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Abstract 

Retroreflectivity is the primary metric that controls the visibility of pavement markings during nighttime 
and in adverse weather conditions. Maintaining the minimum level of retroreflectivity as specified by Federal Highway 
Administration (FHWA) is crucial to ensure safety for motorists. The key objective of this study was to develop robust 
retroreflectivity prediction models that can be used by transportation agencies to reliably predict the retroreflec-
tivity of their pavement markings utilizing the initially measured retroreflectivity and other key project conditions. 
A total of 49,632 transverse skip retroreflectivity measurements of seven types of marking materials were retrieved 
from the eight most recent test decks covered under the National Transportation Product Evaluation Program 
(NTPEP). Decision Tree (DT) and Artificial Neural Network (ANN) algorithms were considered for developing perfor-
mance prediction models to estimate retroreflectivity at different prediction horizons for up to three years. The mod-
els were trained with randomly selected 80% data points and tested with the remaining 20% data points. Sequential 
ANN models exhibited better performance with the testing data than the sequential DT models. The training and test-
ing  R2 ranges of the sequential ANN models were from 0.76 to 0.96 and 0.55 to 0.94, respectively, which were signifi-
cantly higher than the  R2 range (0.14 to 0.75) from the regression models proposed in past studies. Initial or predicted 
retroreflectivity, snowfall, and traffic were found to be the most important inputs to model predictions.

Keywords Pavement marking, FHWA final rule, Retroreflectivity degradation modeling, Decision tree, Artificial neural 
network

Introduction
Pavement Markings are retroreflective longitudinal 
and transverse lines that are installed on the pavement 
surfaces to delineate their profile [1, 2]. The most com-
monly used marking materials in the U.S. are either non-
durable (waterborne paint) or durable (thermoplastic, 
epoxy, polyurea, methyl methacrylate [MMA], and tape) 
[3]. Markings are a critical component of overall traffic 

signalization as they define boundaries between moving 
vehicles and a well-maintained marking system enhances 
safety for motorists during daytime, nighttime, and in 
poor visibility conditions [4].

As per the Federal Highway Administration (FHWA), 
over 50% of all traffic fatalities occur at night while the 
majority of travel happens during the daytime [5]. The 
visibility of pavement markings is primarily dependent 
on their retroreflectivity [6]. Retroreflectivity is the prop-
erty of markings that describes the phenomenon in which 
light originating from vehicle headlights illuminates the 
visible pavement marking surface and a substantial por-
tion of it returns to the eye of the motorists [7]. Retrore-
flectivity, measured by the coefficient of retroreflected 
luminance  (RL) in millicandelas per square meter per 
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lux (mcd/m2/lux), is provided through a partial embed-
ment of transparent glass beads inside the markings [6]. 
An adequate level of  RL can reduce 50% of crashes during 
nighttime and 28% of fatalities in dark, rainy, or snowy 
weather conditions [8].

RL degrades over time depending on the type of mark-
ing material, glass bead properties, climatic conditions, 
traffic loading, road surface type, and snow-plow fre-
quency [9]. Recently, FHWA published a new rule that 
established national standards for minimum  RL levels 
for longitudinal marking lines on all roads depending on 
speed limits [10]. This final rule requires all state agen-
cies to implement a method before 2027 to maintain 
the specified minimum  RL level and consider retrore-
flectivity in future restriping activities, highlighting the 
importance of regular retroreflectivity monitoring for the 
marking lines. However, instead of continuously moni-
toring and restriping when  RL drops below the minimum 
threshold, many transportation agencies restripe mark-
ings as per a fixed schedule or visual inspection [11]. 
These restriping strategies are not optimum as markings 
are often restriped before or after the end of their service 
life, resulting in misspending available funds or compro-
mising the safety of the motorists, respectively. As such, 
modeling retroreflectivity degradation is critical to esti-
mate the service life of the markings and to accordingly 
plan for future restriping activities.

Objective and scope
The objective of this study was to develop machine 
learning models that can be used by U.S. transportation 
agencies to predict, with superior accuracy, the retrore-
flectivity of pavement markings, over a period of 3 years, 
based on the initial measured retroreflectivity and other 
key project conditions. Two different machine learning 
algorithms, Decision Tree and Artificial Neural Net-
work algorithms, were utilized to develop performance 
prediction models for seven types of pavement mark-
ing materials (waterborne paint, thermoplastic, pre-
formed thermoplastic, permanent polymeric tape, epoxy, 

polyurea, and MMA) located in three different U.S. cli-
mate zones (Southeast, Northeast, and Upper Midwest). 
The proposed models are expected to provide a scientific 
basis for transportation agencies in predicting the service 
life of pavement markings based on local conditions and 
only one initial retroreflectivity measurement, thereby 
eliminating the need for the costly monitoring of the ret-
roreflectivity of marking products.

Background
This section provides a brief background about the 
NTPEP as it is the source of data used in this study. After 
that, this section presents the results of previous studies 
that modeled the retroreflectivity degradation of pave-
ment markings to be used as a baseline for comparison 
to the results of this study. Eventually, this section is 
concluded with the shortcomings in the current state of 
knowledge and how these shortcomings are addressed in 
the developed models presented in this study.

Overview of the National Transportation Product 
Evaluation Program (NTPEP)
American Association of State Highway and Transporta-
tion Officials (AASHTO) implements a consensus-based 
work plan every year through National Transporta-
tion Product Evaluation Program (NTPEP) to evaluate 
the field performance of a variety of pavement marking 
products [12]. NTPEP selects test decks from across 
the U.S., representing various traffic and geographi-
cal conditions and installs marking products on those 
in transverse direction [13]. In a typical test deck, four 
marking lines are installed side-by-side on an asphalt or 
concrete surface from the inner side of the “edge” line to 
the far side of the “skip” line [12] (see Fig.  1). For each 
line, retroreflectivity measurements are collected from 
both the “skip” area (within the first 9 in. from the “skip” 
line, known as transverse-skip retroreflectivity,  RS) and 
“wheel” area (9 in. on both sides of the left wheel path, 
known as transverse-wheel retroreflectivity,  RW) with 
a handheld retroreflectometer [11]. These readings are 

Fig. 1 Typical configuration of an NTPEP test deck and retroreflectivity measurement locations
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collected at 12 different time intervals (after 0, 1, 2, 3, 11, 
12, 15, 21, 24, 27, 33, and 36 months) for up to 3 years. 
Accelerated degradation of retroreflectivity occurs in the 
‘wheel’ area due to continuous friction with vehicle tires 
and does not mimic the service life of an actual longitu-
dinal marking stripe [11]. Traffic condition in “skip” area 
is more representative of the skip-line stripes in the field 
[14], and therefore, only  RS measurements were consid-
ered in this study for modeling.

Previous retroreflectivity degradation models
A literature review was conducted on past studies that 
proposed retroreflectivity degradation models to esti-
mate the service life of pavement markings, as summa-
rized in Table  1. Previous studies mostly adopted the 
parametric approach, more specifically, regression mod-
els to predict future retroreflectivity [9, 15–21]. Regres-
sion models make stringent assumptions about the 
shape of the mapping function which often significantly 
differ from the true shape of the relationship between 
the inputs and output [22]. The adopted datasets in the 
parametric approach typically demonstrate high dimen-
sionality (i.e., data have many inputs) and high multicol-
linearity (i.e., high correlations between input variables) 

[23]. This high dimensionality and high multicollinearity 
of the adopted datasets for the past regression models 
prevented the input variables to be independent of each 
other, violating one of the fundamental assumptions of 
the parametric approach. As such, an unpredictable vari-
ance was imposed on the models weakening their statisti-
cal power. High variability in retroreflectivity data made 
it challenging for the regression models to estimate the 
service life of the markings with a high level of statisti-
cal confidence, even with the collection of more data 
[24]. Due to these limitations, past regression models 
[9, 15–21] predicted retroreflectivity with relatively low 
accuracy (the coefficient of determination  (R2) ranging 
between 0.14 to 0.75).

Because of the poor reliability of the past regression 
models, retroreflectivity degradation models were devel-
oped using supervised machine learning algorithms [11, 
25, 26]. Machine learning algorithms construct models 
based on a “non-parametric” approach without mak-
ing explicit assumptions about the shape of the mapping 
function. These models can efficiently capture complex 
patterns from the dataset and in general, achieve higher 
prediction accuracy than the regression models [22]. 
Karwa and Donnell [25] proposed an Artificial Neural 

Table 1 Summary of the literature review on retroreflectivity degradation modeling

Reference Material(s) Input(s) Model(s) R2 Study Site(s)

Lee et al. [15] Waterborne paint, thermo-
plastic, polyester, tape

Time Simple linear regression 0.14 – 0.18 MI

Abboud and Bowman [16] Waterborne paint, thermo-
plastic

Traffic Exponential regression 0.31 –0.58 AL

Sarasua et al. [19] Thermoplastic, epoxy Time Simple linear regression 0.21 – 0.47 SC

Hollingsworth [17] Waterborne paint, thermo-
plastic

Time, traffic, bead type, color, 
initial retroreflectivity, lateral 
line location, and time

Logarithmic 0.53 NC

Sitzabee et al. [18] Thermoplastic, waterborne 
paint

Time, initial retroreflectivity, 
traffic, line lateral location, 
line color

Multiple linear regression 0.60 – 0.75 NC

Karwa and Donnell [25] Thermoplastic Initial retroreflectivity, time, 
traffic, marking type, marking 
location

Artificial Neural Network 
(ANN)

- NC

Robertson et al. [20] Waterborne paint Time, traffic, lane width, 
shoulder width

Multiple linear regression 0.24 – 0.34 SC

Ozelim and Turochy [9] Thermoplastic Time, traffic, initial retrore-
flectivity

Multiple linear regression 0.49 AL

Malyuta [21] Waterborne paint, thermo-
plastic

Time, traffic Multiple linear regression 0.33 – 0.46 TN

Mousa et al. [11] Waterborne paint Initial retroreflectivity, 
manufacturer, surface type, 
color, thickness, bead types, 
time, air temperature, rainfall, 
snowfall, traffic, surface age

Categorical Boosting 0.83 – 0.98 FL, PA, MN, MS

Idris et al. [26] Thermoplastic Initial retroreflectivity, surface 
type, color, thickness, bead 
types, rainfall, traffic

Genetic Algorithm 0.64 – 0.93 FL
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Network model to estimate the service life of thermo-
plastic markings without considering climatic conditions 
(i.e., rainfall and/or snowplow activities) as input vari-
ables. Mousa et al. [11] predicted retroreflectivity for up 
to three years with reasonable accuracy  (R2 = 0.83 – 0.98) 
using a Categorical Boosting model, but its applicability 
was limited to waterborne paint markings. More recently, 
Idris et  al. [26] developed Genetic Algorithm models 
 (R2 = 0.64 – 0.93) to predict retroreflectivity. However, 
the models were developed for only thermoplastic mark-
ings which only predicted retroreflectivity for up to a 
year.

Advancements based on previous research
Based on Table 1 it can be observed that most previous 
retroreflectivity prediction models had limited scope as 
those were site-specific and marking material-specific 
models. These models were developed considering a few 
input variables (i.e., time, traffic, line lateral location, and/
or initial retroreflectivity). To address the shortcomings 
of the past studies, retroreflectivity degradation models 
were developed in this study using two different machine 
learning algorithms, Decision Tree and Artificial Neural 
Network. These models were constructed considering all 
the significant input variables affecting retroreflectivity. 
Additionally, the scope of the proposed models has been 
further extended to seven types of commonly used mark-
ing materials along with traffic and climatic conditions of 
different geographical regions across the U. S.

It is worth mentioning that other common machine 
algorithms besides Decision Tree and Artificial Neural 
Network, including Support Vector Machine, LightGBM, 
and K-Nearest Neighbors, were initially implemented in 
this study to develop retroreflectvity degradation mod-
els. Decision Tree and Artificial Neural Network models 
yielded the highest prediction accuracy among those, and 
therefore, the results of Decision Tree and Artificial Neu-
ral Network models were only presented in this study.

Data collection
In this study, the measured  RS and other relevant vari-
ables were retrieved from NTPEP’s online data reposi-
tory and assembled into a dataset. This dataset included 
 RS readings from the following eight recent NTPEP test 
decks distributed over three different U.S. climate zones 
(Southeast, Northeast, and Upper Midwest):

• Minnesota: 2010, and 2013
• Pennsylvania: 2011, and 2014
• Florida: 2012, 2015, and 2019
• Wisconsin: 2017

A total of 517 marking products were considered in 
this study. Each product was installed as eight transverse 
lines, four lines on an asphalt surface and four lines on 
a concrete surface, resulting in a total of 4,136 marking 
lines (517 products × 2 pavement surfaces × 4 marking 
lines = 4,136 lines). For each line of these 4,136 lines,  RS 
measurements were collected at 12 time intervals (after 
0, 1, 2, 3, 11, 12, 15, 21, 24, 27, 33, and 36 months) result-
ing in a total of 49,632  RS values (517 products × 8 lines 
per product × 12  RS per line = 49,632). The descriptions 
of retrieved variables for each marking are presented in 
Table 2.

Exploratory data analysis
Descriptive statistics
The general descriptive statistics (i.e., minimum, and 
maximum values, interquartile range, mean, median, 
and outliers) of the numerical variables were calculated. 
These descriptive statistics are presented in Fig. 2 as box-
whisker plots. It is worth mentioning that the outliers 
in  MRS, as shown in Fig. 2d, represented true variability 
of  RS measurements. Therefore, these outliers were not 
removed to maintain the original statistical distribution 
of the study dataset, which is a common practice for han-
dling outliers [27].

Correlation analysis
A correlation analysis was conducted to determine the 
degree of association between all the collected variables. 
Pearson’s R, [28], eta (η) coefficient [29], and Cremer’s V 
[30], were utilized to evaluate the association between 
numeric-numeric, numeric-categorical, and categorical-
categorical variable pairs, respectively. Pearson’s R ranges 
from -1.0 (a perfect, decreasing, linear association) to 
1.0 (a perfect, increasing, linear association) while the 
values of η coefficient and Cremer’s V lie between 0 (no 
association) to 1 (a perfect association). The developed 
correlation matrix is presented in Fig.  3. Among the 
numeric-categorical variable pairs, (TH, T) had the high-
est η coefficient of 0.9. (E, TR) showed the highest Pear-
son’s R of 0.7 among the numeric-numeric variable pairs. 
(M, T) exhibited the highest Cramer’s V of 0.6 among 
categorical-categorical variable pairs. These high values 
of η coefficient, Pearson’s R, and Cramer’s V indicate high 
multicollinearity in the compiled dataset.

Data preprocessing
Both DT and ANN algorithms cannot process categorical 
data [31]. Therefore, as a data preprocessing step, the cat-
egorical variables were converted into numerical forms 
utilizing Label Encoding technique [32]. This technique 
designated every unique category a number ranging 
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Table 2 Description of the variables in the assembled dataset

Variable types Variables Notations Units Descriptions

Numerical Elapsed time E month 12 values  (E0,  E1,  E2,  E3,  E11,  E12,  E15,  E21,  E24,  E27,  E33, and  E36).  E0 represents 
the month of installation,  E1 represents 1 month since installation,  E11 
represents 11 months since installation, and similarly for other values

Measured Rs MRS mcd/m2/lux 12 values  (MRS0 through  MRS36, corresponding to  E0 through  E36)

Cumulative traffic level TR vehicles 12 values  (TR0 through  TR36, corresponding to  E0 through  E36)

Cumulative snowfall SN in 12 values  (SN0 through  SN36, corresponding to  E0 through  E36)

Marking thickness TH mil 172 unique values of marking thickness

Categorical Surface type S - 2 unique categories (asphalt and concrete)

Types of marking material T - 7 unique categories (waterborne paint, thermoplastic, preformed thermo-
plastic, permanent polymeric tape, epoxy, polyurea, and MMA)

Marking color C - 2 unique categories (white and yellow)

Marking manufacturer M - 30 unique categories (M1 through M30)

Bead type of the first drop b - 7 unique categories (Type 1, Type 2, Type 3, Type 4, high-performance 
beads, wet reflective elements, and N/A. Here, N/A represents only one 
type of glass bead was applied as the second drop)

Bead type of the second drop B - 7 unique categories (Type 1, Type 2, Type 3, Type 4, high-performance 
beads, premium optics “Utah blend”, and N/A. Here, N/A indicates marking 
does not have dropped on glass beads)

Fig. 2 Descriptive statistics of (a) TH, b SN, c TR, and d  MRS, respectively
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between 0 and (X-1), where X represented the total num-
ber of unique categories for this categorical variable.

Model development
This section provides technical details of the machine 
learning algorithms implemented in this study, followed 
by an overview of the model development process.

Machine learning algorithms
Two machine learning algorithms were utilized in this 
study for model development, as described in the follow-
ing sub-sections.

a) Decision Tree (DT) is a machine learning algorithm 
that builds models in the form of tree-like structures 
consisting of a root node, internal nodes, and leaves 
that are connected through branches [33]. A simple 
DT model consisting of two predictors  (X1 and  X2) 
is illustrated in Fig.  4a. DT uses a series of splitting 
rules  (X1 ≤  s1,  X2 ≤  s2,…,  X2 ≤  s4) to divide the train-
ing observations into various regions of the input 

space utilizing recursive binary splitting technique 
(see Fig.  4b) [22]. This process is iteratively applied 
until the objective function is optimized and the 
leaves  (R1,  R2, …,  R5) are established [34]. The mean 
response value for the observations  (C1,  C2,…,  C5) 
falling under each leaf is used as the final prediction 
[35]. The most important hyperparameters that con-
trol model architecture and require tuning during the 
training process of a DT model consist of maximum 
depth (D), minimum samples split (S), minimum 
samples leaf (L), and maximum features (F) [36]. 
The general mathematical form of a DT model and 
the objective function are presented in Eqs. 1 and 2, 
respectively.

where,
q(x) = splitting rule

(1)f (x) = Cq(x), (q : R
m
→ 1, 2, . . . , t,C ∈ R

m)

Fig. 3 Correlation matrix
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m = number of input variables
t = total number of leaves
Cq(x) = mean response of a leaf

where,
Obj(T ) = objective function∑N

i=1(yi − ŷi)
2 = loss function

α(T ) = regularization term

b) Artificial Neural Network (ANN) is another machine 
learning algorithm that builds an artificial neural 

(2)Obj(T ) =
N

i=1
(yi − yi)

2
+ α(T )

network with a multilayer perceptron (MLP) archi-
tecture, consisting of an input layer, the maximum 
of two hidden layers, and an output layer [37, 38]. 
A simple ANN model consisting of a hidden layer is 
illustrated in Fig. 5. The primary processing elements 
in each layer are neurons  (N1,  N2, …..,  Nn) that are 
interconnected by certain weights. The network is 
built through a 2-stage optimization process, “for-
ward pass” and “backpropagation” [39]. In the for-
ward pass, the inputs  (X1,  X2,.,  Xj) and associated 
weights  (W1,1,  W2,1,….,  Whh,k) are are multiplied by 
the weights, summed, and added with a bias term 
(aH ) to produce a linear output. The linear output is 

Fig. 4 The schematic representation of a Decision Tree (DT) model

Fig. 5 The schematic representation of an Artificial Neural Network (ANN) model
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passed through an activation function (∅H ) (i.e., sig-
moid, hyperbolic tangent, or Rectified Linear Unit 
Function (ReLU)) to obtain a non-linear output [22]. 
The output from a neuron in the hidden layer acts as 
an input to the neuron in output layer (K). In back-
propagation, the errors made in the forward pass are 
distributed from the output layer to the input layer 
through the weights using an optimizer (i.e., adam, or 
Stochastic Gradient Descent (SGD)) and as a result, 
the weights are updated [40]. Forward pass and back-
propagation are iteratively performed until the objec-
tive function is optimized [22]. The most important 
hyperparameters requiring tuning for an ANN model 
include number of hidden layers (H), number of neu-
rons (N), batch size (B), activation function (A), opti-
mizer (O), and learning rate (Lr) [36]. The mathe-
matical formulations of an ANN model and objective 
function are presented in Eqs. 3 and  4, respectively.

where,
ŷn = model prediction
wjh,whk = weights between input and the hidden layers 

and between hidden and output layers
xij = inputs
ah, ak = bias terms in the hidden layer neuron and out-

put neuron, respectively
N = number of neurons in the hidden layer
∅h,∅0, = activation functions in the hidden layer neu-

ron, and output neuron, respectively.

where,
Obj(θ) = objective function
1
M

∑M
m=1(yn − ŷn)

2 = loss function
�α(θ) = regularization term.

Overview of model development process
In this research, two model development strategies 
(Strategy A and Strategy B) and were utilized for model 
development and their results were compared to identify 
the best strategy of constructing  RS prediction models. In 
Strategy A, two different integral models was developed, 
one for DT and one for ANN, to predict  RS after one 
month  (PRS1), two months  (PRS2), three months  (PRS3), 
and 11 months  (PRS11), and similarly after 12, 15, 21, 24, 
27, 33, and 36 months using S, T, C, M, TH, b, B, E, TR, 
and SN as inputs and  MRS as the target variable. As per 

(3)ŷn = ∅0

(
αk +

∑N
p=1whk∅h

(
αh +

∑J
j=1

wjhxij

))

(4)Obj(θ) =
1

M

∑M

m=1
(yn − ŷn)

2
+�α(θ)

this strategy, the general formulations for the DT and 
ANN models are presented in Eq. 5.

where,
PRS = Predicted  RS
S,T ,C ,M,TH , b,B = Time independent inputs
TR, SN  = Time dependent inputs
On the other hand, utilizing Strategy B, a sequential 

 RS prediction models were developed for both DT and 
ANN and two separate sets of 11 models (DT-A through 
DT-K and ANN-A through ANN-K) were developed. 
The schematic of the model inputs and outputs for DT 
models is illustrated in Fig. 6, as an example. As shown in 
Fig. 6, Model DT-A utilizes initially measured  RS  (MRS0) 
and other key input variables at the time of installa-
tion (S, T, C, M, TH, b, B,  TR0, and  SN0) to predict  RS 
after E = 1  month. For Model DT-B, the output from 
Model DT-A  (PRS1) was combined with other inputs at 
E = 1 month to predict  RS after E = 2 months. This process 
was iteratively used for the remaining models. Based on 
the framework illustrated in Fig. 6, the general formula-
tions for the DT and ANN models are presented in Eq. 6.

where,
Ei = Elapsed times ( E0 , E1 , …,E36)
XEi−1

 = MRS0 , for Ei = E0 or PRSEi−1
 , for Ei > E0

PRSEi = Predicted  RS for month Ei
S,T ,C ,M,TH , b,B = Time independent inputs
TRSEi−1

, SNSEi−1
 = Time dependent inputs at previous 

elapsed time ( Ei−1)
MRS0 = Initially measured  RS
PRSEi−1

 = Predicted  RS at previous elapsed time ( Ei−1)

Model training
Training DT models
DT models, developed with Strategy A or Strategy B, 
were trained with the training dataset (randomly selected 
80% of the total data points) when the models learnt pat-
terns from the training dataset. DT-based models are 
unaffected by multicollinearity [41, 42]. These models are 
also insensitive to the scale of the inputs as the nodes are 
split based on a single input and are not affected by other 
inputs [43]. Therefore, inputs were not scaled for training 
DT models.

Training ANN models
ANN models, developed with Strategy A or Strategy B, 
were also trained with the training dataset. ANN uses 
the gradient descent technique to optimize the objective 

(5)PRS = f (S,T ,C ,M,TH , b,B,E,TR, SN )

(6)PRSEi = f (S,T ,C ,M,TH , b,B,TRSEi−1
, SNSEi−1

,XEi−1
)
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function and scaling the input variables enables it to 
reach global minima faster [44]. As such, Standard Scaler 
[45] was implemented to normalize the input variables by 
removing the mean and scaling to unit variance to ensure 
fast convergence. During training, each model was set to 
train for 1000 iterations. Early stopping was included in 
the training process to terminate training when valida-
tion  R2 did not improve for 100 consecutive iterations.

Hyperparameter tuning
For both DT and ANN models, model hyperparameters 
were tuned during the training (Strategy A and Strategy 
B). Maximum depth (D), minimum samples split (S), 
minimum samples leaf (L), and maximum features (F) 
hyperparameters were tuned to prevent overfitting of the 
DT models. On the other hand, number of hidden lay-
ers (H) and neurons (N) were tuned for the ANN mod-
els to control model complexity and prevent overfitting. 
Batch size (B), activation function (A), optimizer (O), and 
learning rate (Lr) were tuned to achieve improved predic-
tive performance from the ANN models. Moreover, L2 
regularization was utilized by tuning alpha (α) hyperpa-
rameter to mitigate the effect of high multicollinearity of 
the assembled dataset.

The tuning of the model hyperparameters for both 
Strategy A and Strategy B were achieved through the 
combined implementation of grid search and 10-fold 
cross-validation techniques [11]. Grid search evaluated 
all possible combinations of values within the defined 
hyperparameter space to identify their optimal com-
bination with maximum accuracy. Grid search was 

accompanied by 10-fold cross-validations, segmenting 
the training dataset into ten subsets. Training was per-
formed with nine subsets, and validation was done with 
the remaining subset. This was repeated ten times by 
changing the validation subset. The average  R2 value for 
the ten trials was used to evaluate the performance of 
the models. The developed hyperparameter spaces and 
optimum hyperparameter combinations for the models 
developed with Strategy A and Strategy B are presented 
in Tables 3, 4, 5 and 6.

The training performance of the models developed 
with Strategy A and Strategy B was evaluated using coef-
ficient of determination  (R2), mean absolute percentage 
error (MAPE), and root mean square error (RMSE), as 
illustrated in Table  7 and Fig.  7, respectively. It can be 
observed from Table  7 that in Strategy A, ANN model 
provided better training performance than DT model 
with higher  R2 (0.82), lower MAPE (44.6%), and lower 
RMSE (106.9 mcd/m2/lux).

On the other hand, in Strategy B, the training  R2, 
MAPE, and RMSE values were similar for both DT and 
ANN models until a prediction horizon of 3  months 
(i.e., DT-A to DT-C and ANN-A to ANN-C) (see Fig. 7). 
Although, in general, a downward trend in  R2 and an 
upward trend in MAPE were observed when the predic-
tion horizon was further extended from 3 to 36 months 
(i.e., DT-D to DT-K or ANN-D to ANN-K), no trend 
was observed in RMSE. The decrease in overall training 
accuracy with an increase in prediction horizon in Strat-
egy B was expected because the predicted values were 
used as inputs to make further predictions, inducing 

Fig. 6 Schematic representation of the inputs and output for the DT models
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Table 3 Hyperparameter space for the models developed with Strategy A

DT model ANN model

Hyperparameters Values Hyperparameters Values

Maximum depth (D) 5, 10, 15, 20 Number of hidden layers (H) 1, 2

Minimum samples split (S) 30, 40, 50, 100 Neurons (N) 25, 50, 100

Minimum samples leaf (L) 20, 30, 40, 50 Batch size (B) 8, 16, 32, 64, 200

Max features (F) auto = considering all the inputs,
sqrt = considering the square root of the total 
number of inputs, and
log2 = Log Base 2 of the total number 
of inputs

Activation function (A) ReLU, sigmoid, tanh

Optimizer (O) adam, SGD

Learning rate (Lr) 0.001, 0.01, 0.1

Alpha (α) 0.1, 0.4, 0.6, 0.8

Table 4 Optimal combination of the hyperparameters for Strategy A

Model D S L F Model H N B A O Lr α

DT 20 30 20 sqrt ANN 2 (50, 100) 200 ReLU adam 0.001 0.1

Table 5 Hyperparameter space for the models developed with Strategy B

DT models ANN models

Hyperparameters Values Hyperparameters Values

Max depth (D) 4, 5, 10, 20, 30, 40, 50 Number of hidden layers (H) 1, 2

Minimum samples split (S) 2, 5, 10, 12, 16, 18, 20, 50, 100 Neurons (N) 15, 30, 60

Minimum samples leaf (L) 2, 5, 10, 20, 30, 40, 50 Batch size (B) 16, 32, 64, 200

Max features (F) auto, sqrt, log2 Activation function (A) ReLU, sigmoid, tanh

Optimizer (O) adam, SGD

Learning rate (Lr) 0.001, 0.01, 0.1

Alpha (α) 0.1, 0.4, 0.6, 0.8

Table 6 Optimal combination of the hyperparameters for the models developed with Strategy B

DT models ANN models

Models D S L F Models H N B A O Lr α

DT-A 10 18 2 auto ANN-A 2 (30, 60) 32 ReLU adam 0.001 0.1

DT-B 10 10 2 auto ANN-B 2 (30, 60) 64 ReLU adam 0.001 0.1

DT-C 10 10 2 auto ANN-C 2 (30, 60) 64 ReLU adam 0.001 0.1

DT-D 20 2 2 sqrt ANN-D 2 (30, 60) 32 ReLU adam 0.001 0.4

DT-E 10 50 20 auto ANN-E 1 (30,) 32 ReLU adam 0.001 0.1

DT-F 20 2 2 auto ANN-F 1 (30,) 32 ReLU adam 0.001 0.1

DT-G 20 50 2 auto ANN-G 1 (60,) 64 ReLU adam 0.001 0.6

DT-H 10 2 2 auto ANN-H 2 (30, 60) 64 ReLU adam 0.001 0.6

DT-I 50 2 2 sqrt ANN-I 2 (30, 60) 64 ReLU adam 0.001 0.1

DT-J 10 2 10 sqrt ANN-J 2 (30, 60) 32 ReLU adam 0.001 0.1

DT-K 4 2 2 auto ANN-K 1 (30,) 32 ReLU adam 0.001 0.1
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errors in model predictions. Utilizing Strategy B, DT 
and ANN models fitted the training data with aver-
age  R2, MAPE, and RMSE of 0.89/27.1%/53.9 mcd/m2/
lux and 0.86/38.1%/61.6 mcd/m2/lux, respectively and 
therefore, demonstrated better training performance 
than the models developed with Strategy A. The ranges 
of training  R2, MAPE, and RMSE for DT models were 
from 0.77 to 0.96, 9.7 to 57.6%, and 46.0 to 67.3 mcd/
m2/lux, respectively while for ANN models, these ranges 
were from 0.76 to 0.96, 10.1 to 62.3%, and 53.5 to 73.5 
mcd/m2/lux, respectively. Both DT and ANN models 
fitted training data well utilizing Strategy B with  R2 val-
ues higher than the models listed in Table 1. Overall, the 
DT models demonstrated a better training performance 
than ANN models in Strategy B.

Model testing
Testing dataset (remaining 20% of total data points) 
was used to evaluate the performance of the developed 
models with the unseen data. The testing performance 
of the models developed with Strategy A is presented in 
Fig. 8. From Fig. 8, it can be observed that, like training 
performance, ANN provided better testing performance 
than DT with higher  R2 (0.76), lower MAPE (50.5%), and 
lower RMSE (121.6 mcd/m2/lux).

The testing performance of the DT and ANN models 
developed with Strategy B are shown in Figs.  9 and 10, 
respectively. Results showed that, like training accuracy, 
the testing accuracy of these models decreased with an 
increase of prediction horizon beyond 3 months (Figs. 9 
and 10). Using Strategy B, DT and ANN models provided 
average  R2, MAPE, and RMSE of 0.76/41.9%/79.7 mcd/
m2/lux and 0.77/45.5%/74.8 mcd/m2/lux, respectively 
and therefore, demonstrated better testing performance 
than the models developed with Strategy A. The ranges of 
testing  R2, MAPE, and RMSE for DT models developed 
with Strategy B were between 0.54 to 0.93, 12.6 to 95.1%, 
and 67.9 to 95.2 mcd/m2/lux, respectively; while for ANN 
models, these ranges were between 0.55 to 0.94, 10.6 to 
80.7%, and 61.2 to 92.9 mcd/m2/lux, respectively. These 
models provided close  RS estimates at different predic-
tion horizons from a dataset that was not used during 
model training, and thereby demonstrating their robust-
ness. Most of the ANN models exhibited better testing 

performance than the corresponding DT models. The 
testing  R2 values of these models were also reasonably 
higher than the  R2 of most past regression models pre-
dicting retroreflectivity for up to 3 years. These high  R2 
values indicated that proposed machine learning models 
developed with Strategy B can predict  RS with a superior 
level of accuracy than the traditional regression models.

It is worth mentioning that machine learning aims to 
build models that generalize well to unseen data, ensur-
ing their effectiveness in real-world applications [46]. As 
such, testing performance is typically prioritized over 
training performance when selecting the best models 
[22]. With Strategy B, DT models exhibited better train-
ing performance than the ANN models, while the ANN 
models demonstrated superior testing performance and 
hence, a better generalization ability on unseen data than 
the DT models. Therefore, ANN was selected as the bet-
ter algorithm than DT for the adopted dataset and ANN 
models developed with Strategy B were considered for 
further evaluation.

Feature importance study
The importance of each input for every ANN model 
was assessed using the SHapley Additive exPlanations 
(SHAP) values [47]. SHAP value for an input represents 
the contribution of that input to the difference between 
actual and expected prediction, averaged over all pos-
sible permutations of inputs. An input with a higher 
SHAP value indicates its higher impact on model predic-
tion. For every ANN model, SHAP values for each input 
were calculated by taking the weighted average of the 
marginal contribution of the inputs. The mean absolute 
SHAP values of ANN-A inputs are presented in Fig. 11, 
as an example. The mean absolute SHAP values for the 
remaining models are reported in Table 8.

For ANN-A, initially measured retroreflectivity  (MRS 
at E = 0) was the most important input (mean absolute 
SHAP value = 166.9) (in Fig. 11). For the remaining mod-
els (in Table 8), predicted skip retroreflectivity  (PRS) had 
the highest impact on model prediction. Additionally, 
SN followed by TR were the most important inputs after 
 MRS or  PRS for all ANN models (in Fig. 11 and Table 8). 
Most retroreflectivity degradation models in the litera-
ture did not consider these key inputs simultaneously 
which might explain their relatively low accuracy.

Illustrative implementation of the proposed 
models
Before using a pavement marking product in a project, 
a transportation agency might be interested in deter-
mining the expected service life of a specific marking 
product based on a specified minimum retroreflectivity 
threshold. As an example, the process of implementing 

Table 7 Training performance of the models developed with 
Strategy A

Model R2 MAPE (%) RMSE 
(mcd/m2/
lux)

DT 0.78 45.5 116.4

ANN 0.82 44.6 106.9
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Fig. 7 Training performance of the developed models
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the proposed models to estimate the service life of one 
of the marking products (included in testing dataset) is 
explained in the following steps with the aid of Tables 9 
and 10.

Step 1: Initial retroreflectivity measurement
Firstly, initial  RS of the marking line right after field 
installation needs to be determined. This could be meas-
ured in the field at the project level or assumed based on 
previous similar projects. As shown in Table 9, this value 
was 329 mcd/m2/lux.

Step 2: Collection of inputs over 3 years
In Step 2, all the other inputs in Tables 9 and 10 should 
be collected at different elapsed times (i.e., E = 0, 1, 2, 3, 
11, 12, 15, 21, 24, 27, and 33 months). S, T, C, M, Th, b, 
and B are time-independent variables and could be easily 
determined for a specific product. TR and SN vary with 
E, which could be determined, predicted, or assumed 
based on historical data. It should be noted that for accu-
rate prediction, all the numerical inputs applied at differ-
ent E should lie within the ranges illustrated in Fig. 2.

Step 3: Sequential use of the proposed models
In this step, the user will assign all the input data at E = 0 
and employ ANN-A to calculate  PRS at month 1 (369 
mcd/m2/lux in Table 9). Afterward, the user will employ 
all the input data at E = 1 along with  PRS at month 1 (369 
mcd/m2/lux in Table 9) and employ ANN-B to calculate 
 PRS at month 2 (343 mcd/m2/lux in Table  9). This pro-
cess is repeated for all the remaining values of E and for 
all the remaining models in Tables 9 and 10 until the  PRS 

at month 36 (96 mcd/m2/lux in Table 10) is obtained. A 
comparison between measured  RS (as collected from 
NTPEP) and predicted  RS from the proposed models is 
illustrated in Fig. 12.

Step 4: Transverse to longitudinal retroreflectivity 
conversion
Based on the agency’s policy, the predicted transverse 
skip retroreflectivity  (RS) values at different E should 
be transformed into longitudinal retroreflectivity  (RL), 
which mimics the actual field conditions. It has been 
widely accepted to assume that  RS correlated well to  RL 
[14]. Furthermore, a recent study proposed simple mod-
els to perform the conversion between  RS and  RL [48].

Step 5: Service life estimation
Based on the  RL values obtained in step 4 at different E, 
the service life of the marking line can be estimated until 
the time when a marking product’s  RL drops below 100 
mcd/m2/lux. As per the model predictions in Fig. 12, the 
expected service life of this marking product is some-
where between 27 to 33 months.

Summary and conclusions
The objective of this study was to develop machine 
learning models that could be utilized by U.S. local and 
state agencies to reliably predict the retroreflectivity of 
pavement markings. To fulfill this objective, transverse 
skip retroreflectivity data and other key variables were 
retrieved from NTPEP database. DT and ANN algo-
rithms were considered to develop models for predict-
ing  RS sequentially for up to 3 years using two different 

Fig. 8 Testing performance of the models developed with Strategy A
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Fig. 9 Testing performances of the models developed with DT algorithm (Strategy B)
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Fig. 10 Testing performances of the models developed with ANN algorithm (Strategy B)
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Fig. 11 Feature importance values of the input variables to ANN-A

Table 8 Feature importance of the input variables for models ANN-B through ANN-K

Mean(|SHAP value|) (average impact on model output magnitude)

Models S T C M TH b B TR SN PRS

ANN-B 6.1 6.1 10.1 8.6 13 11.9 14.4 14.8 15.8 174.6

ANN-C 4.9 7.7 5.6 5.6 7.7 3.5 5.6 11.8 11.9 169.1

ANN-D 24.1 18.6 33 16.3 25.1 10 15.7 33.7 66.4 75.8

ANN-E 2.4 1.9 1.9 2.9 1.9 1.9 3.4 3.9 4.4 115.4

ANN-F 2.6 1.3 4.3 5.4 5.4 4.3 3.7 5.7 22.0 104.1

ANN-G 3.3 3.7 5.6 2.9 5.2 3.7 3.7 7.1 11.4 100.2

ANN-H 2.3 3.3 5.0 4.6 6.9 6.9 8.4 11.5 18.1 70.4

ANN-I 8.0 9.8 7.3 6.2 10.3 4.3 6.8 10.3 12.3 110.5

ANN-J 8.9 5.8 6.0 6.0 6.8 4.5 8.9 11.1 14.7 69.1

ANN-K 5.8 1.7 2.3 1.7 2.4 2.0 2.4 5.8 6.8 69.4

Table 9 Example results for models ANN-A through ANN-F

Variable type Variables Reported values

ANN-A ANN-B ANN-C ANN-D ANN-E ANN-F

Input E (month) 0 1 2 3 11 12

S Asphalt Asphalt Asphalt Asphalt Asphalt Asphalt

T Polyurea Polyurea Polyurea Polyurea Polyurea Polyurea

C White White White White White White

M M-29 M-29 M-29 M-29 M-29 M-29

TH (mil) 20.7 20.7 20.7 20.7 20.7 20.7

b N/A N/A N/A N/A N/A N/A

B Premium 
optics “Utah 
blend”

Premium 
optics “Utah 
blend”

Premium 
optics “Utah 
blend”

Premium 
optics “Utah 
blend”

Premium 
optics “Utah 
blend”

Premium 
optics “Utah 
blend”

TR (no. of vehicles) 222,000 740,000 1,776,000 2,812,000 12,617,000 13,394,000

SN (in.) 1.6 1.6 1.6 1.6 3.9 3.9

Input  RS (mcd/m2/lux) 329 369 343 299 160 130

Prediction horizon (month) 1 2 3 11 12 15

Output PRS (mcd/m2/lux) 369 343 299 160 130 87

Actual Actual  RS (mcd/m2/lux) 344 329 355 168 125 54
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model development strategies. All the models were 
trained with 80% of the total data points and tested 
with the remaining 20% data points. The findings and 
conclusions of the study were as follows:

• Correlation analysis of the collected variables indi-
cated that some variables were highly correlated 
which confirmed high multicollinearity in the study 
dataset.

• Sequential retroreflectivity prediction models dem-
onstrated higher accuracy than integral retroreflec-
tivity prediction models both in training and test-
ing.

• Both sequential DT and ANN models, with overall 
 R2 ranging between 0.54 to 0.96 and 0.55 to 0.96, pre-
dicted retroreflectivity at different prediction hori-
zons with a superior level of accuracy as compared 
with the regression models proposed in the literature.

Table 10 Example results for models ANN-G through ANN-K

Variable type Variables Reported values

ANN-G ANN-H ANN-I ANN-J ANN-K

Input E (month) 15 21 24 33 36

S Asphalt Asphalt Asphalt Asphalt Asphalt

T Polyurea Polyurea Polyurea Polyurea Polyurea

C White White White White White

M M-29 M-29 M-29 M-29 M-29

TH (mil) 20.7 20.7 20.7 20.7 20.7

b N/A N/A N/A N/A N/A

B Premium optics 
“Utah blend”

Premium optics 
“Utah blend”

Premium optics 
“Utah blend”

Premium optics 
“Utah blend”

Premium 
optics “Utah 
blend”

TR 16,798,000 23,791,000 27,158,000 30,229,000 37,259,000

SN (in.) 3.9 5.0 5.0 5.0 8.0

Input  RS (mcd/m2/lux) 87 133 127 137 98

Prediction horizon (month) 21 24 27 33 36

Output PRS (mcd/m2/lux) 133 127 137 98 96

Actual Actual  RS (mcd/m2/lux) 127 58 86 89 87

Fig. 12 Comparison of the measured and predicted  RS for the example in Tables 9 and 10
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• ANN models exhibited better testing performance 
than the DT models, and therefore, were selected as 
the better algorithm than DT for the adopted data-
set.

• Study of the feature importance of the input variables 
to ANN models revealed that initial retroreflectiv-
ity or predicted retroreflectivity followed by snowfall 
and traffic were the most important inputs to model 
predictions.

• The proposed models are expected to assist state 
agencies and transportation officials in determining 
the service life of pavement marking products and 
plan for future restriping activities accordingly.

Overall, non-parametric supervised machine learning 
algorithms seemed to be a promising alternative to tra-
ditional parametric methods in modeling retroreflec-
tivity degradation of pavement markings. In the future, 
longitudinal retroreflectivity data should be collected 
from northern and western states. More sophisticated 
DT-based ensemble algorithms (i.e., XGboost and 
LightGBM) and deep learning techniques (i.e., Recur-
rent Neural Network) should be employed to develop 
marking performance prediction models. Addition-
ally, lightweight machine learning models that require 
less data should be explored to increase applicability in 
cases with limited data availability. Models compatible 
with multi-functional road condition detection vehi-
cles, which are being increasingly used for pavement 
surveys, should also be developed. The models with 
best performance might be utilized to develop a sim-
ple retroreflectivity prediction tool that can enhance 
the decision-making process of transportation agencies 
regarding future restriping activities for the marking 
products.

Acknowledgements
Not applicable.

Authors’ contributions
MM and III developed the study concept. III collected the data, performed 
the analysis, developed models, and interpreted the results. III, MM, and MH 
prepared the draft manuscript. All authors reviewed the results and approved 
the final version of the manuscript.

Funding
This research was funded by the National Cooperative Highway Research 
Program (NCHRP) (Project Number: 20-30/IDEA 237).

Availability of data and materials
The datasets used and/or analysed during the current study are available from 
the corresponding author on reasonable request.

Declarations

Competing interests
The authors declare no competing interests.

Received: 18 August 2023   Revised: 27 January 2024   Accepted: 31 Janu-
ary 2024

References
 1. Rasdorf WJ, Hummer JE, Zhang G, Sitzabee W (2009) Pavement marking 

performance analysis. Fin Rep, NCDOT, Raleigh
 2. Mohamed MM (2019) Evaluation and modeling of pavement marking 

characteristics based on laboratory and field data. Dissertation, University 
of Idaho, Ann Arbor

 3. Migletz J, Graham JL, Harwood DW, Bauer KM (2001) Service life of dura-
ble pavement markings. Transp Res Rec 1749(1):13–21

 4. Fu H, Wilmot CG (2013) evaluating alternative pavement marking materi-
als. Public Work Manag Policy 18(3):279–297

 5. Benz RJ, Pike AM, Kuchangi SP, Brackett Q (2009) Serviceable pavement 
marking retroreflectivity levels. Tech Rep FHWA/TX-09/0-5656-1, TxDOT, 
Austin

 6. Sitzabee WE, White ED, Dowling AW (2013) Degradation modeling of 
polyurea pavement markings. Public Work Manag Policy 18(2):185–199

 7. Xu L, Chen Z, Li X, Xiao F (2021) Performance, environmental impact and 
cost analysis of marking materials in pavement engineering, the-state-of-
art. J Clean Prod 294:126302

 8. Hussein M, Sayed T, El-Basyouny K, de Leur P (2020) Investigating safety 
effects of wider longitudinal pavement markings. Accid Anal Prev 
142:105527

 9. Ozelim L, Turochy RE (2014) Modeling retroreflectivity performance 
of thermoplastic pavement markings in alabama. J Transp Eng 
140(6):05014001

 10. FHWA (2022) National standards for traffic control devices; the manual 
on uniform traffic control devices for streets and highways; maintaining 
pavement marking retroreflectivity. Fed Regist 87(150):47921–47931

 11. Mousa MR, Mousa SR, Hassan M, Carlson P, Elnaml IA (2021) Predict-
ing the retroreflectivity degradation of waterborne paint pavement 
markings using advanced machine learning techniques. Transp Res Rec 
2675(9):483–494

 12. Wang S (2010) Comparative analysis of ntpep pavement marking perfor-
mance evaluation results. Dissertation, University of Akron, Akron

 13. Thomas GB, Schloz C (2001) Durable, cost-effective pavement markings 
phase I: synthesis of current research. Fin Rep Project No. TR-454, IOWA 
DOT, Ames

 14. Zhang Y, Wu D (2010) Methodologies to predict service lives of pavement 
marking materials. J Transp Res Forum 45(3):5–18

 15. Lee JT, Maleck TL, Taylor WC (1999) Pavement making material evaluation 
study in michigan. ITE J 69(7):44

 16. Abboud N, Bowman BL (2002) Cost-and longevity-based scheduling of 
paint and thermoplastic striping. Trans Res Rec 1794(1):55–62

 17. Hollingsworth JD (2012) Understanding the impact of bead type on paint 
and thermoplastic pavement markings. Dissertation, Airforce Institute of 
Technology, Ohio

 18. Sitzabee WE, Hummer JE, Rasdorf W (2009) Pavement marking degrada-
tion modeling and analysis. J Infrastruct Syst 15(3):190–199

 19. Sarasua WA, Clarke DB, Davis WJ (2003) Evaluation of interstate pavement 
marking retroreflectivity. Fin Rep No. FHWA-SC-03-01, SCDOT, Columbia

 20. Robertson J, Sarasua W, Johnson J, Davis W (2013) A methodology for 
estimating and comparing the lifecycles of high-build and conventional 
waterborne pavement markings on primary and secondary roads in 
south carolina. Public Work Manag Policy 18(4):360–378

 21. Malyuta DA (2015) Analysis of factors affecting pavement markings and 
pavement marking retroreflectivity in tennessee highways. Dissertation, 
University of Tennessee at Chattanooga, Chattanooga

 22. James G, Witten D, Hastie T, Tibshirani R (2021) An introduction to statisti-
cal learning. Springer, New York

 23. Umali J, Barrios E (2014) Nonparametric principal components regression. 
Commun Stat Comput 43(7):1797–1810

 24. Kopf J (2004) Reflectivity of pavement markings: analysis of retroreflectiv-
ity curves. Res Rep WA-RD 592.1, WSDOT, Seattle

 25. Karwa V, Donnell ET (2011) Predicting pavement marking retroreflectiv-
ity using artificial neural networks: exploratory analysis. J Transp Eng 
137(2):91–103



Page 19 of 19Idris et al. J Infrastruct Preserv Resil             (2024) 5:3  

 26. Idris II, Mousa MR, Hassan M, Dhasmana H (2022) Predicting the retrore-
flectivity degradation of thermoplastic pavement markings with genetic 
algorithm. San Antonio

 27. Aguinis H, Gottfredson RK, Joo H (2013) Best-practice recommenda-
tions for defining, identifying, and handling outliers. Organ Res Methods 
16:270–301

 28. Benesty J, Chen J, Huang Y (2008) On the importance of the pearson 
correlation coefficient in noise reduction. IEEE Trans Audio Speech Lang 
Process 16(4):757–765

 29. Mk UÇAR (2019) Eta correlation coefficient based feature selection algo-
rithm for machine learning: e-score feature selection algorithm. J Intell 
Syst Theory Appl 2(1):7–12

 30. Jorge I (2011) The influence of the e-tutor on the development of col-
laborative critical thinking in a student’s e-forum: association levels with 
cramer’s v. In: Old Meets New Media Educ 61st Int Counc Educ Media XIII 
Int Symp Comput Educ Jt Conf, University of Lisbon, Portugal

 31. Yadav D (2019) Categorical encoding using label-encoding and one-hot-
encoder. https:// towar dsdat ascie nce. com/ categ orical- encod ing- using- 
label- encod ing- and- one- hot- encod er- 911ef 77fb5 bd. Accessed 15 Jul 
2022

 32. Agajanian S, Oluyemi O, Verkhivker GM (2019) Integration of random 
forest classifiers and deep convolutional neural networks for classification 
and biomolecular modeling of cancer driver mutations. Front Mol Biosci 
6:44

 33. De Ville B (2013) Decision trees. Wiley Interdiscip Rev Comput Stat 
5(6):448–455

 34. Karballaeezadeh N, Mohammadzadeh SD, Moazemi D, Band SS, Mosavi A, 
Reuter U (2020) Smart structural health monitoring of flexible pavements 
using machine learning methods. Coatings 10(11):1100

 35. Loh WY (2011) Classification and regression trees. Wiley Interdiscip Rev 
Data Min Knowl Discov 1(1):14–23

 36. Yang L, Shami A (2020) On hyperparameter optimization of machine 
learning algorithms: theory and practice. Neurocomputing 415:295–316

 37. Walczak S, Cerpa N (2019) Artificial neural networks. Encycl Phys Sci 
Technol 631–645

 38. Mostafa B, El-Attar N, Abd-Elhafeez S, Awad W (2020) Machine and deep 
learning approaches in genome: review article. Alfarama J Basic Appl Sci 
2(1):105–113

 39. Jin M, Liao Q, Patil S, Abdulraheem A, Al-Shehri D, Glatz G (2022) Hyper-
parameter tuning of artificial neural networks for well production estima-
tion considering the uncertainty in initialized parameters. ACS Omega 
7(28):24145–24156

 40. Sharma S, Sharma S, Athaiya A (2017) Activation functions in neural 
networks. Int J Eng Appl Sci Technol 4(12):310–316

 41. Kotsiantis SB (2013) Decision trees: a recent overview. Artif Intell Rev 
39:261–283

 42. Badr W (2019) Why feature correlation matters.... A Lot!. https:// towar 
dsdat ascie nce. com/ why- featu re- corre lation- matte rs-a- lot- 847e8 ba439 c4. 
Accessed 3 Apr 3 2023

 43. Thenraj R (2020) Do decision trees need feature scaling. https:// towar 
dsdat ascie nce. com/ do- decis ion- trees- need- featu re- scali ng- 97809 eaa60 
c6. Accessed 3 Apr 2023

 44. Roy B (2020) All about feature scaling. https:// towar dsdat ascie nce. com/ 
all- about- featu re- scali ng- bcc0a d75cb 35. Accessed 15 2022

 45. Thara TDK, Prema PS, Xiong F (2019) Auto-detection of epileptic seizure 
events using deep neural network with different feature scaling tech-
niques. Pattern Recognit Lett 128:544–550

 46. Bengio Y, Goodfellow I, Courville A (2016) Deep learning. MIT press, 
Cambridge

 47. Lundberg SM, Lee SI (2017) A unified approach to interpreting model 
predictions. In: 31st Conf. Neural Inf Process Syst (NIPS 2017), Neural 
Information Processing Systems Foundation, Inc. (NeurIPS), Long Beach

 48. Pike AM, Songchitruksa P (2015) Predicting pavement marking service life 
with transverse test deck data. Transp Res Rec 2482(1):16–22

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://towardsdatascience.com/categorical-encoding-using-label-encoding-and-one-hot-encoder-911ef77fb5bd
https://towardsdatascience.com/categorical-encoding-using-label-encoding-and-one-hot-encoder-911ef77fb5bd
https://towardsdatascience.com/why-feature-correlation-matters-a-lot-847e8ba439c4
https://towardsdatascience.com/why-feature-correlation-matters-a-lot-847e8ba439c4
https://towardsdatascience.com/do-decision-trees-need-feature-scaling-97809eaa60c6
https://towardsdatascience.com/do-decision-trees-need-feature-scaling-97809eaa60c6
https://towardsdatascience.com/do-decision-trees-need-feature-scaling-97809eaa60c6
https://towardsdatascience.com/all-about-feature-scaling-bcc0ad75cb35
https://towardsdatascience.com/all-about-feature-scaling-bcc0ad75cb35

	Modeling retroreflectivity degradation of pavement markings across the US with advanced machine learning algorithms
	Abstract 
	Introduction
	Objective and scope
	Background
	Overview of the National Transportation Product Evaluation Program (NTPEP)
	Previous retroreflectivity degradation models
	Advancements based on previous research

	Data collection
	Exploratory data analysis
	Descriptive statistics
	Correlation analysis

	Data preprocessing
	Model development
	Machine learning algorithms
	Overview of model development process

	Model training
	Training DT models
	Training ANN models
	Hyperparameter tuning

	Model testing
	Feature importance study
	Illustrative implementation of the proposed models
	Step 1: Initial retroreflectivity measurement
	Step 2: Collection of inputs over 3 years
	Step 3: Sequential use of the proposed models
	Step 4: Transverse to longitudinal retroreflectivity conversion
	Step 5: Service life estimation

	Summary and conclusions
	Acknowledgements
	References


