞ , one has a purely 
exploratory policy. We conveniently set c = 1 , but other 
approaches exit (see, e.g., [36].

The next parameters that we fix are the upper and lower 
bounds of the observation buckets. The MCTS algorithm 
works with discrete observations, but our case study con-
cerns a continuous deterioration and a continuous obser-
vation space. Although there exist MCTS variations which 
can deal with continuous action and state spaces (see, e.g., 
[82]), we can easily transform our problem to the discrete 
space by bucketing our observations, i.e., a certain bucket 
points to a range of observations. The question that now 
arises is how to choose these buckets. Generally, the 
bucket size does not have to be constant, but for simplic-
ity, we choose buckets of equal size (with the exception 
of the first and last bucket). Therefore, we only need to 
define the ceiling ( dce ) and floor ( dfl ) bound, as well as the 
number of desired observation buckets to fully define our 
buckets. The general case of Nob equal-sized observation 
buckets is depicted in Appendix 3: Fig. 10:

Fig. 10 Bucket intervals for the general case of Nob observation buckets

Thus, we need to find some reasonable values for the 
floor and ceiling values dfl and dce . We can relate dfl to 
a percentile of the initial distribution of D, and dce to 
a percentile of the final distribution of D when letting 
the system evolve without intervention (i.e., the “worst” 
case). This leads to:

Tunable MCTS parameters
There are further parameters that we do not set a priori 
but still highly influence the MCTS’ performance. The 
parameters to be optimized are given in the following list. 

1. Tree iterations NT

2. Rollout runs NR

3. Observation buckets Nob

The number of tree iterations NT dictates the depth the 
tree reaches, i.e., the number of timesteps it looks into 
the future. In addition, a higher number of tree iterations 
increases the accuracy of the Q-value estimate. However, 
the possible number of nodes in our tree grows exponen-
tially with increasing depth, and one can also increase the 
accuracy with the number of rollout runs NR from a given 
system state. Averaging over multiple rollouts instead of 
relying on a single run greatly reduces the susceptibility  
to high variances resulting from large differences in 
action and failure costs.

Lastly, the number of observation buckets Nob is also a 
crucial parameter, as it influences the reachable depth of 
the tree given a fixed number of tree iterations. In addi-
tion, it represents the degree of precision with which the 
observations are discretized. Hence, it is essential to find 
the right balance between depth and resolution.

MCTS parameter optimization technique
What remains now is to outline an optimization proce-
dure for the three parameters of Appendix 3: Tunable 
MCTS parameters section considering the observation 

(33)dfl = −159.36

(34)dce = 26.67.
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error. Generally, it is assumed that the optimal number 
of observation buckets is dependent on the observation 
error with regards to minimizing the LCC.

The first analysis is conducted on the time dependence 
of NT and NR , where we impose some threshold of com-
putation time needed to traverse a whole life cycle with 
the MCTS method to stay in a computationally feasible 
domain. It is assumed that the computation time is inde-
pendent of the observation error and is only minimally 
affected by the choice of Nob , which is why they are fixed.

The result of the analysis is a set of different possible com-
binations of the two parameters, which satisfy our imposed 
computation threshold. To settle for a single combination, 
the influence of NT and NR on the LCC will be taken into 
account. We assume that the resulting curves qualitatively 
hold for any Nob and σE , which is why they are fixed again.

Secondly, once NT and NR have been fixed with the 
time constraints and LCC maximization, we search for 
the optimal number of observation buckets given a set of 
observation errors of interest.
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