
Elshazli et al. J Infrastruct Preserv Resil             (2024) 5:5  
https://doi.org/10.1186/s43065-024-00096-x

RESEARCH Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

Journal of Infrastructure
Preservation and Resilience

Advancing infrastructure resilience: machine 
learning-based prediction of bridges’ rating 
factors under autonomous truck platoons
Mohamed T. Elshazli3, Dina Hussein2, Ganapati Bhat2, Ahmed Abdel‑Rahim1 and Ahmed Ibrahim1* 

Abstract 

The operational characteristics of freight shipment will significantly change after the implementation of Autono‑
mous and Connected Trucks (ACT). This change will have a significant impact on freight mobility, transportation 
safety, and the sustainability of infrastructure. Truck platooning is an emerging truck configuration that is expected 
to become operational in the future due to the rapid advancements in connected vehicle technology and autono‑
mous driving assistance. The platooning configuration enables trucks to be connected with themselves and the sur‑
rounding infrastructure. This arrangement has shown to be a promising solution to improve the vehicles’ fuel effi‑
ciency, reduce carbon dioxide emission, reduce traffic congestion, and improve transportation service. However, 
platooning may accelerate the damage accumulation of pavement and bridge structures due to the formation 
of multiple load axles within each platoon since those structures were not designed for such loads. According 
to AASHTO, bridges are designed based on a notional live load model comprised of one or two trucks per lane in con‑
junction with or separate from an applied uniform load (AASHTO, LRFD 2022). This damage, if accumulated, its repair 
would require billions of dollars from the government and would impede the movement of both people and goods. 
The potential damage to infrastructure may arise due to various factors such as the number of trucks in a platoon, gap 
spacing between trucks, and the type of trucks. This research work includes a thorough parametric study with 295,200 
computer simulations using SAP 2000. The goal was to evaluate the effect of different truck platooning configurations 
on the load rating of existing bridges. The obtained results served as the dataset for training various machine learn‑
ing models, including Random Tree, Random Forest, Multi‑Layer Perceptron (MLP), Support Vector Regression (SVR), 
K‑Nearest Neighbor (KNN), and Extreme Gradient Boosting (XGBoost). Results showed that Random Forest model 
performed the best, with the lowest prediction errors. The proposed machine learning model has shown its effective‑
ness in identifying optimal platooning configurations for bridge structures within the scope of the study.
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Graphical Abstract

Introduction
The transportation sector has become the second-largest 
energy consumption section in the United States, with 
an oil demand of 52 million barrels per day [1]. Within 
the transportation industry, freight shipment represents 
a critical component that contributes significantly to 
overall energy consumption. Based on the International 
Energy Agency database (IEA, 2022), freight vehicles 
alone consumed 17 million barrels of oil per day, and 
this demand is expected to increase by 2.5 times by 2050 
[2]. To address this growing concern, several innovative 

solutions have been proposed, including the use of wide-
base tires [3], aerodynamic truck designs [4], and optimi-
zation of truck routes [5].

One potential solution that has gained significant atten-
tion is the platooning of freight trucks using autonomous 
and connected vehicle technology, where freight trucks 
are positioned close to each other to improve transporta-
tion efficiency. As illustrated in Fig. 1, a platoon is formed 
when trucks are placed very closely one after another, 
with a distance as close as 10 feet [6]. Platooning con-
figurations utilize sensors to gather data that controls a 

Fig. 1 A three‑truck platoon (U.S. Department of Transportation)
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truck’s braking system and speed, ensuring safe and effi-
cient operation. A forward collision avoidance system 
and vehicle-to-vehicle communication enable two trucks 
to travel closely together [7–9].

Truck platooning is expected to have numerous advan-
tages in addition to reduced fuel consumption. This tech-
nology is expected to reduce traffic congestion, reduce 
carbon dioxide emissions, improve travel safety, and 
speed up goods delivery [8, 10–13]. By positioning trucks 
in platoon configurations with close inter-vehicle spac-
ing, the total drag force experienced by each truck can 
be decreased [14, 15]. Consequently, this reduction in 
aerodynamic drag improves fuel efficiency and reduces 
fuel consumption, contributing to the environmental and 
economic benefits of truck platooning [16–18].

While truck platooning has the potential to improve 
transportation services and promote fuel efficiency, this 
innovative solution is expected to accelerate the deterio-
ration of current infrastructure. The 615,000 bridges in 
the United States are designed to withstand the extreme 
forces produced by the hypothetical live-load model for 
the current conventional truck configuration. With the 
anticipated widespread adoption of Autonomous and 
Connected Trucks (ACT) technology, however, these 
bridges may become unsafe for operation [19, 20], neces-
sitating the evaluation and load rating of all transporta-
tion infrastructure.

In 2017, the Florida Department of Transportation 
(FDOT) conducted a study that highlighted the need to 
improve load rating methodology to account for truck 
platooning with varying configurations and bridge con-
ditions [21]. Kamaranian’s 2018 study [22] evaluated the 
impact of different platoon configurations on the Hay 
River Bridge and reported that the bridge’s load ratings 
were insufficient for three and four-truck platoons. Yar-
nold and Weidner’s 2019 study [23] identified concerns 
for positive bending moments and shear forces in exist-
ing bridges designed according to AASHTO Standards 
Specification for Highway Bridges, which can limit the 
implementation of truck platooning. However, bridges 
designed according to AASHTO LRFD were found to 
be suitable for a wide range of platoon configurations. 
Tohme and Yarnold’s 2020 study [24] on steel bridge load 
ratings using Florida C5 five-axle semi-tractor trailers 
found that bridges load rated using ASR and LFR expe-
rienced a reduction in their rating factors for bending 
moments and shear forces. On the other hand, bridges 
rated using LRFR did not show any issue with negative 
moment ratings, but they did experience a reduction in 
their rating factors for positive moments on longer spans 
with closely spaced trucks.

Thulaseedharan and Yarnold (2020) [25] developed 
a new methodology for prioritizing bridges for truck 

platooning implementation. This methodology was cre-
ated to address the possible impact of truck platooning 
on bridges and to determine which bridges should be 
prioritized for renovation in order to accommodate this 
new technology. The Florida C5, Delaware T540, Ala-
bama 3S2 AL, Kentucky Type 4, Mississippi HS-Short, 
and AASHTO Type 3S2 were among the six five-axle 
truck models studied. In 2021, Couto Braguim et al. [26] 
found that truck platooning led to high load effects, but it 
reduced fatigue damage due to the reduction in the num-
ber of stress cycles.

In our study in 2023 [20, 27, 28], a parametric study of 
29,600 computer simulations was conducted. The study 
aimed to evaluate the influence of different truck platoon 
configurations, using the HS20 design truck, on the load 
rating of existing bridges using three different load rating 
approaches (ASR, LFR, LRFR). Bridges rated using ASR 
or LFR experienced a reduction in their rating factors 
for bending moments and shear forces. However, LRFR 
bridges showed better results, especially for short spans 
and widely spaced trucks. The findings showed signifi-
cant variations in bridge rating factors, highlighting the 
need for further investigation of a wider range of platoon 
parameters.

The previously mentioned literature indicates the criti-
cal need for a simple and effective approach to identify 
appropriate platoon configurations for existing bridges. 
Structural analysis software usually demands substantial 
modeling efforts and computational resources. However, 
the evolution of machine learning (ML) techniques has 
allowed their application across a wide range of fields, as a 
tool for addressing challenging problems that are difficult 
to tackle using traditional approaches [29–33]. The use of 
ML techniques has a wide range of advantages, including 
their exceptional accuracy and robustness in formulat-
ing predictions for complex circumstances. Furthermore, 
while machine learning algorithms may require signifi-
cant processing resources during the training phase, they 
ensure great computational efficiency during prediction, 
equivalent to empirical or semi-empirical formulas.

In this research work, we extended our earlier study 
by incorporating a wide range of truck platoon param-
eters, reaching a total of 295,200 computer simulations. 
The study matrix considered several parameters, includ-
ing the number of bridge spans, span lengths, truck type, 
number of trucks, and spacing between trucks (head-
way). The results were analyzed to provide insight into 
the impact of various parameters on the rating factors of 
bridges. Furthermore, the obtained results served as the 
dataset for training various ML models, including Ran-
dom Tree [34], Random Forest [35], Multi-Layer Percep-
tron (MLP)  [36], Support Vector Regression (SVR)  [37], 
K-Nearest Neighbor (KNN)  [38], and Extreme Gradient 
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Boosting (XGBoost) [39]. ML models were used in con-
junction with the AASHTO equations to predict the 
rating factors of bridges. “Numerical study results”  sec-
tion provides a comprehensive analysis of the paramet-
ric study to understand how the features correlate and 
how bridges’ rating factors are affected by truck platoon-
ing. The performance of the different ML algorithms 
addressed in this study is discussed in “Machine Learn-
ing (ML) results”  section. Finally, “Potential implemen-
tation”  section provides case study bridges as practical 
examples of how the research approach can be applied.
Contributions: This paper makes the following 

contributions:

• Extending the previous research work by conducting 
a total of 295,200 computer simulations. This exten-
sion broadens the understanding of the truck platoon 
parameters influencing bridges’ load rating.

• Providing a robust dataset for training ML models.
• Integrating ML algorithms with AASHTO equations 

to predict bridge rating factors. This integration rep-
resents a novel approach to improving the accuracy 
and efficiency of bridge rating assessments.

Research methodology
This study provides a tool that integrates ML models and 
AASHTO equations to predict percentage changes in 
bridge rating factors caused by truck platooning and pro-
vide optimal configurations. The methodology consists of 
two stages, Fig. 2. In the first stage, a numerical analysis 
was performed using SAP 2000 to compute the bending 
moments and shear forces of different parameters of the 
truck platoon, including the type of truck, the number of 
trucks, the headway spacing, the number of bridge spans, 
and the span length. The results served as a dataset for 
the second stage, which included the development and 
comparison of six ML regression models based on their 
accuracy. Finally, case study bridges were introduced to 
demonstrate the practical applicability of these models.

Numerical simulations
For this study, the same numerical model employed in 
our previous research work in [20, 27, 28] was utilized, 
with SAP 2000 v23.3.1 used for the analysis. The bridges 
were modeled as beam sections, with appropriate bound-
ary conditions. Self-weights were ignored during the 
analysis. Moving loads were defined as 1144 load cases, 
each with varying types of trucks, number of trucks, and 
headway spacing. Moving-load analysis was used to com-
pute influence lines, as well as envelope bending moment 
and shear force results, and all moving loads used a sta-
tion step size of 1 ft to ensure accuracy. A MATLAB 
script was developed to generate the input data files and 

manage the multiple output outcomes. Three Comma-
Separated Values (CSV) input files are required to define 
the model in SAP 2000: the bridge data file, vehicle defi-
nitions, and load cases. The MATLAB script was pre-
pared to generate these files in a format compatible with 
SAP 2000 input CSV files. An overview of the method-
ology used in the MATLAB scripts to generate the files 
is provided in Table 1. The analysis method used in this 
study was validated by a study conducted by Sayed et al. 
(2020) [19]. Further details about the model and the vali-
dation results are shown in [20].

Parametric study
The study matrix considered several parameters, includ-
ing the number of bridge spans, span lengths, truck type, 
number of trucks, and spacing between trucks (head-
way). By analyzing the results obtained from the simula-
tions, we were able to evaluate the changes in bridge load 
ratings and make recommendations for future applica-
tions. Table 2 shows the parametric study matrix.

The selection of the number of spans for the present 
study was based on the National Bridge Inventory (NBI) 
database from 2022. The analysis revealed that bridges 
with more than four spans represented a small portion of 
the bridge population in the United States. The percent-
ages of simple, two-, three-, four-, and more than four-
span bridges in the Pacific Northwest states are shown in 
Fig. 3. The study, therefore, focused on four bridge cases, 
simple, two-, three-, and four-span bridges. The study 
of bridge continuity effects was considered through the 
analysis of the response of the two-, three-, and four-span 
bridges.

Several state departments of transportation (DOTs) 
have conducted extensive research to identify a truck that 
can effectively represent the various categories of trucks 
and reduce the uncertainty associated with live load cal-
culations [40–42]. The Federal Highway Administration 
(FHWA) recently conducted a study that analyzed data 
from 49 Weigh-In-Motion (WIM) sites across 35 states 
to identify the most common truck configurations [43]. 
The results indicated that the five-axle tractor semitrailer 
Class 9 truck was the predominant class. Although Class 
5 and Class 6 trucks were observed at some locations, 
accounting for up to 10.84 and 10.71 percent of total traf-
fic, respectively, these trucks have fewer axles than Class 
9 vehicles, resulting in reduced load effects. As a result, 
this study focused on analyzing various Class 9 truck 
configurations, including FHWA Class 9, NJTA Type 3S2, 
FDOT C5, AASHTO Type 3S2, ALDOT Type 3S2, Dela-
ware T540, KYTC (Type 4), and MODOT (HS-Short) 
(see Fig. 4). Furthermore, the study considered platoons 
formed using the HS-20 design truck model, which is 
used in the ASD, LFD, and LRFD design methods.
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The notional design live load HL-93 was used as the 
basis for evaluating the load ratings of bridges in this 
study. The HL-93 is made up of the HS20 design truck 
and a design lane load of 0.64 kip/ft, or tandem, in addi-
tion to the design lane load. It is important to point out 
that the HL-93 load model is adopted by the Load and 

Resistance Factor Design (LRFD) method. To ensure the 
safety and reliability of bridge structures under diverse 
loading conditions, the LRFD approach accounts for 
multiple load and resistance factors.

This study covers a wide range of truck platoons, up to 
10 trucks, considering headway spacings between 8 and 

Fig. 2 Research methodology
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30 ft. The headway spacing is the distance between the 
last axle of the leading truck and the first axle of the fol-
lowing truck. Previous research has determined that a 
minimum safe distance between trucks of 10 ft (approxi-
mately 3 meters) is necessary [27, 44]. However, with the 
growing improvement of this technology, headway spac-
ing is expected to be as short as 8 ft. This range of head-
way spacing is essential to evaluate the effects of different 
distances between trucks in a platoon formation.

Bridge load ratings
The bridge load rating is an important method used by 
bridge owners to evaluate the current state of a bridge 
and its capacity to carry a live load. The rating factor 

(RF) is calculated by subtracting the dead load demand 
from the capacity and dividing the result by the live load 
demand.

The primary aim of this research was to develop ML 
models applicable to bridges designed according to ASD, 
LFD, and LRFD. It is recognized that bridge details, such 
as material and cross section, are required to calculate 
element capacity, and dead loads, to determine bridge 
rating factor according to LRFR, LFR, and ASR, using 
Eqs. 1 and 2.

where C is the capacity, DC is the dead load, DW is 
the wearing surface load, LL is the live load, IM is the 
dynamic effect, γDC , γDW  , and γLL are load factors.

where I is the capacity, D is the dead load, L is the live 
load, I is the dynamic effect, A1, and A2 are load factors.

While computing the rating factors for existing 
bridges using design loads (HS20 and HL93) is rela-
tively straightforward, calculating the impact of vari-
ous truck platooning configurations on bridge rating 
factors is time-consuming and costly. This requires an 
extensive numerical study to identify the optimal con-
figurations, adding a layer of complexity to the analysis. 
Therefore, our study did not focus on absolute rating 
factors, but on finding the percentage change in rat-
ing factors. In order to calculate the percentage change 
in rating factors, element capacity and dead loads will 
remain constant, and be eliminated from the equation. 
The final equations were just functions of the live loads, 
which were determined through the parametric study, 
see Eqs. 3 and 4.

where �RFLRFR is the percent of change in LRFR, LLHL93 , 
and LLPlatoon are the live loads due to HL93 design live 
load and a platoon configuration, respectively, IM is the 
dynamic effect.

where �RFASR−LFR is the percent of change in ASR or 
LFR, LLHS20 , and LLPlatoon are the live loads due to HS20 
design live load and a platoon configuration, respectively, 
I is the dynamic effect.

(1)RFLRFR =
C− γDC.DC− γDW.DW

γLL.(LL× IM)

(2)RFASR−LFR =
C− A1.D

A2.L(1× I)

(3)%�RFLRFR = 1−
LLHL93 × IM

LLPlatoon × IM
× 100

(4)

%�RFASR−LFR =

(

1−
LLHS20 × (1+ I)

LLPlatoon × (1+ I)

)

× 100

Table 1 Data processing using MATLAB for SAP 2000 numerical 
analysis

Preprocessing:
Three Comma‑Separated Values (CSV) input files were created using 
MATLAB to define the problem.

1) Bridge Data:
Variables: (number of spans (N), and span length (L))

1‑ Set the range of N and L according to the parametric study.

2‑ Loop over N and L to generate point coordinates, and frame elements.

3‑ Assign frame section.

2) Vehicle Definitions:
Variables: (number of trucks (x), number of axles (n), spacing 
between axles (s), and axle load (p))

1‑ Generate load names with the following designation (Type(class)_
Number(x)_Spacing(s)).

2‑ Assign number of axles for each load.

3‑ Define axle loads and spacing.

4‑ Apply scale factor (scale factor = 1 in the current study).

3) Load Cases:
1‑ Assign lanes to frame numbers.

2‑ Assign moving load cases for each load.

The three CSV dataframes are then imported into SAP2000
Postprocessing using MATLAB:
1‑ The results were exported in excel files.

2‑ MATLAB was used to perform the analysis and generate the figures.

Table 2 Parametric study matrix

a Truck types details are shown in Fig. 4

Parameter Number of 
variables

Increment Range

No. of Spans 4 1 Simple Span ‑ Four Spans

Span Length 41 5 ft 20 ft ‑ 220 ft

Truck  Typea 9 1 Type 1 ‑ Type  9a

No. of Trucks 10 1 1 Truck ‑ 10 Trucks

Headways 20 1 ft 10 ft ‑ 30 ft
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Numerical study limitations
The analysis is limited to superstructures designed using 
HS20 or HL93, and further research is needed to evaluate 
the substructure systems. In addition, the study assumes 
that all continuous-span bridges have equal spans. 
Another important assumption is that the platoon for-
mation only involved trucks of the same type with con-
stant headway spacing, without considering the impact of 
breaking force on the bridge. Lastly, the potential effects 
of combining truck platoons with regular traffic were not 
explored in this study. These limitations and assumptions 
must be kept in mind when applying the findings to real-
world scenarios.

Dataset and feature selection
For the purpose of developing a robust ML model, 
a comprehensive dataset was utilized, which was 
obtained through the numerical simulation step. We 
fed five features to the ML model, x1 to x5 , represent-
ing: truck type, number of trucks, spacing between 
trucks (headway), number of spans, and span length. 
While training, we also provided the model with out-
put yi(i ∈ {1, 2, 3}) which is either positive or negative 
bending moment or shear force. A separate model was 
trained for each output. The complete database is pro-
vided upon request.

Machine learning models
Six ML regression algorithms were adopted in this study 
to develop a predictive model: (1) Random Tree , (2) Ran-
dom Forest, (3) Multi-Layer Perceptron (MLP), (4) Sup-
port Vector Regression (SVR), (5) K- Nearest Neighbor 
(KNN), and (6) Extreme Gradient Boosting (XGBoost). 
For the first three models, we used WEKA platform [45] 
for training and validation. For algorithms (4) and (5), 
we used scikit-learn library [46] in Python. For XGBoost 
algorithm, we used the XGBoost library [47] in Python.

One-hot encoding was used to represent the truck 
type in a binary vector. One-hot encoding is a popular 
ML technique used to represent categorical variables as 
binary vectors  [48]. Each category is transformed into a 
binary vector with a one in the position corresponding to 
the category and zeros in all other places, allowing cat-
egorical data to be used effectively in ML algorithms.

To ensure the validity of the ML models, It is crucial 
to separate training and testing data. Two commonly 
used methodologies for training and test data separation 
include k-fold cross-validation and data splitting. k-fold 
cross-validation splits available data into k equal parts 
and trains the model k times. One data split among the 
k splits is used for testing while others are used for train-
ing. After verifying robustness of training and ensuring 
that all models provide comparable accuracy, the best 

Fig. 3 Percentages of simple, two, three, four, and more than four‑span bridges in the Pacific Northwest states



Page 8 of 26Elshazli et al. J Infrastruct Preserv Resil             (2024) 5:5 

performing model among the k trained models is used 
for testing with the entire dataset. The second approach 
for model training splits available data into dedicated 
training and test sets. The test set is hidden during 
model training and is used to evaluate performance of 
the trained model on unseen data. We used cross-valida-
tion in the Weka platform with 10 folds. In Python, the 
data was split into 60% for training and 40% of the data-
set for testing. We evaluate the models with the entire 
dataset after training using several performance meas-
ures including Root Mean Square Error (RMSE), Mean 

Absolute Error (MAE), and Correlation Coefficient (r). 
The RMSE and MAE are defined as:

where n, yi , and ŷi represent the total number of data 
points, actual values of the target variable, and predicted 
values of the target variable. Similarly, the correlation 
coefficient is defined as:

where xi , x̄ , and ȳ are values of the first variable, mean 
of the first variable, and mean of the second variable, 
respectively. The equation calculates the ratio of the 
covariance between the two variables and the product 
of their standard deviations, resulting in the correlation 
coefficient r.

Random tree
Random Tree is an ensemble learning tree-like model 
algorithm of decisions and their consequences. The 
architecture of the algorithm is composed of nodes and 
leaf nodes, where nodes represent decision points based 
on attribute values, and leaf nodes represent the final 
predicted outcome as seen in Fig. 5. It adopts the idea of 
random feature selection and bootstrap aggregating [34]. 
It is widely used for classification and regression tasks.

A random tree was trained with a total number of 
nodes of 12965 to predict the positive bending moment, 
negative bending moment, and shear force. One tree is 
trained to predict each metric. Each tree considers three 
randomly chosen features at each node. We used in our 
experiment on WEKA a batch size of 100. The minimum 
proportion of the variance on the data that needs to be 

(5)RMSE =

√

√

√

√

1

n

n
∑

i=1

(yi − ŷi)2

(6)MAE =
1

n

n
∑

i=1

|yi − ŷi|

(7)r =

∑n
i=1(xi − x̄)(yi − ȳ)

√

∑n
i=1(xi − x̄)2

√

∑n
i=1(yi − ȳ)2

Fig. 4 Truck types included in the parametric study

Fig. 5 Schematic Diagram of Random Tree Algorithm
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present at a node in order for splitting to be performed 
was set to 0.001.

One limitation of random trees is that they may suffer 
from overfitting a set of training data where the model 
has high accuracy on the training data but fails to gener-
alize to new data. This is because the model memorized 
training data and failed to learn the underlying pat-
tern that is applicable to new data [49]. Therefore, other 
algorithms such as random forest and XGBoost were 
explored to limit overfitting.

Random forest
Random forest algorithm has been used by researchers 
to avoid data overfitting  [35]. Random forest combines 
multiple decision trees (bagging) to improve prediction 
accuracy and reduce overfitting. Each tree is built from 
a random subset of the training data and a random sub-
set of the features. The final prediction is aggregated 
from individual tree results by utilizing the principle of 
majority voting for classification tasks and averaging for 
regression tasks, as shown in Fig.  6. In the experiment 
on WEKA, we used 100 trees with a total size of 10811 
nodes. We utilized bagging with about 100 iterations.

Multi‑Layer Perceptron (MLP)
MLP algorithm is a widely used artificial neural net-
work architecture. It consists of multiple layers of inter-
connected artificial nodes which are called neurons, 
organized in a feedforward manner [36]. The term "feed-
forward neural network" refers to information flowing 
from the input layer to the output layer in the network 
structure without any feedback or loop connections. 
Each neuron takes weighted inputs, applies an activation 
function to the sum, and then propagates the output to 
the neurons in the following layer. Figure 7 illustrates the 
basic structure of a feed-forward multi-layer perceptron 
model. MLPs have shown good performance in learning 
non-linear relationships for classification or regression 
tasks [36]. In WEKA, the number of hidden layers is set 
as one.

The nodes in this network used Sigmoid activation 
function which takes an input value and transforms it 
into a number between 0 and 1. Since we formulated a 
regression problem with a numeric output, the activa-
tion function in the output was set to linear units in order 
to obtain continuous output values instead of bounded 
values to a specific range. Validation threshold tech-
nique was used for set-based early stopping. This means 
separate validation dataset is used to monitor the mod-
el’s performance during training. The training process 
is stopped if the model’s performance on the validation 
set starts to degrade, indicating overfitting. We used a 

validation threshold of 20 for this network and a momen-
tum applied to the weight updates of 0.2. The number of 
epochs to train was 500 with a learning rate of 0.3 and a 
batch size of 100.

Support Vector Regression (SVR)
SVR is a variant of the well-known support vector 
machine algorithm  [37]. The hyperplane, that fits the 
training data, is determined via support vectors, which 
are subsets of the training data that exhibit the clos-
est proximity to the hyperplane. The margin represents 
region where the model is confident about the predic-
tions. The model produced by SVR targets a hyperplane 
that does not exceed ǫ , as seen in Fig. 8. There are a vari-
ety of formulation Kernels that a SVR can use, where 
the kernel determines shape of the decision boundary. 
We used Radial Basis Function (RBF) kernel from the 
scikit-learn library  [46] for the SVR model. The RBF 
kernel is useful in fitting non-linear regression models 
by transforming the input features to a higher-dimen-
sional space where nonlinear and complex relation-
ships can be effectively captured. It can be expressed as: 
K (x, x′) = exp

(

−�x − x′�2
)

 where K (x, x′) represents 
the RBF kernel between two input vectors x and x′ , exp 
denotes the exponential function, and �x − x′�2 denotes 
the squared Euclidean distance between the input 
vectors.

K‑ Nearest Neighbor (KNN)
KNN is a non-parametric algorithm for predicting 
numerical values  [38]. The concept is to estimate the 
value of a variable, by averaging the the values of its k 
nearest neighbors. The hyperparameter K is chosen care-
fully to balance the bias-variance trade-off. The near-
est neighbor is determined by measuring the distance 
between the variable and the rest of the k points. The dis-
tance metric measures dissimilarity or similarity between 
two data points in the feature space to evaluate how close 
or far apart the points are. The choice of distance such 
as Euclidean or Manhattan distance is another factor that 
can affect the calculation of the data point. The choice 
depends on the characteristics of the data and the prob-
lem domain. For example, Euclidean distance is best used 
for continuous data where on the other hand, Manhattan 
distance is used for discrete data. In this experiment, we 
used the scikit-learn library [46] from Python with a k of 
five. We also chose Euclidean distance since the data are 
continuous in our case. Euclidean distance calculates the 
straight line distance between two points in a 2D Carte-
sian coordinate system as follows:

d =

√

(x2 − x1)2 + (y2 − y1)2
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Fig. 6 Schematic diagram of random forest algorithm

Fig. 7 Schematic diagram of MLP algorithm
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We can see in Fig. 9, the distance between the brown 
point and all other points is calculated then we find the 
nearest neighbours by ranking points by increasing dis-
tance. The nearest neighbours (NN) of the brown point 
are the ones closest in dataspace.

Extreme Gradient Boosting (XGBoost)
The XGBoost algorithm includes multiple weak decision 
trees to develop a strong ML model  [39]. It is an itera-
tive process where each tree learns from the mistakes of 
the previous trees to create a better performance. Instead 
of constructing a series of independent base trees as is 
the case in Random Forest, XGBoost algorithm builds a 
scalable end-to-end tree-boosting system as illustrated in 
Fig. 10. XGBoost helps solving the issue of overfitting in 
random trees by applying regularization techniques and 
including a gradient boosting framework which helps 
in improving the generalization and reducing overfit-
ting  [39]. We used the XGBoost library from Python to 
implement our model.

Numerical study results
In this section, some of the numerical simulation results 
are presented to help understanding how the features 
correlate and how bridges’ load ratings are affected by 
truck platooning. The results obtained are for a whole 
bridge section. However, to obtain the results for indi-
vidual girders, the output results should be multiplied by 
the AASHTO live load distribution factors or using the 
Lever Rule. In addition, Table 3, can be used to account 
for multiple lane loaded, using multiple presence factor 
(MPF), according to AASHTO LRFD.

By analyzing these results, we improve understanding 
of how the presence of truck platooning impacts bridge 
load ratings, making a vital contribution to existing 
knowledge in this subject. Furthermore, these findings 

highlight the value of using ML techniques to aid in the 
identification and selection of optimal platooning config-
urations for existing bridges. The efficiency and accuracy 
of bridge design and maintenance decision-making pro-
cesses can be improved by employing such algorithms, 
eventually ensuring the safety and long-term reliability of 
these key infrastructures.

Truck type
The load effect (bending moment and shear force) 
of the HS20 design truck model was compared to the 
load effect of the other five-axle tractor semitrailer 
trucks that were selected. Figure 11 shows the ratio of 
the maximum bending moment to the moment gener-
ated by the HS20 model for single truck, two-truck pla-
toon, and multi-truck platoon configurations. Similarly, 
Fig. 12 represents the ratio of the maximum shear force 
to shear force generated by the HS20 model.

The majority of ratios were found to be less than one, 
indicating lower load effects as compared to the HS20 
design truck. However, two exceptions were identified in 
the configurations of KYTC and MODOT short trucks, 
both of which had ratios greater than one. Nonetheless, 
these increases did not exceed 10% higher than the con-
figurations obtained using the HS20 design truck.

Additionally, it was observed that the ratios 
decreased as the number of trucks within the platoon 
increased. With the exception of the two short trucks, 
this implies that forming a platoon using HS20 design 
truck model can result in higher bending moments 
and shear forces compared to five-axle tractor semi-
trailer trucks.

Number of trucks and headway spacing
Several studies, [20, 22, 23, 25] have highlighted the 
significance of the number of trucks and headway 

Fig. 8 Schematic diagram of SVR algorithm
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spacing as crucial parameters. We investigated the 
effect of the number of trucks up to 10 trucks and the 
headway spacing ranging from 8 to 30 ft on bending 
moments and shear forces of bridges. Figures 13 and 14 
show maximum bending moment and shear force 
results for single, two, and four trucks compared to 
the HL93 design live load at different headway spacing. 

Four truck models are shown: the HS20 design truck, 
the FHWA Class 9, the AASHTO type 3S2, and the 
MODOT short truck.

When platoons of two, three, or four trucks were con-
sidered, our findings revealed significant change in bend-
ing moments and shear forces. Platoons formed using 
two, three, or four FHWA or AASHTO truck models 
produced bending moments and shear forces within the 
range of the HL-93 design live load, Figs.  13b,  c,  14b, 
and  c. On the other hand, certain four-truck configura-
tions using the HS20 design truck or the MODOT short 
truck exceeded the design load range obtained by the 
HL-93, Figs. 13a, d, 14a, and d.

Based on these findings, we recommend adopting 
the HS20 design truck into bridge designs when con-
sidering the platoon effect. The HS20 design truck 
produced higher load effect compared to the other 

Fig. 9 Schematic diagram of KNN algorithm

Fig. 10 Schematic diagram of XGBoost algorithm

Table 3 Multiple Presence Factors (MPF) (AASHTO LRFD)

Number of design lanes Multiple 
presence 
factor

1 1.20

2 1.00

3 0.85

More than 3 0.65
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models included in our study. Furthermore, our find-
ings highlight the critical need for a simple and effective 
approach to identify appropriate platoon configurations 
for current bridges. To address this demand, we sug-
gest the implementation of ML algorithms, which can 
speed up the identification of critical decision-making 
parameters.

Bridge continuity
While positive bending moments and end shear forces 
control simple span bridges, negative bending moments 
may govern continuous span bridges. As a result, two-, 
three-, and four-span continuous bridges were evalu-
ated for bending moments and shear forces under vari-
ous truck platooning configurations. However, when 

Fig. 11 Normalized bending moments of different truck types compared to the hs20 design truck
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compared to simple span bridges, continuous span 
bridges have shown a decrease in positive moments as a 
result of the development of negative moments. The per-
centages of positive bending moment reduction due to 
bridge continuity are primarily affected by the number of 
spans, span length, and number of trucks.

In our previous study [20, 27], contour plots were 
developed to calculate the percentage reduction in 

positive bending moments due to bridge continuity 
using span length, number of spans, number of trucks, 
and headway spacing. It was found that the greater the 
number of spans, the greater the reduction in bending 
moment. However, all reduction levels were determined 
to be between 15 and 25%. In this study, ML algorithms 
were employed to predict the bending moments and 
shear forces for simple and continuous span bridges.

Fig. 12 Normalized Shear Forces of Different Truck Types Compared to the HS20 Design Truck
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Machine Learning (ML) results
This section evaluates the proposed ML models for 
regression for the three outputs in terms of the accu-
racy of the predictions. We start with comparison of 
the models then we present the accuracy of predictions 
with the proposed algorithm, Random Forest. Finally, 
we evaluate the accuracy along different directions with 
respect to features of truck types, headway, and span 
lengths.

Comparison of ML models
The first step in our experiments is to analyze the perfor-
mance of each ML model and choose the best performing 
model for load rating analysis. To this end, Fig. 15 shows a 
comparison of the MAE between the actual and predicted 
outputs of positive, negative bending moments and shear 
forces using different models. In terms of positive bend-
ing moments, the comparison shown in Fig. 15(a) reveals 
that the Random Forest prediction yields the lowest MAE 

Fig. 13 Maximum bending moment results for single, two, and four trucks compared to the HL93 design live load at different headways
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as low as 17.63 kip.ft while the SVR prediction gives the 
highest MAE of 578.64 kip.ft. In terms of negative bend-
ing moments, Fig.  15(b), Random Forest maintains its 
advantage, achieving MAE of 18.69 kip.ft while SVR 
scores MAE of 426.21 kip.ft. Furthermore, the results of 
the shear force, Fig. 15(c), show that the MAE of Random 
Forest is 0.36 kips which gives the lowest MAE among all 
selected models. This shows that Random Forest has the 
lowest MAE error among all models.

We computed the RMSE of the predictions using the 
models as seen in Fig.  16. The predictive performance 
of the XGBoost and Random Tree models, which are 
both based on regression trees and gradient boosting, 
outperforms that of the MLP, SVR, and KNN models; 
however, Random Forest still gives the lowest RMSE 
of 22.76 kip.ft, 25.15 kip.ft, and 0.49 kips for positive 
moment, negative moment, and shear force outputs, 
respectively.

Fig. 14 Maximum shear force results for single, two, and four trucks compared to the HL93 design live load at different headways
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The correlation coefficients of the prediction were cal-
culated using the models and we found that they all are 
characterized by quite similar performance of r close 
to 0.99. The hyperparameters for each model were fine 
tuned carefully based on a design space exploration. 
We reported the values that gave the best performance 
for each model. For example, for the SVR model, we 
explored four different kernels: RBF, Linear, Poly, and 
Sigmoid kernel. As can be seen in Tables 4, 5 and 6, we 
compared the different kernels for positive, negative 
bending moments and shear forces. We chose the ker-
nel to be RBF because it gives at least three times lower 
MAE when compared to the Sigmoid kernel. In addi-
tion, RBF shows better performance than the Poly kernel 
and very comparable performance to the linear kernel. 
RBF is useful in fitting non-linear regression models as 
explained in “Support Vector Regression (SVR)”  sec-
tion. Therefore, we decided to use RBF because it suits 
our dataset and has high performance when compared 
to other kernels.

Comparing the performance of the various ML 
models discussed in “Machine learning models”  sec-
tion, we determined that Random Forest algorithm 
exhibits superior results, followed by XGBoost and 
Random Tree. The MLP and KNN algorithms dem-
onstrated acceptable performance, while SVR had the 

poorest performance among all models. We also con-
ducted an in-depth analysis of the lowest performance 
model, SVR, with varying train set proportions com-
pared to Random Forest, the best-performing model, 
in Tables  7, 8 and 9. We used our study performance 
measures to illustrate the gap for positive, negative 
bending moments and shear forces. It was observed 
that, despite efforts to increase the train set from 60% 
to 70%, 80%, 90%, and 100% of the dataset, SVR exhib-
ited saturation in performance with a significant gap 
from the optimal accuracy achieved by Random For-
est as seen on the right-most column of the tables in 
black. Notably, SVR’s inability to reach similar accura-
cies emphasizes the distinct nature of each model and 
its limitations. Moreover, our decision to employ a 60% 
train set was based on achieving optimal performance 
without risking overfitting. The primary goal is to iden-
tify a robust model for similar applications, prioritizing 
high accuracy. Consequently, we chose Random Forest 
as the primary proposed model. A more comprehensive 
analysis on the predictions of Random Forest is intro-
duced in the following section.

Accuracy of predictions with random forest
We start the experimental validation of Random Forest 
algorithm with an analysis of prediction accuracy. To 

Fig. 15 Comparison of MAE for positive, negative moment and shear force

Fig. 16 Comparison of RMSE for positive, negative moment and shear force
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this end, Fig. 17 shows a scatter map of actual data and 
respective predictions for each point in the dataset. The 
actual data is shown in red triangle while the predic-
tion is shown in blue circle. It can be seen that the gen-
erated output by Random Forest closely matches the 

actual output. This shows that Random Forest is able to 
accurately predict the output for the positive moment, 
negative moment and, shear force respectively. Next, a 
histogram was constructed to visualize the prediction 
error. Specifically, the percentage error was computed 
by the following equation:

Figure 18 shows the histogram of the prediction error 
for all three outputs. We can see that we get a higher 
error when the output has low magnitude. However, an 
average prediction error of less than 10% was achieved.

To explore the impact of the features on the predic-
tion output, further examinations were undertaken. 
Figure 19 shows the scatter matrix of the features, the 
actual prediction, and the Random Forest prediction 
for the positive bending moment outputs. The scatter 
matrix consists of a grid of scatter plots, where each 
variable is plotted against every other variable [50]. We 
can see that span length is the feature that impacts the 
output the most. Results for shear force and negative 
bending moments have shown the same trend.

Accuracy analysis with truck types, headway, and span 
lengths
Next, we perform more analysis on number of trucks, 
headway, span length and bridge type with respect to 
MAE for all three outputs. The wide range of results 
caused by different bridge lengths and truck configura-
tions has a significant impact on the model’s accuracy. 
Positive bending moment values in our numerical analy-
sis ranged from 120 kip.ft to 12,580 kip.ft, while negative 

(8)Percentage Error =

∣

∣

∣
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Predicted Value− True Value

True Value

∣

∣

∣

∣

× 100

Table 4 Comparison between SVR with different kernels for 
positive bending moments

Kernel RBF Linear Poly Sigmoid

MAE 426.21 440.03 502.83 2262.8

RMSE 722.15 652.7 739.34 2917.06

r 0.943 0.9 0.93 ‑0.39

Table 5 Comparison between SVR with different kernels for 
negative bending moments

Kernel RBF Linear Poly Sigmoid

MAE 578.64 560.07 661.73 1689.26

RMSE 932.3 820.14 979.11 2261.55

r 0.875 0.9 0.85 ‑0.13

Table 6 Comparison between SVR with different kernels for 
shear forces

Kernel RBF Linear Poly Sigmoid

MAE 11.76 10.02 16.22 1056.17

RMSE 16.42 15.17 20.57 1254.85

r 0.927 0.93 0.88 ‑0.45

Table 7 Comparison between SVR with varying train set proportions and Ranndom Forest for positive bending moments

SVR

Percentage of data for 
train

60% 70% 80% 90% 100% Random Forest

 MAE  426.21  419.8  414.06  409.08  404.86 18.69

 RMSE  722.15  711.4  700.94  692.75  686.39 25.15

r  0.943  0.94  0.94  0.94  0.94 0.999

Table 8 Comparison between SVR with varying train set proportions and Ranndom Forest for negative bending moments

SVR

Percentage of data for 
train

60% 70% 80% 90% 100% Random forest

 MAE  578.64  571.3  565.5  560.43  555.8 17.63

 RMSE  932.3  921.2  912.5  905.2  898.81 22.76

r  0.875  0.87  0.87  0.87  0.88 0.999
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bending moments ranged from 110 kip.ft to 9,510 kip.
ft. Additionally, the shear forces ranged from 40 kips 
to 260 kips. As a result, shear forces have shown lower 
MAE than bending moment results, Figs. 20, 21, and 22. 
This demonstrates the model’s capacity to effectively pre-
dict shear forces despite the span lengths and platoon 
configurations.

Figure  20 shows a 3D plot of number of trucks as 
X-axis, headway in ft as Y-axis and MAE of the predic-
tion as Z-axis. The increase in the number of trucks 
coupled with the presence of widely spaced truck pla-
toons creates scenarios in which the entire fleet cannot 
fit on the bridge, leading to elevated MAE in ML predic-
tions. Furthermore, our analysis was constrained by the 
absence of instances with headways shorter than 8 ft in 
the dataset, because those cases are not reliable in real-
world scenarios. This lack of data resulted in an increased 
MAE at headways shorter than 10 ft.

Similarly Fig.  21 visualizes the number of spans on 
X-axis, the span length on Y-axis and MAE on the 
Z-axis. The model showed a better predictive perfor-
mance for simple span bridges, with lower MAE in 
comparison to continuous bridges. The complexity of 
continuous bridge analysis, which may accommodate 
numerous trucks at the same time, resulted in higher 
MAE. However, the increase in MAE did not exceed 40 
kip.ft in all bending moment predictions. Furthermore, 

instances with short spans, notably those less than 50 
ft, had larger errors due to the difficulty of completely 
accommodating trucks and the requirement for exten-
sive axle analysis in the numerical study; resulting in 
higher prediction errors.

Finally, we see the correlation between the num-
ber of trucks and the span length with respect to the 
MAE of the prediction in Fig.  22. Notably, the high-
est MAE is observed when only one truck is present, 
as a single truck constitutes a relatively small portion 
of the dataset, due to the absence of some platoon 
features, such as the number of trucks and headway 
spacings, which are not applicable when dealing with 
a single truck.

Potential implementation
Five bridge examples including the case study used in 
[20] were selected for the purpose of implementation. 
The bridge in [20] is a 70-ft simple span bridge supported 
by four W33x130 steel girders, spaced at 7.5 ft. The over-
all width of the bridge is 25 ft, with 22 ft allocated for 
the roadway. The bridge has a concrete deck that is 8 in. 
thick. The interior girder of the bridge was analyzed for 
moment and shear, resulting in a LRFR rating factors of 
1.20 for moment and 2.79 for shear. To allow comparative 
analysis, additional four bridge cases with span lengths of 
100, 120, 150, and 180 ft were included. The parameters 

Table 9 Comparison between SVR with varying train set proportions and Ranndom Forest for shear forces

SVR

Percentage of data for 
train

60% 70% 80% 90% 100% Random Forest

 MAE  11.76  11.6  11.46  11.33  11.21 0.36

 RMSE  16.42  16.25  16.11  15.98  15.85 0.49

r  0.927  0.92  0.93  0.93  0.93 0.999

Fig. 17 Actual Vs. Random Forest prediction
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for these bridges (capacity, dead loads, and live loads) 
were selected to produce the same rating factors as the 
original 70-ft bridge.

ML models were used to find the percentage change 
in rating factors. Across the five bridge examples, 6,240 
predictions were made for bending moments and shear 

Fig. 18 Percentage Error for a positive moment, b negative moment, and c shear force outputs

Fig. 19 Scatter matrix of the features, actual prediction and Random Forest prediction for positive bending moments output
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Fig. 20 Mean Absolute Error (MAE) of outputs for number of trucks, and headway

Fig. 21 Mean Absolute Error (MAE) of outputs for number of spans, and span length

Fig. 22 Mean Absolute Error (MAE) of outputs for number of trucks, and span length
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Fig. 23 LRFR rating factors for bending moment predicted using random forest at different truck platooning configurations
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Fig. 24 LRFR rating factors for shear force predicted using random forest at different truck platooning configurations
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forces. To obtain the absolute rating factors, we calcu-
lated element capacity, and dead loads, based on the 
given bridge details. Figures 23 and 24 show rating fac-
tors for bridges with span lengths of 70, 120, and 180 
ft at different truck platooning configurations. Particu-
larly, for the 70-ft bridge, platooning configurations 
involving two, three, or four trucks, with different truck 
types and headway spacing, did not result in any reduc-
tion in the current rating factors. However, as the span 
length increases, the platooning effect becomes more 
apparent, resulting in several platooning configurations 
that exhibit lower rating factors in comparison to the 
current rating factor, as can be seen in the 180-ft bridge 
case. These findings emphasize the significance of utiliz-
ing the developed ML approach to identify optimal pla-
tooning configurations for bridge structures within the 
scope of the study.

The validity of ML predictions was established 
through a rigorous comparison with the results derived 
numerically using SAP 2000 and Eqs.  1  and  3. The 
absolute error was calculated using Eq.  9 to measure 
the difference between the rating factors derived from 
the random forest predictions and those obtained by 
implementing the AASHTO LRFR. Figures  25  and  26 
show the corresponding absolute error values for 
the rating factors of the bending moments and shear 
forces. The results indicate a remarkable level of accu-
racy, with an absolute error of less than 10% observed 
for the majority of bending moment rating factors (see 
Fig.  25) and less than 5% for shear force rating fac-
tors (see Fig.  26). These findings confirm the earlier 
conclusion that higher errors are more likely to occur 
when the output value (bending moment or shear 
force) is relatively low. Notably, as the span length 

Fig. 25 Absolute Error results for bending moments’ LRFR rating factors at different truck platooning configurations

Fig. 26 Absolute Error results for shear forces’ LRFR rating factors at different truck platooning configurations
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increases, the absolute error decreases, showing a rise 
in prediction accuracy.

Conclusions
This research work includes a comprehensive para-
metric study using SAP 2000 to assess the impact of 
different truck platooning configurations on the load 
rating of existing bridges. The study involved 295,200 
computer simulations to address various parameters 
such as the number of bridge spans, span lengths, 
truck type, number of truck platoons, and spac-
ing between trucks (headway). The obtained results 
served as the dataset for training various ML models, 
including Random Tree, Random Forest, Multi-Layer 
Perceptron (MLP), Support Vector Regression (SVR), 
K-Nearest Neighbor (KNN), and Extreme Gradient 
Boosting (XGBoost).

The primary findings were:

• The type of trucks significantly affect the bending 
moments and shear forces. The majority of ratios 
were found to be less than one, indicating lower 
load effects as compared to the HS20 design truck. 
However, two exceptions were identified in the 
configurations of KYTC and MDOT short trucks, 
both of which had ratios greater than one. None-
theless, these increases did not exceed 10% higher 
than the configurations obtained using the HS20 
design truck.

• Forming a platoon using HS20 design truck model can 
result in higher bending moments and shear forces 
compared to five-axle tractor semi-trailer trucks. Con-
sequently, we recommend adopting the HS20 design 
truck into bridge designs when considering the pla-
toon effect, as it produces higher load effects com-
pared to the majority of the models studied.

• The findings highlight the crucial need for a simple 
and effective method for determining optimal pla-
toon configurations for existing bridges. To address 
this demand, we suggest the implementation of ML 
algorithms, which can speed up the identification of 
critical decision-making parameters.

• Random Forest was selected as the primary proposed 
ML model because it showed the best performance 
with the lowest prediction errors and used its predic-
tion to carry out more analysis with respect to the 
input features.

• The results of the five bridge case studies had an 
absolute error of less than 10% for the majority of 

(9)Absolute Error =
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bending moment LRFR rating factors and less than 
5% for shear force LRFR rating factors.
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