
Koutas et al. J Infrastruct Preserv Resil (2024) 5:6
https://doi.org/10.1186/s43065-024-00098-9

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

Journal of Infrastructure
Preservation and Resilience

An investigation of belief-free DRL and MCTS
for inspection and maintenance planning
Daniel Koutas1*, Elizabeth Bismut1 and Daniel Straub1

Abstract

We propose a novel Deep Reinforcement Learning (DRL) architecture for sequential decision processes under uncer-
tainty, as encountered in inspection and maintenance (I &M) planning. Unlike other DRL algorithms for (I &M) plan-
ning, the proposed +RQN architecture dispenses with computing the belief state and directly handles erroneous
observations instead. We apply the algorithm to a basic I &M planning problem for a one-component system sub-
ject to deterioration. In addition, we investigate the performance of Monte Carlo tree search for the I &M problem
and compare it to the +RQN. The comparison includes a statistical analysis of the two methods’ resulting policies,
as well as their visualization in the belief space.

Keywords One-component deteriorating system, Maintenance planning, Partially observable MDP, Deep
reinforcement learning, Neural networks, Monte Carlo tree search

Introduction
Reliable civil infrastructure, such as power, water and
gas distribution systems or transportation networks, is
essential for society. Large efforts are therefore spent on
properly maintaining these systems. However, at present
such maintenance is based mainly on simple legacy rules,
such as fixed inspection intervals, combined with expert
judgement. There is a significant potential for optimal
inspection and maintenance (I &M) planning that makes
best use of the information at hand to ensure safe and
reliable infrastructure while being sustainable and cost-
efficient [1–3].

I &M planning is a sequential decision making problem
under uncertainty. One challenge in deriving optimal I
&M decisions is the presence of large epistemic and alea-
toric uncertainties associated with the system properties,
load, representation model, and measurements [4–7].
Another major challenge is the exponential increase in

possible I &M strategies with the number of components
and the considered time horizon [4, 8]. Standard practice
for dealing with these challenges is the use of established
decision heuristics, e.g., safety factors during design,
predetermined scheduled inspections, and threshold- or
failure-based replacement of components [9–11]. The
parameters of these heuristics can then be optimized to
find good I &M strategies [4, 8]. However, heuristics can
be suboptimal and finding good heuristics is challenging.

Another approach to embed uncertainty into the inher-
ently sequential nature of inspection and maintenance
problems, is to integrate probabilistic models into deci-
sion process models [12–14]. Under certain conditions,
these sequential decision problems under uncertainty
can be modeled as Partially Observable Markov Decision
Processes (POMDPs), which provide an efficient frame-
work for optimal decision making, and can additionally
account for measurement errors [15–17]. The POMDP
is in general intractable [18]. Many approaches for solv-
ing the POMDP use the belief state representation,
which incorporates the entire information, i.e., actions
and observations up to the current point [15, 19–22].
However, these methods require an explicit probabilis-
tic model of the environment to calculate the transition

*Correspondence:
Daniel Koutas
daniel.koutas@tum.de
1 Engineering Risk Analysis Group, Technische Universität München,
München, Germany

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s43065-024-00098-9&domain=pdf

Page 2 of 20Koutas et al. J Infrastruct Preserv Resil (2024) 5:6

probabilities between states as well as the belief states,
which is not always available. In addition, they typically
are not computationally efficient beyond small state and
action spaces [19]. This hinders their application to I &M
planning of infrastructure systems, where the investi-
gated systems are usually consisting of a larger number of
components.

Reinforcement learning approaches to solve POMDPs
have gained in popularity, including Deep Reinforce-
ment Learning (DRL) with neural networks (NNs), and
Monte Carlo Tree Search (MCTS). There exist numer-
ous variants of NNs for discrete [23–25] and con-
tinuous [26–28] action space control, employing for
example Deep Q-networks (DQNs) [29, 30], Double
DQNs (DDQNs) [31, 32] or actor-critic architectures
[33]. Although MCTS was originally formulated for fully
observable domains with great success [34, 35], it has
also been applied to POMDPs [36, 37].

Both NNs and MCTS have been heavily researched in
the field of computer games, which provide a safe (i.e.,
no real-life consequences) and controllable environment
with a variety of complex problems to solve (2D, 3D,
single-agent, multi-agent, etc.) with an infinite supply of
useful data that is much faster than real-time [38]. The
success of these methods in this application has moti-
vated researchers to apply them to I &M planning (e.g.,
[16, 20, 39, 40]). However, this problem’s specific charac-
teristics e.g., sparse rewards due to low probability of fail-
ure, can pose a challenge to DRL methods, the efficiency
of which remains to be systematically assessed.

The literature on solving POMDPs with DRL in the
context of I &M is fairly limited. Most studies have
focused on fully observable MDPs, for instance cou-
pling Bayesian particle filters and a DQN for real-time
maintenance policies [41], employing a DDQN for pre-
ventive maintenance of a serial production line [42],
coupling a pre-trained NN for reward estimation with
a DDQN for maintenance of multi-component systems
[43], and adopting a DDQN for rail renewal and main-
tenance planning [44]. Concerning POMDPs, Andriotis
and Papakonstantinou [20] developed the Deep Central-
ized Multi-agent Actor Critic (DCMAC) architecture for
multi-component systems operating in high-dimensional
spaces, with extended applications for roadway network
maintenance [39]. The corresponding decentralized ver-
sion (DDMAC), where each agent has a separate policy
network [16], has been applied to life cycle bridge assess-
ment [40] and 9-out-of-10 systems [45]. However, both
DCMAC and DDMAC take the belief state of the system
as an input, which is in general computationally expen-
sive to obtain for a system with many components and
arbitrary state evolution processes. Thus, newer studies
(e.g., [46, 47]) have shifted the focus to observation-based

DRL. However, a problem setting concerning continu-
ous state and continuous erroneous observations has not
been considered, yet.

In a similarly limited manner, MCTS has been applied
to maintenance planning problems modeled as MDPs.
Examples with MCTS include, for instance, finding sto-
chastic schedules in active distribution networks [48], in
combination with genetic algorithms for condition-based
maintenance [49], or combined with NNs for wind tur-
bine maintenance [50]. To the best of our knowledge,
MCTS has not been applied to POMDPs in the context
of I &M.

The purpose of this paper is twofold. Firstly, we pro-
pose a DRL architecture for POMDP and I &M planning,
which does not require the computation of the belief
state. The proposed NN combines the features of the
Action-specific Deep Recurrent Q-Network [25] and the
dueling architecture [51]. The resulting +RQN architec-
ture is able to deal directly with erroneous observations
over the whole life cycle of the system.

Secondly, we investigate the performance of MCTS
when applied to I &M planning. In this context, we per-
form a systematic comparison of the proposed +RQN
and MCTS. The investigated problem is a one-compo-
nent system subject to deterioration and is formulated
as a POMDP, for which an exact solution is available,
because of linear Gaussian assumptions for the model
dynamics. Component deterioration models are often
used for investigations in infrastructure I &M planning
(e.g., [21, 52, 53]) and are applied for I &M planning in
practice (e.g., [54, 55]). The analysis includes a compari-
son of performance, i.e., the achieved optimized expected
life cycle costs (LCC) and the computation time. It is
carried out for different measurement errors. We also
review the information carried by two metrics to com-
pare the resulting policies of the two methods, namely via
a statistical analysis and a visualization in the belief space.
The solutions from both methods are compared to the
exact POMDP solution.

The structure of the paper is as follows. Basic mainte-
nance problem section introduces the investigated prob-
lem as well as sequential decision making along with the
key definitions and metrics needed for the employed RL
methods. Neural networks section explains the work-
ings of the NN architecture used herein, and MCTS sec-
tion illustrates how the MCTS method has been adapted
for solving the proposed problem. Metrics for compari-
son section is dedicated to the metrics we employ to
compare the NN and MCTS solutions, and Computation
time, Performance, and Policy comparison sections con-
tain the respective results. Discussion section discusses
the obtained solutions and policies, and gives insight into
the advantages and disadvantages of the two approaches.

Page 3 of 20Koutas et al. J Infrastruct Preserv Resil (2024) 5:6

Basic maintenance problem
Investigated system
For the numerical investigations in this paper, we study
a one-component system subject to deterioration, taken
from [56]. It is modeled with two random variables (RVs):
D representing the deterioration state and K representing
the deterioration rate. The subscript t indicates timesteps,
where t = 0, 1, 2, ..., Tend , with finite time horizon Tend .
The generic deterioration model is given as

where D0 and K0 are normally distributed and independ-
ent. Equation (1) shows that the deterioration process is
modeled as a Markov process through state space aug-
mentation. The deterioration Dt is observable with a
Gaussian measurement noise, through the measurement
random variable Ot , i.e., Ot ∼ N (Dt , σE).

Four actions a0 − a3 are available for counteracting the
deterioration and ultimately the failure of the structure.
The action At is taken after observation Ot and affects
Dt+1 and/or Kt+1 (see Appendix 1). The effects of the
actions on the system are detailed in Appendix 1: Table 2.

(1)Dt = D0 + t · K0 ⇐⇒
Dt = Dt−1 + Kt−1

Kt = Kt−1

,

The structure fails when the deterioration exceeds the
critical deterioration dcr . In the failed state, an annual
failure cost is incurred until the system is either repaired
or replaced (no automatic setback of the system to the
initial state). In addition, each action ai has a specific cost
cai incurred at time t.

Figure 1 depicts the generic influence diagram of the
corresponding POMDP.

This case study is set up such that linearity, and hence
also the normality of any set of RVs, is conserved (see
Appendix 1: Table 2). As a result, the belief state and
all transitions of the belief-MDP can be computed
analytically.

Moreover, in our case, the covariance matrix does not
depend on the observations and the actions taken, and can
hence be pre-computed for all timesteps. Thus, the actions
and observations only influence the prior and posterior
means of Dt and Kt , respectively (see Appendix 1).

The model assumption allows for the system to regen-
erate if Kt is negative. However, 1) we set up the numeri-
cal values so that we limit this effect, 2) it is a useful
assumption for obtaining a reference solution and 3) the
solution methods introduced hereafter do not require it.

Fig. 1 Complete influence diagram of the model, especially depicting the starting and end operations, where Tend = 21 . The first action is taken
at t = t1

Page 4 of 20Koutas et al. J Infrastruct Preserv Resil (2024) 5:6

Sequential decision making
At every timestep, the operator has to decide which
action to choose based on the history of observations
and actions; hence they try to solve a sequential decision
making problem. Specifically, as the deterioration state
Dt is only observable through erroneous measurements
Ot , and the deterioration rate Kt is not observable at all,
the investigated setup falls under the category of a Par-
tially Observable Markov Decision Processes (POMDP)
[15]. One can transform a POMDP into a belief MDP by
replacing the states with the belief (vector) as the vari-
able of interest, and then employ conventional methods
for solving MDPs, such as value iteration (VI) or policy
iteration [57]. We utilize this belief state representation
to obtain a reference solution for the numerical investi-
gations (see POMDP reference solution and Results sec-
tions). However, the focus of this paper is specifically on
reinforcement learning (RL) techniques that can directly
deal with observation-action sequences and hence do not
need the belief state representation.

The goal is to find a sequence of actions that minimizes
the expected life cycle cost (LCC), which is defined as the
sum of discounted expected action and failure costs:

In standard literature, the two costs associated with
action and failure are summarized in a single cost C(s, a),
which is the immediate cost resulting from executing
action a in state s of the system. Hence, will adopt this
notation in the following.

The decision-making rule, which determines the action
to take in function of the available information, is called
the policy π . In general, the policy is time- and history-
dependent [15, 58]. There exists a mapping from the
current observation-action history ht = (o1:t , a1:t−1)
to the time-agnostic belief over the set of system states
b(st) = p(st |o1:t , a1:t−1) , where b(s) represents the prob-
ability of the system being in state s, when the agent’s
belief state is b [59]. Hence, the policy as well as other
functions can be expressed in terms of both:

Accordingly, the ideal policy π∗ determines the ideal
action to take to reach the set goal. For finite-hori-
zon problems (as for our case study), π∗ is generally
time-dependent. In our case, the set of ideal policies
{π∗

t , t = 1, 2, ..., Tend − 1} is the one that minimizes LCC .
To find an expression for π∗

t , we substitute the global LCC
measure (Eq. 2) with recursively defined value functions.

A state value function assigns a value to a particular
(belief) state at a specific point in time. We denote with

(2)LCC = E[LCC] =

Tend
∑

t=0

γ t · E[C(At)+ C(Ft)].

(3)π = πt(ht) = πt(b).

V π
t (b) the sum of expected discounted costs when fol-

lowing policy π starting from belief b at time t [60]. The
optimal value function is then defined as [59]:

where bao is the belief that results from b after execut-
ing action a and observing o, and can be obtained from
the POMDP model and Bayesian updating (e.g., demon-
strated in [57]). Note that P(o|b, a) can be expressed as a
function of the belief transition probability P(bao|b, a) , and
the sum over o can be transformed into a sum over b (see
POMDP reference solution section).

One can also define an action-value function
Qπ
t (bt , a) , which denotes the value of action a at belief

state b under policy π at time t and continuing opti-
mally for the remaining timesteps until the end of the
system lifetime [57]. The optimal value function V ∗ can
be expressed as a minimization over the action-value
function Q, and the optimal action-value function Q∗
satisfies the Bellman equation [15, 57, 61]:

Lastly, the advantage function Aπ
t (b, a) is a measure of

the relative importance of each action [51]:

where the advantage of the optimal action a∗ is 0 [51]:

The optimal policy at every timestep can be easily
extracted by performing a greedy selection over the
optimal Q-value [57]:

which is also the value- and advantage-minimizing action
from Eqs. (4) and (6), respectively.

The solution methods presented in Neural networks
and MCTS sections have the goal of approximating V, Q,
or A, from which the optimal policy can be extracted.

POMDP reference solution
To evaluate the performance of approximate solutions,
we also provide a reference solution for the POMDP
model of Investigated system section. It is computed with
standard value iteration applied to a discretized belief
MDP. The belief, in our case, is a vector comprising the
posterior mean values of D and K from Eqs. (27) and (28):

(4)

V
∗
t (b) = min

π
V

π
t (b)

= min
a∈A

[

∑

s∈S

C(s, a) · b(s)+ γ ·
∑

o∈O

P(o|b, a) · V∗
t+1(b

a
o)

]

,

(5)

Q
∗
t (b, a) =

∑

s∈S

C(s, a) · b(s)+ γ ·
∑

o∈O

P(o|b, a) · min
a′∈A

Q
∗
t+1(b

a′

o , a
′),

(6)Aπ
t (b, a) = Qπ

t (b, a)− V π
t (b),

(7)Qπ
t (b, a

∗) = V π
t (b) =⇒ Aπ

t (b, a
∗) = 0.

(8)π∗
t (b) = argmin

a∈A
Q∗
t (b, a),

Page 5 of 20Koutas et al. J Infrastruct Preserv Resil (2024) 5:6

The adapted version of Eq. (4) for discretized beliefs is
then [56, 59]:

where C(b, a) =
∑

s∈S

C(s, a) · b(s) (see Eqs. (4) and (5).

Due to the linear Gaussian transition dynamics of this
case study, the transition probabilities P

(

b′|b, a
)

 can be
calculated analytically. The discretization of the belief and
the computation of the probability tables is done accord-
ing to [62]. Equation (10) is solved by backward induction
for each discrete belief state. The resulting LCC is verified
by MCS. The discretization scheme is chosen such that
1) the value function of Eq. (4) is estimated with a small
error (compared to MCS on continuous belief space) and
2) such that the resulting policy is quasi-optimal (it per-
forms better than every other solution found).

Note that in the general case, obtaining a reference
solution with dynamic programming, e.g., via value itera-
tion, is not feasible due to the super-exponential growth
in the value function complexity [63]. Hence, the prob-
lem investigated in this work represents a special case.

Neural networks
Architecture
Our aim is an NN approach that is able to handle imper-
fect observations without the need for computing the
belief. The NN needs to account for the time dependence
of the value function for the finite horizon problem. This
can be achieved by a network architecture that is able to

handle sequential data, i.e., the observation-action his-
tory. For that, we adopt the basic structure of the action-
specific deep recurrent Q-network [23].

The final NN architecture proposed in this work
is depicted in Fig. 2, which we name Action-specific
Deep Dueling Recurrent Q-network (+RQN). At each
timestep t, the two inputs of the network are the one-hot
encoded action [64] taken at t − 1 and the scalar obser-
vation obtained at t. The outputs of the network are the
estimated Q-values for each action at t. The inputs are
fed through two fully connected (FC) layers for feature

(9)b =

[

µ′′
D,t

µ′′
K ,t

]

(10)V
∗
t (b) = min

a∈A

C(b, a)+ γ ·
�

b
′∈B

P
�

b
′|b, a

�

· V∗
t+1(b

′),

extraction. The core of the network is formed by the Long
Short-term Memory (LSTM) layer, which can resolve
short as well as long-term dependencies through the
hidden and cell states, respectively [65]. Depending on
the observation-action history, these states take differ-
ent values. Hence, the LSTM layer can be interpreted as
a high-dimensional embedding of the history or a high-
dimensional approximator of the belief state. The LSTM
output is then fed through another FC layer for further
feature extraction. To estimate the Q-values, the value
and the advantage functions are first estimated separately
and combined using a modified version of Eq. (6), which
is discussed in the section below. Wang et al. [51] report
that this configuration has superior performance com-
pared to standard DQNs.

Q‑values, loss, cost and weight updates
Instead of directly using Eq. (6), Wang et al. [51] propose
to introduce the mean over the advantages as a correction
term, which improves the stability of the optimization of
the network parameters. Let θ jt denote the parameters of
all layers prior to the value-advantage split, υ j denote the
parameters of the value stream, and αj the parameters
of the advantage stream. The superscript j = 1, 2, ...,Ne
refers to the weights at a certain iteration/epoch and
hence highlights iterative convergence towards a set of
weights that best approximate the true Q-value. Herein,
an epoch consists of passing through the whole life cycle
of a batch of sample trajectories, after which the weights
get updated, and the next epoch starts. Since θ does also
include the hidden and cell states of the LSTM layer, it
is dependent on the observation-action history, which
is denoted with the subscript t. By contrast, α and υ stay
constant for the whole life cycle (epoch). The modified
approximation for the Q-values is then [51]:

where Qjt(ot , a | θ
j
t−1,α

j ,υ j) is the Q-value estimate for
the action a at time t and epoch j after observing ot and
given the previous action at−1 , the weights θ jt−1 (which
embedded o1:t−1 and a1:t−2 through the hidden and cell
states), αj and υ j . Accordingly, Vjt(ot | at−1, θ

j
t−1,υ

j) does
not use the weights of the separate advantage stream αj
and vice versa.

To evaluate the performance of the network, i.e., the
accuracy of the predicted Q-values, we need a target value
for each pair of sample observation and action o(i)t , a

(i)
t−1 ,

which are passed as inputs to the network. To obtain a

(11)
Q
j
t(ot , a | at−1, θ

j
t−1,α

j ,υ j) = V
j
t(ot | at−1, θ

j
t−1,υ

j) +
(

A
j
t(ot , a | at−1, θ

j
t−1,α

j)−
1

|A|

∑

a′∈A

A
j
t(ot , a

′ | at−1, θ
j
t−1,α

j)

)

,

Page 6 of 20Koutas et al. J Infrastruct Preserv Resil (2024) 5:6

target value, we use the fact that the optimal Q-values fol-
low the Bellman equation (Eq. 5). Therefore, we define the
NN output y(i),jNN,t and the target value y(i),jTar,t for a sample (i)
at a specific point in time t and epoch j as [25]:

where asel. denotes the selected action under the behav-
iour policy (ǫ-greedy, see Appendix 2: Optimized NN
parameters section) at j; c(i)t is the total cost sample at t

(12)y
(i),j
NN,t = Q

j
t(o

(i)
t , asel. | at−1, θ

j
t−1,α

j
,υ

j)

(13)y
(i),j
Tar,t = c

(i)
t + γ · min

a′∈A
Q
j
t+1(o

(i)
t+1, a

′ | at , θ
j,−
t ,α

j,−
,υ

j,−)

which includes the cost of a potential failure at t and the
cost of the latest selected action at t − 1 under the behav-
iour policy at j. Moreover, Qjt+1(o

(i)
t+1, a

′ | θ
j,−
t ,αj,−,υ j,−)

denotes the Q-value estimate at t + 1 and epoch j, after an
action has been taken under the behaviour policy at t and
j which, upon interaction with the environment, resulted
in observation o(i)t+1 . The “−” indicates that the parameters
θ
j,−
t ,αj,−,υ j,− belong to a separate target network [25].

More details on the sampling procedure and the target
network are provided in Training procedure section.

For training, we use the mean-squared error (MSE) loss
function [66]:

Fig. 2 Snapshot of our NN architecture depicting the information flow through the network from t → t + 1 . A is the action taken at the previous
timestep in one-hot encoded form, e.g., a0 = [1 0 0 0]

T , O is the current observation, V, A & Q are the Value, Advantages, and action-values,
respectively. The “Env.” above the arrow denotes an interaction with the environment. The gray layers represent FC layers and the orange
layer represents the LSTM layer with its hidden state and cell states h,c . The represents the concatenation operation. The number of circles
inside some layers depicts the fixed number of nodes, and the relative sizes of the layers qualitatively show the number of nodes; adapted
and merged from [25, 51]

Page 7 of 20Koutas et al. J Infrastruct Preserv Resil (2024) 5:6

For stochastic gradient descent, a batch of Nb samples is
passed through the network to speed up training [67]. On
this basis, the MSE cost function accumulated over the
whole life cycle is evaluated as

The NN weights are updated based on this cost function.
The simplest gradient-based update scheme is [66, 68]:

where η is the learning rate. The weights αj+1 and θ j+1 are
computed accordingly. Alternative update schemes such
as RMSProp or Adam are available (e.g., [68]).

Training procedure
Each epoch j is composed of a data collection and a training
phase. The data collection part consists of simulating a
batch of Nb trajectories with the current network with
weights θ j ,αj ,υ j . We start by drawing initial samples d(i)

0
and k(i)0 from their initial distributions and check for result-
ing failure costs c(i)f ,0 . The actions a(i)0 are fixed to a0 (with
action costs c(i)a,0 = 0), as observation-based action selection
starts at t = 1 . Then, d(i)

0 , k(i)0 , a(i)0 are passed to the environ-
ment which returns d(i)

1
 , k(i)1 and c(i)f ,1 according to the

dynamics in Appendix 1: Table 2. For t = 1, ...,Tend−1 ,
observations o(i)t are generated from N (d

(i)
t , σE) and passed

with a(i)t−1 to the network which outputs the Q-values. The
behaviour policy at epoch j selects the next action according
to the ǫ-greedy scheme, where a random action is selected
with probability ǫ (for exploration) and the action with mini-
mal Q-value is selected with probability 1− ǫ (for exploita-
tion). The chosen action a(i)t together with d(i)

t and k(i)t is
passed to the environment that simulates the system for one
timestep and returns d(i)

t+1 , k
(i)
t+1 and c(i)f ,t+1 . This alternating

interaction between network and environment continues
until the end of the system lifetime is reached. The samples
o
(i)
1:Tend−1

 , a(i)0:Tend−2
 and c(i)0:Tend

= c
(i)
f ,0:Tend

+ c
(i)
a,1:Tend−1

 are
then stored for the training phase.

Once a batch of sample trajectories has been collected, the
training phase starts. Herein, the batch is again fed through
the network sequentially, and the cost is accumulated over
the whole life cycle. For the computation of the individual
MSE loss terms, a target network is defined such that the
values of the target network weights are clones of the origi-
nal network weights: θ j,− = θ j , αj,− = αj , υ j,− = υ j . At
each time t, o(i)t and a(i)t−1 are the inputs of the network; o(i)t+1
and a(i)t are the inputs of the target network. The target NN

(14)LMSE

(

yNN, yTar
)

:=
(

yNN − yTar
)2
.

(15)

C
LCC
MSE

(

y
(1:Nb)

NN , y
(1:Nb)

Tar

)

:=
1

Nb

Tend−1
∑

t=1

Nb
∑

i=1

LMSE

(

y
(i)
NN,t, y

(i)
Tar,t

)

.

(16)υ
j+1 = υ

j − η∇υC
LCC
MSE,

outputs are greedily selected over the respective Q-values (as
opposed to the ǫ−greedy behaviour policy used for trajec-
tory sampling, hence this is off-policy learning [69]) accord-
ing to Eqs. (12 and (13). The batch cost at t is computed with
a batch-averaged version of Eq. (14) and added to the total
cumulative cost. This process continues until the end of the
life cycle is reached, and the LCC MSE cost has been com-
puted according to Eq. (15). Then, the LSTM is unrolled, the
loss is backpropagated through time [65] and the weights
are adjusted according to the chosen update scheme (e.g.,
Eq. (16). After updating, the learning procedure continues
with the next epoch until the weights have converged. The
weights of the target network are updated periodically every
p epochs to ensure stable optimization [30].

The hyperparameter tuning procedure, either by grid
search or by some heuristics, is outlined in Appendix 2.

MCTS
Functionality
Monte Carlo tree search (MCTS) arises from the combina-
tion of tree search and Monte Carlo sampling [70]. Classi-
cally, games have been modeled with game trees, where the
root is the starting position, leaves are possible ending posi-
tions, and each edge represents a possible move [71]. To
select the best action at a given node (position), one needs
to know its consequences. Small games can be solved by
constructing the full game tree and using backwards induc-
tion [72]. However, for more complex games (e.g., chess,
Go), this is practically impossible. Hence, one needs an esti-
mator of the preference for each resulting position. Defin-
ing the value of each node as an expected outcome given
random play opened the door for the use of Monte Carlo,
which specifies node values as random variables and char-
acterizes game trees as probabilistic [73]. In [36], MCTS
was extended to partially observable environments.

The MCTS algorithm consists of four main steps: selec-
tion, expansion, rollout, and backpropagation. In the selec-
tion step, the algorithm traverses the tree from the root to a
leaf node using a selection policy (see UCT for action selec-
tion section). In the expansion step, the algorithm adds a
child node to the selected leaf node. In the rollout step, the
algorithm performs a simulation from the newly added
node until the end of the lifetime by choosing uniformly
random actions, i.e., p(ai) = 1

4 . In the backpropagation
step, the algorithm updates the statistics of all nodes along
the path from the selected node to the root node based on
the simulation outcome [74]. The Q-value of an action a for
a given observation-action history h at time t is the updated
statistic at an action and is computed as:

(17)Qt(h, a) ≈
1

N (h, a)

N (h,a)
∑

i=1

q
(i)
t (h, a),

Page 8 of 20Koutas et al. J Infrastruct Preserv Resil (2024) 5:6

where N(h, a) is the total number of samples used for
the estimation, or the current visitation counter of the
respective action node, and q(i)t (h, a) are the individual
(backpropagated) results at time t.

UCT for action selection
To make use of the exploitation-exploration tradeoff
[58], we implement the Upper Confidence Bound for
Trees (UCT) algorithm. The UCT selects the next action
At based on minimizing the estimation of the Q-value
for each action (exploitation) minus an exploration term
[75]:

where c is an adjustable constant that enables a trade-
off between exploration and exploitation, and N(h)
is the visitation counter of the parent node such that
N (h) =

∑

a N (h, a) . A pseudocode for the implementa-
tion of MCTS for POMDPs is given in [36].

Each simulation starts by sampling an initial state
from the current belief state, which is, for our case study,
described in Eq. (19):

Silver and Veness [36] propose a samples-based approxi-
mation of the belief state for the general case when the belief
state is not analytically available. We have not implemented
this in the case study, hence one should keep in mind that an
MCTS without the belief is likely to perform worse.

The tuning of the MCTS parameters is outlined in
Appendix 3.

Results
Metrics for comparison
We employ several metrics to assess the performance of
the NN and the MCTS approaches and to compare the
results to the POMDP reference solution.

Firstly, we evaluate the computation time needed by
the methods, including training and testing times.

Secondly, their computational performance is compared
through the LCC’s expected value and the standard devia-
tion for the identified policies. Thereby, LCC is approxi-
mated with Monte Carlo (MC) samples for both methods.
The optimal solution curve obtained by evaluating the
POMDP with VI (see POMDP reference solution section)
serves as a reference. We additionally provide the perfor-
mance of a benchmark policy that consists of choosing
action a1 in every timestep, irrespective of the observation.

(18)

At = argmin
a∈A

UCTt (h, a) = argmin
a∈A

Qt (h, a)− c ·

√

lnN (h)

N (h, a)
,

(19)

[

Dt

Kt

]

∼ N

([

µ′′
D,t

µ′′
K ,t

]

,

[

σ ′′2
D,t ρ′′

t σ
′′
D,tσ

′′
K ,t

ρ′′
t σ

′′
D,tσ

′′
K ,t σ ′′2

K ,t

])

.

Thirdly, we investigate the policies obtained from each
method. The analysis comprises a statistical representa-
tion of the actions taken at each timestep to reveal poten-
tial tendencies, as well as a depiction in the belief space
for policy extraction.

Computation time
All computations are performed on a Fujitsu Celcius
R970 PC comprising an NVIDIA GP104GL (Quadro
P4000) 8118 MB GPU and Intel Xeon Silver 4114 2.20
GHz: 10 Cores 20 Logical Processor. To accelerate the
computation, training and testing of the NNs is con-
ducted on the GPU, whereas MCTS is implemented with
CPU parallelization.

With these specifications, the process of training and
testing a single NN took 45 seconds (25 seconds of training
and 20 seconds of testing 106 sample trajectories). In train-
ing, we consider different hyperparameter configurations
following Appendix 2: Optimized NN parameters section,
which leads to a total training time of approx. 150min.

By contrast, with MCTS there is no distinct training
phase. Nevertheless, it is necessary to find good MCTS
parameters, as described in Appendix 3: Tunable MCTS
parameters section. This is a time-consuming process,
because testing is expensive with MCTS. With the chosen
parameter setting, generating 1000 trajectories for test-
ing takes 20 minutes. For this reason, NN training is ulti-
mately significantly cheaper and more straightforward.

Once the NN is trained or the MCTS setting is fixed,
evaluating the policy is efficient. For NN, the computational
time is negligible; for MCTS, it is in the order of seconds.

Performance
Figure 3 shows the mean LCC achieved by the +RQN,
MCTS, VI, and the basic benchmark in function of the
observation error. Firstly, all curves have a characteristic
shape which consists of two saturation regions σE < 0.5
(essentially corresponding to perfect observations) and
σE > 103 (uninformative observations) and a smooth tran-
sition in-between. Both the NN and MCTS methods per-
form worse than the optimal solution. However, the NN
consistently outperforms the MCTS method, which per-
forms especially poorly under high observation errors.

Figure 4 shows the standard deviation of the resulting
LCC in function of the observation error. The standard
deviation increases with increasing observation error,
which is to be expected. The NN generally leads to a
slightly higher LCC standard deviation than the VI ref-
erence solution, although with some exceptions. By con-
trast, the MCTS results in a low LCC standard deviation
for small σE and in a very large one for large σE.

Page 9 of 20Koutas et al. J Infrastruct Preserv Resil (2024) 5:6

Policy comparison
Figure 5 depicts the identified strategy profiles for the
+RQN, MCTS, and VI in a statistical sense for the
selected cases of σE = {0.5, 50}.

The reference VI method utilizes mainly a1 in the first
half of the system lifetime and employs a2 in the second
half. More maintenance is performed when the obser-
vation error is larger; for σE = 50 , action a1 is imple-
mented early on in all cases, i.e., independent of the
observation. Action a3 is avoided, presumably due to its
large cost.

The actions selected by the NN, as shown in panels (c)
and (d), differ significantly from those of the reference

solution. Note that the policies obtained with the NN
vary substantially among repeated training runs, even
if they lead to similar LCC . The results in Fig. 5 corre-
spond to a single trained NN for each observation error;
with other trained NN instances, different proportions of
a0, a1, a2 are observed. In all trained NN, we observe that
for σE < 200 , the NN employs solely a2 for failure pre-
vention; a1 is involved only for higher observation errors.

By contrast, MCTS has a similar strategy profile over
all observation errors: about 30% use a1 at every timestep.
The only difference observed for larger observation errors
is the increased use of a2 in the second half of the system
lifetime with increasing measurement errors. Interestingly,

Fig. 3 Comparison of achieved mean LCC of +RQN (blue), MCTS (red), value iteration (green), and our a priori benchmark (black) for different
measurement errors, where the policies of the +RQN, MCTS and VI are averaged over 106 , 2× 103 and 2× 106 trajectories, respectively

Fig. 4 Comparison of achieved LCC standard deviation of +RQN (blue), MCTS (red), value iteration (green) for different measurement errors,
where the policies of the +RQN, MCTS and VI are averaged over 106 , 2× 103 and 2× 106 trajectories, respectively

Page 10 of 20Koutas et al. J Infrastruct Preserv Resil (2024) 5:6

Fig. 5 Temporal evolution of the action statistics represented by bar charts for VI (a) & (b), +RQN (c) & (d), and MCTS (e) & (f) generated
with 2× 106 , 106 , 2× 103 and MC samples, respectively

Page 11 of 20Koutas et al. J Infrastruct Preserv Resil (2024) 5:6

for small σE , the statistic of the selected actions with
MCTS is closer to the reference solution than the one of
NN, even if the expected LCC achieved with the NN is
smaller than the one achieved with MCTS.

To investigate and compare the resulting policies, we
illustrate how the strategies manifest in the belief space.
Figure 6 depicts the policies resulting from VI for the ref-
erence case of σE = 50 and t = {1, 10, 18, 20} . The occa-
sional islands in otherwise continuous action bands in

panels (a) and (b) result from the sampling-based estima-
tion of the belief transition probabilities outlined in [62].

For comparison, we show the output of one run of the
MCTS method (one for each b and t) in Fig. 7. The poli-
cies are similar to the VI policies in the choice of a2 and
a3 , i.e., the regions close to or beyond failure are primarily
occupied with strips of a2 and a3 . The extent of variation is
determined by the magnitude of the measurement error as
well as the remaining time until the end of the life cycle, e.g.,

Fig. 6 Evolution of the VI optimal actions represented on a 60× 20 belief grid for t = 1 (a), t = 10 (b), t = 18 (c), and t = 20 (d) for an observation
error of σE = 50 , where the cell mid-points are chosen as representatives for each cell region, respectively

Page 12 of 20Koutas et al. J Infrastruct Preserv Resil (2024) 5:6

almost no variation for σE << 1 & t > 10 , and high vari-
ation with no apparent structure for σE > 100 ∀t . By con-
trast, the region far away from failure almost always shows
high variability, and it seems that the choice between actions
a0 and a1 is taken more or less randomly (except for very
low σE at t = 20). The already mentioned variation tenden-
cies for a2 and a3 also hold for a0 and a1 . The large variance
of MCTS (which could be reduced with increasing compu-
tational cost, see Appendix 3: MCTS parameter optimiza-
tion technique section) leads to suboptimal policies.

For the NN, mapping all belief states to the optimal
actions is not straightforward, as it takes observations and
not beliefs as an input. However, the belief state can be
tracked over time for sample trajectories, as shown in Fig. 8.

Once the trajectories in the belief space are available
(Fig. 8), we can select a specific timestep and plot the
actions taken by NN. This results in a point cloud in the
belief space, which is shown in Fig. 9.

Fig. 7 Evolution of the MCTS recommended actions, same set-up as in Fig. 6

Page 13 of 20Koutas et al. J Infrastruct Preserv Resil (2024) 5:6

Discussion
In this work, we develop a tailored NN architecture for
solving the sequential decision making problem asso-
ciated with maintenance of a component subject to
deterioration. We evaluate its performance on a single
component maintenance problem with continuous state
space. We also compare the performance of an MCTS
approach on this example.

There are several deep reinforcement learning approaches
in the literature, some of which also solve the optimal inspec-
tion and maintenance problem for systems with many
components [16, 20, 39, 40, 45]. These approaches work on
discrete state spaces and compute the belief to translate the
problem into a Markov decision process. The motivation for
investigating the comparably simpler problem in this paper
is our interest in approaches that work with continuous state
spaces without a belief (even if the problem that we consider

Fig. 8 Evolution of a batch of 500 trajectories through time, where each color represents a specific timestep according to the colorbar; generated
with the NN trained on σE = 50

Fig. 9 NN snapshot of the suggested actions in the belief space for σE = 50 and 500 sample points at t = 10

Page 14 of 20Koutas et al. J Infrastruct Preserv Resil (2024) 5:6

actually has an easily tractable belief, which facilitates the
evaluation of the algorithms in our investigation).

Computation time-wise, the NNs vastly outperform
MCTS. This can be partly attributed to the implemen-
tation: PyTorch tensor operations on the GPU for NNs
are much faster compared to standard Python list imple-
mentation on multiple CPUs for MCTS. The other part
can be attributed to the nature of the methods: passing a
state-action pair through the NN and retrieving the next
action via the Q-values is much faster than performing a
tree search for the next action at every timestep.

The results of our numerical investigation show that
both the NN architecture as well as the MCTS approach
perform suboptimally compared to the reference solution
found by value iteration. It is possible to improve the per-
formance of both approaches, in the case of NN, by addi-
tional training and hyperparameter tuning, and in the case
of MCTS, by employing a larger number of samples. How-
ever, our results reflect an honest assessment of the capa-
bilities of these methods.

The NN’s solution highly depends on the local minimum
found during training. This explains the non-smooth stand-
ard deviation curve and the large differences of resulting sta-
tistical strategy profiles in different training runs, as reflected
in Fig. 4. Generally, the NN’s strategy profile changes consid-
erably for σE > 100 as the NN approaches the solution for
the case of uninformative observations.

As evidenced by Fig. 9, the NN’s policy is stochastic in the
belief space, although it is deterministic in the observation
space. As the optimal policy is deterministic in the belief
space (as given by the VI solution shown in Fig. 6), one can
observe that the trained NN is not yet able to capture implic-
itly the underlying belief space, which is one reason for its
suboptimality. Thus, if the belief can be computed, it should
be used as an input to the NN, as this will strongly enhance
its performance (see, e.g., [46]) and facilitate interpretability.

The MCTS provides suboptimal but still decent
results for σE ≤ 50 , where it trades LCC for lower var-
iance. This can also be seen in Fig. 5, where the NN
employs only a2 leading to an overall lower mean cost
but higher variance due to the acceptance of occasional
failures. For higher observation errors, the MCTS per-
formance decreases significantly, showing a limited
ability to handle uninformative observations. This is
exemplified by slightly changing strategy profiles with
increasing σE in Fig. 5. Interestingly, Figs. 7 and 6 show
that the MCTS’ general solution is similar to the VI
optimal solution provided. However, the inherent sto-
chasticity of the method results in a stochastic policy
in the belief space. This property is most apparent at
the beginning of the life cycle, where the long-term
effects of some actions are difficult to estimate.

A disadvantage of the MCTS approach is that it has no
memory; thus, each sample trajectory has to be computed
independently and expensively. By contrast, NNs, once
trained, contain all the information in the weights, and the
evaluation can be performed swiftly. In addition, we specu-
late that this memorylessness of the MCTS leads to worse
performance compared to the NNs, which can learn the
degradation behaviour through observed trajectories.

Overall, and possibly expected, the neural networks are the
preferred choice. However, there are numerous opportunities
for further enhancements of both solution approaches.

The performance investigation of the NN could be
extended, for example, by studying its dependence on the
network size, its generalization capabilities (e.g., increased
lifetime, different distributions), or by using the belief as an
input instead of the observations for comparison. Moreo-
ver, the NN architecture can be extended by incorporating a
double deep Q-network (DDQN) or by replacing the LSTM
architecture with transformers (see, e.g., [46, 47]).

The MCTS method could be extended by, e.g., using
erroneous observations instead of exact beliefs [36] for
performance comparison or by switching to continuous
state MCTS to dispense with discretization. NN and
MCTS can also be combined by adding a planning step
to the NN-based solution.

Conclusion
In this work, we propose the +RQN architecture for
POMDP and I &M planning, which requires merely the
erroneous observations and the previous action taken as
an input. The resulting neural networks are computation-
ally fast and achieve good performance for measurement
errors over several magnitudes through policy adaption.
However, NNs, in general, inherently suffer from interpre-
tation difficulties. The trained model consists already for
small problems of thousands of weights. Interpreting the
results or gaining underlying physical insights and proper-
ties of the system is non-trivial. This characteristic is evi-
dent in policy extraction, which is challenging to conduct
in the belief space, as beliefs cannot be imposed but only
tracked along the NN’s trajectories.

By contrast, computing many histories with the
MCTS method is computationally much slower. In
addition, it is inherently based on constructing a tree
that exponentially grows with increasing depth, which
needs large amounts of memory. The results of the
MCTS are comparable to the NNs for small to medium
observation errors. However, for high observation
errors, the MCTS method fails to adapt its policy and
achieves significantly worse results compared to the
NNs and VI. The key advantage of the MCTS method
lies in the evaluation of their policies. Any belief

Page 15 of 20Koutas et al. J Infrastruct Preserv Resil (2024) 5:6

combination can be specified as a starting point which
greatly facilitates the interpretation of the results.

Appendix 1: Model Info
Model data
The specific parameters for the model used in this work
are outlined in Appendix 1: Table 1.

Table 1 Summary of model and cost parameters

Model Costs

Parameter Value Parameter Value

µD0
−132.64 ca0 0

µK0
6.4 ca1 1

σD0
20.85 ca2 5

σK0 1 ca3 100

�d 10.5 cF 150

�k 0.2 γ 1
1.02

Effect of actions
The (belief) state of the system is influenced by the four avail-
able actions, whose effects are detailed in Appendix 1: Table 2.

Table 2 Mathematical description of the action ai effects on
individual D and K states as well as their corresponding beliefs
µD and µK . At a3 , the replacement is conducted by drawing new
samples D̃0 and K̃0 (from the distribution in Eq. (20)) and not by
reusing the samples from the current simulation

Action Effect State level Belief level

a0 do Dt = Dt−1 + Kt−1 µ′
Dt

= µ′′
Dt−1

+ µ′′
Kt−1

nothing Kt = Kt−1 µ′
Kt
= µ′′

Kt−1

a1 reduce Dt = Dt−1 + Kt−1 −�k µ′
Dt

= µ′′
Dt−1

+ µ′′
Kt−1

−�k

det. rate Kt = Kt−1 −�k µ′
Kt
= µ′′

Kt−1
−�k

a2 improve Dt = Dt−1 + Kt−1 −�d µ′
Dt

= µ′′
Dt−1

+ µ′′
Kt−1

−�d

det. state Kt = Kt−1 µ′
Kt
= µ′′

Kt−1

*a3 replace Dt = D̃0 + K̃0 µ′
Dt

= µ′′
D0

+ µ′′
K0

system Kt = K̃0 µ′
Kt
= µ′′

K0

Action a3 consists of sampling new values for the deterio-
ration state and deterioration rate from the following mul-
tivariate normal distribution:

where we denote with “ ′ ” and “ ′′ ” the prior and posterior
distributions, respectively. The corresponding analytical
terms are detailed in the following.

(20)

[

Dt

Kt

]∣

∣

∣

∣

∣

a3,t−1

∼ N2

([

µD0
+ µK0

µK0

]

,

[

σ ′2
Dt

ρ′
tσ

′
Dt
σ ′
Kt

ρ′
tσ

′
Dt
σ ′
Kt

σ ′2
Kt

])

,

Transition probabilities ‑ state level
At every timestep t ≥ 1 , after observing Ot , the updated
distribution of Dt and Kt is a binormal distribution, with
mean µ′′

D,t , µ
′′
K ,t , standard deviations σ ′′

D,t , σ
′′
K ,t and correla-

tion coefficient ρ′′
t .

Prior and posterior covariance matrix of Dt and Kt
For the covariance matrix, the transition from ′′t−1 to ′′t does
not depend on Ot or At , hence is deterministic:

Posterior mean values of Dt and Kt
Conversely to the covariance matrix, the posterior mean val-
ues of Dt and Kt depend on the value of the observation Ot

Transition probabilities ‑ belief level
The covariance of Dt and Kt is fully known (does not
depend on Ot). The means of the distributions are fully
observed at each timestep (see Eqs. (27) and (28)). The
belief Bt at time t is composed of the two posterior means,

(21)σ ′
D,t =

√

σ ′′2
K ,t−1 + σ ′′2

D,t−1 + 2ρ′′
t−1σ

′′
K ,t−1σ

′′
D,t−1

(22)σ ′′
D,t =

σEσ
′
D,t

√

σ 2
E + σ ′2

D,t

(23)σ ′
K ,t = σ ′′

K ,t−1

(24)σ ′′
K ,t =

σ ′
K ,t

√

σ 2
E + σ ′2

D,t

(

1− ρ′2
t

)

√

σ 2
E + σ ′2

D,t

(25)ρ′
t =

ρ′′
t−1σ

′′
D,t−1 + σ ′′

K ,t−1
√

σ ′′2
K ,t−1 + σ ′′2

D,t−1 + 2ρ′′
t−1σ

′′
K ,t−1σ

′′
D,t−1

(26)ρ′′
t =

ρ′
tσE

√

σ 2
E + σ ′2

D,t

(

1− ρ′2
t

)

.

(27)µ′′
D,t =

σ ′′2
D,t

σ 2
ǫ

Ot +
σ ′′2
D,t

σ ′2
D,t

µ′
D,t

(28)µ′′
K ,t =

ρ′
tσ

′
D,tσ

′
K ,t

σ 2
ǫ + σ ′2

D,t

(Ot − µ′
D,t)+ µ′

K ,t .

Page 16 of 20Koutas et al. J Infrastruct Preserv Resil (2024) 5:6

µ′′
D,t and µ

′′
K ,t . From Eq. (27) and Ot |Dt ∼ N (Dt , σǫ) , which

gives Ot ∼ N (µ′
D,t ,

√

σ 2
ǫ + σ ′2

D,t) , we obtain that

One can show that µ′′
K ,t is fully correlated with µ′′

D,t
conditional on the belief at t1:

Appendix 2: Neural network specifications
Fixed NN parameters
The number of hidden layers loosely follows the archi-
tecture from [25]. It is possible that the network achieves
better performance or equal performance with shorter
training time with other configurations.

The output dimensions of O, a, A, V , and Q are fixed by
our problem formulation, i.e., we have one observation vari-
able and four available one-hot encoded actions. The output
dimensions of all other layers - the three FC layers and the
LSTM layer - can be freely chosen. The dimensions of all cus-
tomizable layers have been selected heuristically. The fully
connected layers are numbered according to the order in
which they appear from left to right, i.e., there are two FC1
and FC2 layers. The sizes of FC2 (and FC1) have been chosen
to have the same dimension to not impose an ad hoc ranking
of importance before they enter the LSTM layer. The exact
values for the number of nodes in each layer and all other
parameters set heuristically are given in Appendix 2: Table 3.

Table 3 Summary of new heuristically chosen network and
optimizer parameters

Network Optimizer

Parameter Value Parameter Value

FC1 size 20 Optim. type Adam [76]

FC2 size 25 Learning rate 0.001 [77]

Hidden state size 80 Betas (0.9, 0.999) [77]

FC3 size 160 AMSGRAD Included [78]

FC activation funcs. Leaky ReLU Batch size 500

Leaky ReLU slope 0.3 Epochs 500 (at most)

Target update 3 ǫ decrease 0.1

The total number of parameters of our NN architecture for
the specific values given in Appendix 2: Table 3 is 57,195.

We train the networks for at most 500 epochs. How-
ever, early stopping is also implemented, i.e., training is
interrupted if the training loss does not further decrease
over an extended period [68].

(29)

µ′′
D,t |Bt−1,At ∼ N

µ′
D,t(Bt−1,At),

σ ′2
D,t

�

σ 2
ǫ + σ ′2

D,t

.

(30)µ′′
K ,t =

ρ′
tσ

′
K ,t

σ ′
D,t

(µ′′
D,t − µ′

D,t)+ µ′
K ,t .

Optimized NN parameters
Our chosen parameters to optimize are given in the fol-
lowing list.

1. Weight decay parameter � (L2 regularization) [68]
2. Maximum ǫ value (coupled with a decrease)
3. Learning rate step size
4. Learning rate multiplication factor

Including weight decay, the loss function gets an addi-
tional term:

where W is a matrix containing all network weights, R
denotes the regularization function, which is the squared
sum of all network weights (L2), and � is a scaling param-
eter determining the relative importance of the regulari-
zation term compared to the MSE loss. We search for an
optimal value of �.

We implement our behaviour policy, i.e., the policy
with which we select the next action when generating a
batch of trajectories, as a decreasing ǫ-greedy method
which starts with the value ǫ in the beginning to fuel
exploration but decreases to 0 for exploitation of the
final policy. However, one can also choose a different
minimum ǫ-value (e.g., 0.1 in [25]) to always force some
exploration. Our update scheme takes the form of:

Therefore, our scheme implements a simple linear
reduction. The starting value of ǫ is optimized.

We also implement a learning rate scheduler, where
the learning rate starts at a high value and periodically
decreases, which helps both generalization and optimi-
zation [79]. We implement a simple step decay schedule
that reduces the learning rate by a constant factor η every
constant number of epochs m [80]. Hence, we search for
the optimal values of m and η.

There are plenty more common practices for training
NNs, e.g., weight initialization, batch normalization, and
dropout. For most of these, we follow the default settings
of PyTorch; these will not be further explained here.

NN Optimization technique
Several search techniques can be employed to find
good NN hyperparameters. The most common one is
manual search, which is simple and effective for find-
ing reasonable estimates (e.g., initial learning rate), but
becomes unstructured and ineffective when the search
space of the parameters to tune grows. Therefore, we
use grid search, where we define a set of points for each
of our desired hyperparameters and iterate over all
possible combinations [68]. During the procedure, we

(31)L = LMSE + � · R(W),

(32)ǫ ←− ǫ − 0.1.

Page 17 of 20Koutas et al. J Infrastruct Preserv Resil (2024) 5:6

track the performances of each network and select the
best-performing one.

Appendix 3: MCTS tuning
A number of parameters influence the performance of
the tree search method and hence need to be optimized.
The disadvantage of MCTS compared to NNs is that
parameters cannot be passed as an input, and the method
finds the optimal values by itself. In addition, it takes
too much time to generate an accurate representation of
the performance of the tree; therefore, we cannot use an
extensive grid search as we did with the NNs (Appendix
2: NN Optimization technique section). Thus, we try to
minimize the number of parameters we need to optimize.
The remaining parameters are then analysed sequentially
with appropriate assumptions.

Fixed MCTS parameters
The variable c in Eq. (18) is also called the explora-
tion constant, since it expresses the weight of explo-
ration (second term) compared to exploitation (first
term). When c = 0 , one has a purely greedy policy [81].
On the other hand, when c −→ ∞ , one has a purely
exploratory policy. We conveniently set c = 1 , but other
approaches exit (see, e.g., [36].

The next parameters that we fix are the upper and lower
bounds of the observation buckets. The MCTS algorithm
works with discrete observations, but our case study con-
cerns a continuous deterioration and a continuous obser-
vation space. Although there exist MCTS variations which
can deal with continuous action and state spaces (see, e.g.,
[82]), we can easily transform our problem to the discrete
space by bucketing our observations, i.e., a certain bucket
points to a range of observations. The question that now
arises is how to choose these buckets. Generally, the
bucket size does not have to be constant, but for simplic-
ity, we choose buckets of equal size (with the exception
of the first and last bucket). Therefore, we only need to
define the ceiling (dce) and floor (dfl) bound, as well as the
number of desired observation buckets to fully define our
buckets. The general case of Nob equal-sized observation
buckets is depicted in Appendix 3: Fig. 10:

Fig. 10 Bucket intervals for the general case of Nob observation buckets

Thus, we need to find some reasonable values for the
floor and ceiling values dfl and dce . We can relate dfl to
a percentile of the initial distribution of D, and dce to
a percentile of the final distribution of D when letting
the system evolve without intervention (i.e., the “worst”
case). This leads to:

Tunable MCTS parameters
There are further parameters that we do not set a priori
but still highly influence the MCTS’ performance. The
parameters to be optimized are given in the following list.

1. Tree iterations NT

2. Rollout runs NR

3. Observation buckets Nob

The number of tree iterations NT dictates the depth the
tree reaches, i.e., the number of timesteps it looks into
the future. In addition, a higher number of tree iterations
increases the accuracy of the Q-value estimate. However,
the possible number of nodes in our tree grows exponen-
tially with increasing depth, and one can also increase the
accuracy with the number of rollout runs NR from a given
system state. Averaging over multiple rollouts instead of
relying on a single run greatly reduces the susceptibility
to high variances resulting from large differences in
action and failure costs.

Lastly, the number of observation buckets Nob is also a
crucial parameter, as it influences the reachable depth of
the tree given a fixed number of tree iterations. In addi-
tion, it represents the degree of precision with which the
observations are discretized. Hence, it is essential to find
the right balance between depth and resolution.

MCTS parameter optimization technique
What remains now is to outline an optimization proce-
dure for the three parameters of Appendix 3: Tunable
MCTS parameters section considering the observation

(33)dfl = −159.36

(34)dce = 26.67.

Page 18 of 20Koutas et al. J Infrastruct Preserv Resil (2024) 5:6

error. Generally, it is assumed that the optimal number
of observation buckets is dependent on the observation
error with regards to minimizing the LCC.

The first analysis is conducted on the time dependence
of NT and NR , where we impose some threshold of com-
putation time needed to traverse a whole life cycle with
the MCTS method to stay in a computationally feasible
domain. It is assumed that the computation time is inde-
pendent of the observation error and is only minimally
affected by the choice of Nob , which is why they are fixed.

The result of the analysis is a set of different possible com-
binations of the two parameters, which satisfy our imposed
computation threshold. To settle for a single combination,
the influence of NT and NR on the LCC will be taken into
account. We assume that the resulting curves qualitatively
hold for any Nob and σE , which is why they are fixed again.

Secondly, once NT and NR have been fixed with the
time constraints and LCC maximization, we search for
the optimal number of observation buckets given a set of
observation errors of interest.

Abbreviations
+RQN Action-specific Deep Dueling Recurrent Q-network
DCMAC Deep Centralized Multi-agent Actor Critic
DDMAC Deep Decentralized Multi-agent Actor Critic
DRL Deep Reinforcement Learning
DQN Deep Q-Network
DDQN Double Deep Q-Network
FC Fully Connected
I[MYAMP M] Inspection and Maintenance
LCC Life Cycle Cost
LSTM Long Short-Term Memory
MC Monte Carlo
MCTS Monte Carlo Tree Search
MDP Markov Decision Process
MSE Mean-Squared Error
NN Neural Network
POMDP Partially Observable Markov Decision Process
RL Reinforcement Learning
RV Random Variable
UCT Upper Confidence Bound for Trees
VI Value Iteration

Authors’ contributions
D.K. worked on the investigation and visualization. D.K. and E.B. developed the
methodology, software, and the original draft of the manuscript. E.B. and D.S.
supervised and validated the work. All authors worked on the conceptualiza-
tion, reviewed and edited the manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL. The study was
partially supported by the TUM Georg Nemetschek Institute Artificial Intel-
ligence for the Built World.

Availability of data and materials
The environment used and/or analysed during the current study are available
from the corresponding author on reasonable request.

Declarations

Competing interests
The authors declare no competing interests.

Received: 9 August 2023 Revised: 23 February 2024 Accepted: 9 April
2024

References
 1. Rioja F (2013) What Is the Value of Infrastructure Maintenance? A

Survey. Infrastruct Land Policies 13:347–365
 2. Daniela L, Di Sivo M (2011) Decision-support tools for municipal infra-

structure maintenance management. Procedia Comput Sci 3:36–41
 3. Frangopol DM, Kallen MJ, Noortwijk JMV (2004) Probabilistic models

for life-cycle performance of deteriorating structures: review and
future directions. Prog Struct Eng Mater 6(4):197–212

 4. Bismut E, Straub D (2021) Optimal Adaptive Inspection and Mainte-
nance Planning for Deteriorating Structural Systems. Reliab Eng Syst
Saf 215:107891

 5. Straub D (2021) Lecture Notes in Engineering Risk Analysis. Technical
University of Munich, Germany

 6. Sullivan TJ (2015) Introduction to Uncertainty Quantification, vol 63.
Springer

 7. Madanat S (1993) Optimal infrastructure management decisions under
uncertainty. Transp Res C Emerg Technol 1(1):77–88

 8. Luque J, Straub D (2019) Risk-based optimal inspection strategies
for structural systems using dynamic Bayesian networks. Struct Saf
76:68–80

 9. Melchers RE, Beck AT (2018) Structural reliability analysis and prediction.
Wiley

 10. Rausand M, Hoyland A (2003) System reliability theory: models, statistical
methods, and applications, vol 396. Wiley

 11. ASCE (2021) 2021 Report Card for America’s Infrastructure; Energy.
https:// infra struc turer eport card. org/ wp- conte nt/ uploa ds/ 2020/ 12/
Energy- 2021. pdf. Accessed 17 July 2022

 12. Yuen KV (2010) Bayesian Methods for Structural Dynamics and Civil
Engineering. Wiley

 13. Kim S, Frangopol DM, Soliman M (2013) Generalized Probabilistic Frame-
work for Optimum Inspection and Maintenance Planning. J Struct Eng
139(3):435–447

 14. Kim S, Frangopol DM, Zhu B (2011) Probabilistic Optimum Inspection/
Repair Planning to Extend Lifetime of Deteriorating Structures.
J Perform Constr Facil 25(6):534–544

 15. Kochenderfer MJ (2015) Decision Making Under Uncertainty: Theory
and Application. MIT Press, Cambridge

 16. Andriotis C, Papakonstantinou K (2021) Deep reinforcement learning
driven inspection and maintenance planning under incomplete infor-
mation and constraints. Reliab Eng Syst Saf 212:107551

 17. Kaelbling LP, Littman ML, Cassandra AR (1998) Planning and acting in
partially observable stochastic domains. Artif Intell 101(1–2):99–134

 18. Papadimitriou CH, Tsitsiklis JN (1987) The Complexity of Markov Decision
Processes. Math Oper Res 12(3):441–450

 19. Meng L, Gorbet R, Kulić D (2021) Memory-based Deep Reinforcement
Learning for POMDPs. In: 2021 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, pp 5619–5626

 20. Andriotis C, Papakonstantinou K (2019) Managing engineering systems
with large state and action spaces through deep reinforcement learn-
ing. Reliab Eng Syst Saf 191:106483

 21. Schöbi R, Chatzi EN (2016) Maintenance planning using continuous-
state partially observable Markov decision processes and non-linear
action models. Struct Infrastruct Eng 12(8):977–994

https://infrastructurereportcard.org/wp-content/uploads/2020/12/Energy-2021.pdf
https://infrastructurereportcard.org/wp-content/uploads/2020/12/Energy-2021.pdf

Page 19 of 20Koutas et al. J Infrastruct Preserv Resil (2024) 5:6

 22. Corotis RB, Hugh Ellis J, Jiang M (2005) Modeling of risk-based inspec-
tion, maintenance and life-cycle cost with partially observable Markov
decision processes. Struct Infrastruct Eng 1(1):75–84

 23. Hausknecht M, Stone P (2015) Deep Recurrent Q-Learning for Partially
Observable MDPs. In: 2015 AAAI fall symposium series

 24. Lample G, Chaplot DS (2017) Playing FPS Games with Deep Reinforce-
ment Learning. In: Thirty-First AAAI Conference on Artificial Intelligence

 25. Zhu P, Li X, Poupart P, Miao G (2017) On Improving Deep Reinforce-
ment Learning for POMDPs. arXiv preprint arXiv:170407978

 26. Song DR, Yang C, McGreavy C, Li Z (2018) Recurrent Deterministic
Policy Gradient Method for Bipedal Locomotion on Rough Terrain
Challenge. In: 2018 15th International Conference on Control, Automa-
tion, Robotics and Vision (ICARCV). IEEE, pp 311–318

 27. Wang C, Wang J, Shen Y, Zhang X (2019) Autonomous Navigation of
UAVs in Large-Scale Complex Environments: A Deep Reinforcement
Learning Approach. IEEE Trans Veh Technol 68(3):2124–2136

 28. Duan Y, Chen X, Houthooft R, Schulman J, Abbeel P (2016) Benchmark-
ing Deep Reinforcement Learning for Continuous Control. In: Interna-
tional conference on machine learning. PMLR, pp 1329–1338

 29. Mnih V, Kavukcuoglu K, Silver D, Graves A, Antonoglou I, Wierstra D,
Riedmiller M (2013) Playing atari with deep reinforcement learning.
arXiv preprint arXiv:13125602

 30. Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare
MG, Graves A, Riedmiller M, Fidjeland AK, Ostrovski G et al (2015)
Human-level control through deep reinforcement learning. Nature
518(7540):529–533

 31. Brim A (2020) Deep Reinforcement Learning Pairs Trading with a
Double Deep Q-Network. In: 2020 10th Annual Computing and Com-
munication Workshop and Conference (CCWC). IEEE, pp 0222–0227

 32. Lv P, Wang X, Cheng Y, Duan Z (2019) Stochastic double deep
q-network. IEEE Access 7:79446–79454

 33. Haarnoja T, Zhou A, Abbeel P, Levine S (2018) Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochas-
tic actor. In: International conference on machine learning. PMLR, pp
1861–1870

 34. Silver D, Huang A, Maddison CJ, Guez A, Sifre L, Van Den Driessche G,
Schrittwieser J, Antonoglou I, Panneershelvam V, Lanctot M et al (2016)
Mastering the game of Go with deep neural networks and tree search.
Nature 529(7587):484–489

 35. Silver D, Hubert T, Schrittwieser J, Antonoglou I, Lai M, Guez A, Lanctot
M, Sifre L, Kumaran D, Graepel T et al (2018) A general reinforcement
learning algorithm that masters chess, shogi, and Go through self-play.
Science 362(6419):1140–1144

 36. Silver D, Veness J (2010) Monte-Carlo Planning in Large POMDPs. Adv
Neural Inf Process Syst 23:2164–2172

 37. Katt S, Oliehoek FA, Amato C (2017) Learning in POMDPs with Monte
Carlo Tree Search. In: International Conference on Machine Learning.
PMLR, pp 1819–1827

 38. Shao K, Tang Z, Zhu Y, Li N, Zhao D (2019) A Survey of Deep Reinforce-
ment Learning in Video Games. arXiv preprint arXiv:191210944

 39. Zhou W, Miller-Hooks E, Papakonstantinou KG, Stoffels S, McNeil S (2022)
A Reinforcement Learning Method for Multiasset Roadway Improvement
Scheduling Considering Traffic Impacts. J Infrastruct Syst 28(4):04022033

 40. Saifullah M, Andriotis C, Papakonstantinou K, Stoffels S (2022) Deep
reinforcement learning-based life-cycle management of deteriorating
transportation systems. In: Bridge Safety, Maintenance, Management,
Life-Cycle, Resilience and Sustainability. CRC Press, pp 293–301

 41. Skordilis E, Moghaddass R (2020) A Deep Reinforcement Learning
Approach for Real-time Sensor-Driven Decision Making and Predictive
Analytics. Comput Ind Eng 147:106600

 42. Huang J, Chang Q, Arinez J (2020) Deep Reinforcement Learning based
Preventive Maintenance Policy for Serial Production Lines. Expert Syst
Appl 160:113701

 43. Nguyen VT, Do P, Vosin A, Iung B (2022) Artificial-intelligence-based main-
tenance decision-making and optimization for multi-state component
systems. Reliab Eng Syst Saf 228:108757

 44. Mohammadi R, He Q (2022) A deep reinforcement learning approach for
rail renewal and maintenance planning. Reliab Eng Syst Saf 225:108615

 45. Morato PG, Andriotis CP, Papakonstantinou KG, Rigo P (2023) Inference
and dynamic decision-making for deteriorating systems with probabil-
istic dependencies through Bayesian networks and deep reinforcement

learning. Reliability Engineering & System Safety, vol 235. Elsevier, pp
109144

 46. Arcieri G, Hoelzl C, Schwery O, Straub D, Papakonstantinou KG, Chatzi
E (2023) POMDP inference and robust solution via deep reinforcement
learning: An application to railway optimal maintenance. submitted to
Machine Learning

 47. Hettegger D, Buliga C, Walter F, Bismut E, Straub D, Knoll A (2023)
Investigation of Inspection and Maintenance Optimization with Deep
Reinforcement Learning in Absence of Belief States. In: 14th International
Conference on Applications of Statistics and Probability in Civil Engineer-
ing, ICASP14

 48. Shang Y, Wu W, Liao J, Guo J, Su J, Liu W, Huang Y (2020) Stochastic Main-
tenance Schedules of Active Distribution Networks Based on Monte-
Carlo Tree Search. IEEE Trans Power Syst 35(5):3940–3952

 49. Hoffman M, Song E, Brundage MP, Kumara S (2021) Online improvement
of condition-based maintenance policy via monte carlo tree search. IEEE
Trans Autom Sci Eng 19(3):2540–2551

 50. Holmgren V (2019) General-purpose maintenance planning using deep
reinforcement learning and Monte Carlo tree search. Linköping Univer-
sity, Sweden

 51. Wang Z, Schaul T, Hessel M, Hasselt H, Lanctot M, Freitas N (2016) Dueling
Network Architectures for Deep Reinforcement Learning. In: International
conference on machine learning. PMLR, pp 1995–2003

 52. Morato PG, Papakonstantinou KG, Andriotis CP, Nielsen JS, Rigo P
(2022) Optimal inspection and maintenance planning for deteriorating
structural components through dynamic Bayesian networks and Markov
decision processes. Struct Saf 94:102140

 53. Berenguer C, Chu C, Grall A (1997) Inspection and maintenance plan-
ning: an application of semi-Markov decision processes. J Intell Manuf
8:467–476

 54. Faber MH, Sørensen JD, Tychsen J, Straub D (2005) Field Implementation
of RBI for Jacket Structures. J Offshore Mech Arctic Eng 127(3):220–226

 55. Ranjith S, Setunge S, Gravina R, Venkatesan S (2013) Deterioration Predic-
tion of Timber Bridge Elements Using the Markov Chain. J Perform Constr
Facil 27(3):319–325

 56. Noichl F (2019) Sequential decision problems with uncertain observa-
tions: Value of Information with erroneous assumptions. Master’s thesis,
TU München

 57. Braziunas D (2003) POMDP solution methods. University of Toronto
 58. Dong H, Dong H, Ding Z, Zhang S, Chang (2020) Deep Reinforcement

Learning. Springer
 59. Cassandra AR, Kaelbling LP, Littman ML (1994) Acting Optimally in Par-

tially Observable Stochastic Domains. AAAI 94:1023–1028
 60. Walraven E, Spaan MT (2019) Point-Based Value Iteration for Finite-Hori-

zon POMDPs. J Artif Intell Res 65:307–341
 61. Oliehoek FA, Spaan MT, Vlassis N (2008) Optimal and Approximate

Q-value Functions for Decentralized POMDPs. J Artif Intell Res 32:289–353
 62. Straub D (2009) Stochastic Modeling of Deterioration Processes through

Dynamic Bayesian Networks. J Eng Mech 135(10):1089–1099
 63. Hauskrecht M (2000) Value-function approximations for partially observ-

able markov decision processes. J Artif Intell Res 13:33–94
 64. Brownlee J (2020) Data Preparation for Machine Learning: Data Cleaning,

Feature Selection, and Data Transforms in Python. Machine Learning Mastery
 65. Hochreiter S, Schmidhuber J (1997) Long Short-Term Memory. Neural

Comput 9(8):1735–1780
 66. Nielsen MA (2015) Neural Networks and Deep Learning, vol 25. Determi-

nation press, San Francisco
 67. Bottou L et al (1991) Stochastic Gradient Learning in Neural Networks.

Proc Neuro-Nımes 91(8):12
 68. Niessner M, Leal-Taixé L (2021) Introduction to Deep Learning. Technical

University of Munich, Germany
 69. Vodopivec T, Samothrakis S, Ster B (2017) On Monte Carlo Tree Search

and Reinforcement Learning. J Artif Intell Res 60:881–936
 70. Metropolis N, Ulam S (1949) The Monte Carlo Method. J Am Stat Assoc

44(247):335–341
 71. Tarsi M (1983) Optimal Search on Some Game Trees. J ACM (JACM)

30(3):389–396
 72. Gibbons R et al (1992) A Primer in Game Theory. Harvester Wheatsheaf,

New York
 73. Abramson B (2014) The Expected-Outcome Model of Two-Player Games.

Morgan Kaufmann, San Mateo

Page 20 of 20Koutas et al. J Infrastruct Preserv Resil (2024) 5:6

 74. Browne CB, Powley E, Whitehouse D, Lucas SM, Cowling PI, Rohlfshagen
P, Tavener S, Perez D, Samothrakis S, Colton S (2012) A Survey of Monte
Carlo Tree Search Methods. IEEE Trans Comput Intell AI Games 4(1):1–43

 75. Kocsis L, Szepesvári C (2006) Bandit based Monte-Carlo Planning. In:
European conference on machine learning. Springer, pp 282–293

 76. Kingma DP, Ba J (2014) Adam: A method for stochastic
optimization. arXiv preprint arXiv:14126980

 77. PyTorch (2022) Adam. https:// pytor ch. org/ docs/ stable/ gener ated/ torch.
optim. Adam. html# torch. optim. Adam. Accessed 03 July 2022

 78. Reddi SJ, Kale S, Kumar S (2019) On the convergence of adam and
beyond. arXiv preprint arXiv:190409237

 79. You K, Long M, Wang J, Jordan MI (2019) How does learning rate decay
help modern neural networks? arXiv preprint arXiv:190801878

 80. Ge R, Kakade SM, Kidambi R, Netrapalli P (2019) The Step Decay Schedule:
A Near Optimal, Geometrically Decaying Learning Rate Procedure For
Least Squares. Adv Neural Inf Process Syst 32:14977-14988

 81. Gelly S, Silver D (2011) Monte-Carlo tree search and rapid action value
estimation in computer Go. Artif Intell 175(11):1856–1875

 82. Couetoux A (2013) Monte Carlo Tree Search for Continuous and Stochastic
Sequential Decision Making Problems. PhD thesis, Université Paris
Sud-Paris XI

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://pytorch.org/docs/stable/generated/torch.optim.Adam.html#torch.optim.Adam
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html#torch.optim.Adam

	An investigation of belief-free DRL and MCTS for inspection and maintenance planning
	Abstract
	Introduction
	Basic maintenance problem
	Investigated system
	Sequential decision making
	POMDP reference solution

	Neural networks
	Architecture
	Q-values, loss, cost and weight updates
	Training procedure

	MCTS
	Functionality
	UCT for action selection

	Results
	Metrics for comparison
	Computation time
	Performance
	Policy comparison

	Discussion
	Conclusion
	Appendix 1: Model Info
	Model data
	Effect of actions
	Transition probabilities - state level
	Prior and posterior covariance matrix of and
	Posterior mean values of and

	Transition probabilities - belief level

	Appendix 2: Neural network specifications
	Fixed NN parameters
	Optimized NN parameters
	NN Optimization technique

	Appendix 3: MCTS tuning
	Fixed MCTS parameters
	Tunable MCTS parameters
	MCTS parameter optimization technique

	References

