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Abstract 

There are over 2.2 million miles of underground water pipes serving the cities in the United States. Many are in poor 
conditions and deteriorate rapidly. Failures of these pipes could cause enormous financial losses to the customers 
and communities. Inspection provides crucial information for pipe condition assessment and maintenance plan; it, 
however, is very expensive for underground pipes due to accessibility issues. Therefore, water agencies commonly 
face the challenge to 1) decide whether it is worthwhile to schedule expensive water pipe inspections under financial 
constraints, and 2) if so, how to optimize the inspection schedule to maximize its value. This study leverages the physi-
cal model and data-based ML (ML) models for underground water pipe failure prediction to shed light on these two 
important questions for decision making. Analyses are firstly conducted to assess the value of water pipe inspec-
tion. Results by use of a physical-based failure model and Monte Carlo simulations indicate that by inspecting pipe’s 
condition, i.e., assessment of pipe’s erosion depth, the uncertainty of water pipe failure prediction can be narrowed 
down by 51%. For optimal inspection schedule, an artificial neural network (ANN) model, trained with historical 
inspection data, is evaluated for its performance in forecasting the future pipe failure probability. The results showed 
that a biased pipe failure prediction can occur under limited rounds of inspection. However, incorporating more 
rounds of inspection allows to predict the pipe failure conditions over its life cycle. From this, an optimal inspection 
plan can be proposed to achieve the maximum benefits of inspection in uncertainty reduction. A few salient results 
from the analyses include 1) the optimal schedule for inspection is not necessarily equal in the time interval, 2) by set-
ting the goal of uncertainty reduction, an optimal inspection schedule can be obtained, where ML (ML) model aug-
mented by continuously training with inspection data allows to reliably predict water pipe failure conditions over its 
life cycle. While this study focuses on underground pipe inspection, the general observations and methodology are 
applicable to optimize the inspection of other types of infrastructure as well.
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Introduction
Over 2.2 million miles of water pipes are buried under 
the U.S. cities, delivering reliable water to millions of peo-
ple. However, many of them are in a poor condition and 
are deteriorating rapidly [5]. The failure of these pipes 

could cause enormous financial losses to the local busi-
ness and communities. There are more than 700 water 
main breaks every day in Canada and USA [25], which 
results in huge economic and social losses. In 2009, the 
American Society of Civil Engineers issued a USA Infra-
structure Report Card and gave a D- to drinking water 
and wastewater infrastructure, which recently grows to 
C- in 2021 [23]. As stated by the American Water Work 
Association (AWWA), we stand today at the dawn of a 
new era, the replacement era, for water utilities. These 
replacement costs combined with projected expansion 
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will cost more than $ 1 trillion over the next couple of 
decades [7].

The failure of water pipes can incur enormous losses, 
including water containment, water shortage, and finan-
cial losses with associated societal or environmental 
impacts. At present, only 47% of water utilities have 
used a pipe failure model for the water pipe replacement 
strategies [8]. Part of the reason is the lack of sufficient 
historical data for developing a more accurate pipe fail-
ure prediction model [40]. In addition, the influence of 
a limited number of inspection records on the mainte-
nance plan is still unclear. Therefore, it is to the benefit 
of society to understand the value of inspections and to 
ensure the inspection schedule can maximize the benefit 
of inspections. This study demonstrates that the value of 
inspection is to reduce the uncertainty in pipe condition 
assessment and that ML model provides a way to incor-
porate inspection data to optimize the inspection period.

The existing prediction models for water pipe condi-
tions (i.e., failure probability), are classified into three cat-
egories, i.e., physics-based models, statistical models, and 
ML based models [10, 49]. Physical models consider the 
physical mechanisms which contribute to the water pipe 
failure. Three physical aspects are often considered by a 
physical model, i.e., the material properties and struc-
tural design of pipe, the internal and external loads to 
the pipe, and material deterioration including corrosion 
affected by the environment and service time [31]. When 
the residual structural capacity can’t support the inter-
nal and external loads, the water pipe fails. The books 
by Young and Trott [52] provide well explanation of the 
mechanical behavior of buried water pipe. Ahammed and 
Melchers [3] used Spangler-Watkins in-plane pipe-soil 
interaction to obtain an estimated failure probability in 
steel pipe, and also used the first-order second–moment 
(FOSM) method to the prediction of the failure probabil-
ity. Pandey [28] and Valor et al. [46] presented a method 
where the failure probability is obtained by Monte Carlo 
simulation.

Statistical models typically analyze data from histori-
cal records and try to find the trend by curve fitting with 
a mathematical equation. Yamijala et  al. [50] compared 
four types of statistical models for the pipe failure prob-
ability at different ages. The existing statistical models 
including time linear ordinary least squares regression, 
time exponential ordinary least squares regression. The 
logistic Gaussian linear model is believed to have a better 
ability to the regression and prediction of water pipe reli-
ability [50]. Keliner and Rajani also summarized a lot of 
work and historical data [22]. The statistical models are 
found economically viable approach for the smaller dis-
tribution water main. Both statistical and physical mod-
els need to be validated and improved with more data. 

Both of them have their own drawbacks. For example, 
statistical model tries to regression the historical data 
by certain limited mathematical equations, and physical 
model requires a deep understanding of the mechanism 
about water pipe failure.

Machine Learning (ML) is an emerging method for the 
prediction of structural failures [45, 48], geology [39], 
and underground structures [20]. For example, Ren et al. 
[33] predicted the corrosion rate by using back propaga-
tion neural network. Peng et al. [29] developed a model 
for predicting the failure rate of oil and gas pipelines by 
fuzzy neural network. Tabesh et al. [42] applied the ANN, 
ANFIS and Nonlinear Regression methods to assess 
the pipe failure rate of water distribution networks, and 
found that the ANN is the most robust method. Sadiq 
et al. [35] use the ANN model to predict the water pipe 
condition where the relationships among variables are 
unknown. Sawhney and Mund [37] added that the ANN 
is useful to represent problems where solutions are not 
clearly identified. Rajani and Kleiner [31] applied the 
ANN model to water distribution network. Thomas [43] 
used an ANN model in multi-criteria decision making 
and prediction problems. An AHP model was also devel-
oped to find out the key factors that influence the failure 
of water pipelines, then used ANN to predict the failure 
[13, 14]. Fan et al. [17] also considered five different ML 
algorithm for the pipe failure prediction.

Although with different methods have been developed 
for assisting the maintenance decisions, a rich historical 
dataset is required for the model calibration or training. 
However, such datasets that includes pipe condition at 
different ages and environments are difficult to obtain, 
especially for small utilities who are just beginning to 
record their assets. Therefore, it is important that the 
decision-making process can be calibrated by accumu-
lated inspection data. However, few studies have consid-
ered the value of inspections to the ML-based prediction 
models and how to optimize inspection intervals.

This paper aims to quantify the benefits of conducting 
pipe inspection and ML support of the development of 
optimal inspection intervals. Mont Carlo simulations 
were conducted with a widely accepted physics-based 
model to generate data about the future pipe condi-
tions. Inspection at a given service time was assumed 
to capture the pipe conditions. A ML model, Artificial 
Neural Network, is trained with inspection data and 
evaluated for its capability to forecast the future water 
pipe failure probability. The results unveil a few inter-
esting findings. Firstly, conducting inspection could 
significantly reduce the uncertainty range for the pipe 
performance forecasting. Secondly, not all inspections 
conducted at the same time interval bring equal value. 
For example, inspection at the early stage and final 
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stage of pipe service life may only add limited values 
to the performance forecasting. Based on the goal of 
uncertainty control on pipe condition assessment, an 
optimal inspection plan can be determined based on 
continuous training of the ANN model with additional 
pipe inspection data.

Methodology
Using a simulation-based method is a common 
approach in order to generate a sufficient dataset. In 
this study, we used a widely accepted physical-based 
water pipe failure model to generate the pipe samples. 
The pipe’s service life is assumed as 100 years. Figure 1 
shows the main flowchart of this study. The water pipe’s 
failure physical model is used to generate samples for 
the ML model’s training process (from year 1 to year i). 
After that, the ML model is trained and used as a fail-
ure prediction model. The failure probabilities of the 
pipe from year i + 1 to year 100 are computed using the 
randomly sampled physical factors. Finally, the predic-
tion results of the ML model are compared with that of 
the physical model to evaluate the value of inspections.

Applied pipe failure physical model
In the current US design standard for cast-iron pipe [6], 
the pipe is assumed as a rigid body that carry all the 
internal and external loads. Schlick [38] conducted an 
experiment which showed that the probability of failure 
of a grey cast-iron pipe can be calculated by a parabolic 
relationship between the inside pressure and external 
loads. Underground water pipes usually support several 
loads, as studied by Rajani and Kleiner [31]. The failure 
types of pipes are categorized into three major categories 
by O’Day et al. [27], i.e. 1) Circumferential breaks, caused 
by longitudinal stresses; 2) longitudinal breaks, caused 
by transverse stresses (or hoop stress); and 3) split bell, 
caused by transverse stresses on the pipe joint.

Schematic of these loads are illustrated in Fig. 2. In this 
study, two types of external stresses are analyzed, i.e., 
hoop stress and axial stress. The formulations used to cal-
culate the external stresses are summarized in the follow-
ing context.

Water pipe external stress analysis
In this study, a total of four types of stresses are consid-
ered, i.e., the stress of internal fluid pressure, the stress 

Fig. 1 Overall flowchart of this study

Fig. 2 Different types of loads on pipe and the corresponding failure modes Rajani and Kleiner [31]
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of soil pressure, the stress of frost load, and the stress of 
traffic load. The computation of these stresses is firstly 
introduced below.

Stress by the internal fluid pressure [30]

where p is the internal pipe pressure, D is the nominal 
pipe diameter, t is the pipe wall thickness

Stress by soil pressure [41]

where Km is the bending moment coefficient, γ is the unit 
weight of soil, Bd is the width of ditch, Kd is the deflec-
tion coefficient, Ep is the pipe material elastic modulus, 
Cd is the calculation coefficient

Stress by frost load [32]

where ffrost is frost load multiplier, σs is the stress by soil 
pressure.

Stress by traffic loads [2]

where Ic is the impact factor, A is the effective length 
of pipe, F  is the wheel load traffic, Ct is the surface load 
coefficient

Therefore, the total hoop or circumferential stress is 
calculated by assuming the stresses by these different 
loads are superimposed,

The total axial stress is calculated by considering the 
stress due to temperature gradient.

where σF ′ = p
2
× D

t − 1 νp is the stress due to internal 
fluid pressure, σT = −Epαp�T  is the stress caused by 
temperature difference [30].

The axial stress due to deflection of pipe was not con-
sidered. It is noted that when the support structure failed, 
the stress due to bending moment can be significant and 
even cause the failure of water pipe.

Water pipe residual yield strength
The resistance of pipe failure is highly related to the effec-
tive structural thickness of pipe wall. For this purpose, 
the surface corrosion model is utilized to describe the 
reduction of pipe wall thickness due to corrosion. The 
wall thickness of water pipe continue decreases over time 

(1)σF = pD
2t

(2)σS = 3KmγB
2
dCdEptD

Ept3+3KdPD
3

(3)σL = ffrostσS

(4)σV = 3KmIcCtFEptD

A(Ept3+3KdpD
3)

(5)σθ = σF + σS + σL + σV

(6)σX = σT +
(

σ
′
F + σS + σL + σV

)

νp

due to corrosion. The corrosion rate has been studied 
extensively. For example, Doyle et  al [15, 16, 19, 21, 24, 
26] surveyed the condition of buried water pipes. The 
results indicate that the condition of water pipe is highly 
related to soil characteristics.

In the paper, an empirical two-phase corrosion model 
was used in estimation of corrosion depth [36].

where d is the depth of corrosion (mm), a is the final pit-
ting rate constant, b is the pitting depth scaling constant, 
c is corrosion rate inhibition factor.

Figure  3 shows one example of prediction corrosion 
depth by Eq. (7), by using of parameters listed in Table 1. 
The corrosion of metal pipe is due to the establishment 
of anodic and cathodic areas [12, 34]. The anodic area 
was established by local environment initially, such as 
a crack in the iron oxide layer. Then the cathode will be 
established somewhere near the pit. Subsequently, there 
will be anions such as OH− and CI− movements from the 
anode to the cathode. However, with the movement of 
these anions, a layer of ferrous hydroxide [Fe(OH)3] will 
be generated. And later an intermediate layer of magnet-
ite [Fe3O4] will form. This layer of magnetite will stop the 
anions move from anodic area to the cathodic area. So 
the corrosion rate will be high at the early stage and then 
decreases over time [36]. Therefore, the development of 
corrosion by the two-phase model (Eq. (7), Fig. 3) is con-
sistent with the physic-chemical process associated with 
the field corrosion.

The residual yield strength of a water pipe can be deter-
mined by the empirical relationship proposed by Rajani 
et al. [30], Eq. (8):

where β = a1

(

d
tres

)b1
 , α, S are constants used in fracture 

toughness equations; β is the geometric factor for a dou-
ble-edge notched tensile specimen; an is the lateral 
dimension of pit; Kq is the provisional fracture tough-
ness, a1 , b1 are constants for determining the geometric 
factor β , d is the depth of corrosion pit which can be esti-
mated by Eq. (7).

Water pipe failure criteria
Failure of a water pipe occurs when either its hoop stress 
or axial stress exceed its residual yield strength [36]. By 
introducing the concept of factor of safety (FOS), the 
water pipe failure criteria can also be written as Eq.  (9). 
When FOS is larger than 1, the pipe is assumed to be 
safe; otherwise, the pipe is assumed to fail.

(7)d = aT + b
(

1− e−cT
)

(8)σY = αKq

β

(

d
tres

√
an

)S
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where σY, σX, σθ are determined by Eqs. (5), (6) and (8) 
respectively.

(9)FOS = min
(

σY
σX

, σY
σθ

)

FOS = min
(

σY
σX

, σY
σθ

) Water pipe failure probability
There are significant uncertainties with the parameters 
used to determine the hoop stress, axial stress and resid-
ual yield strength. The FOS and consequent probability of 

Fig. 3 Two-phase corrosion model

Table 1 Summary of the probability distribution of input variables for Monte Carlo simulation

Symbol Physical Meaning Type of distribution Mean Standard 
Deviation

Ep Pipe material elastic modulus Normal 165,000 33,000

α Toughness correction coefficient Uniform 10–13.5

S Toughness exponent Normal 1.0 0.1

a1 Constants to determine β Uniform 0.3–0.5

b1 Normal -0.25 0.03

p Internal pressuring Normal 0.45 0.12

D Internal diameter Normal 200 11.43

t Wall thickness Normal 10 0.44

a Final pitting rate constant Normal 0.09 0.009

b Pitting depth scaling constant Normal 5 2.0

c Corrosion rate inhibition factor Normal 0.1 0.05

Km Bending moment coefficient Lognormal 0.235 0.05

Cd Calculation coefficient Lognormal 1.32 0.2

Bd Width of ditch Normal 500 114.3

Kd Defection coefficient Lognormal 0.108 0.0216

Ic Impact factor Normal 1.5 0.375

Ct Surface load coefficient Lognormal 0.12 0.24

F Wheel load of traffic Normal 65,000 20,000

A Pipe effective length Normal 6100 200

�T Temperature differential Uniform -10–0

an Width of pit Uniform 3–5
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water pipe failure are of stochastic nature. Such problems 
are typically analyzed by methods such as the Monte 
Carlo simulation [28], Mean-Value First Order Second 
Moment, Advanced First Order Second Moment, First 
order reliability methods [9, 11], Rosenblueth’s Points 
Estimation, or Harr’s Point Estimation [44].

Monte Carlo simulation is an effective method to 
model the stochastic process. It is utilized in this study. 
The variables required to determine the failure condi-
tions of water pipe is assumed to follow special statis-
tic distributions. The distribution of these variables are 
listed in Table 1, modified from Sadiq et al. [36].

Figure  4 shows the flow chat of using Monte Carlo 
simulation to determine distribution of FOS and failure 
probability of a single pipe. For each loop, the values of 
considered variables are randomly generated using the 
probability distribution parameters as noted in Table  1. 

Based on the random generated value, the FOS is com-
puted by Eq. 9. After iterating N times, the times of fail-
ures, n, can be recorded and the failure probability of this 
pipe can be computed by Eq. 10.

where n is the number of failure times in the iteration, 
and N is the total number of iterations.

Artificial Neuron Network (ANN)
Artificial Neural Network (ANN) is a widely used ML 
model. Its architecture includes interconnected neurons 
in the input layers, hidden layers and output layer, which 
determines its overall performance [1]. Increasing the 
number of neurons and hidden layers can improve the 
ability of ANN model to describe nonlinear relationships. 

(10)Pf = n
N

Fig. 4 Flowchart of Monte Carlo simulation with physics-based model to determine pipe failure probability
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It, however, also increase the computational demand and 
potentially lead to overfitting. A conceptual architecture of 
a neural network is shown in Fig. 5.

The input layer consists of i neurons, which are corre-
sponding to the number of input features. The hidden lay-
ers provide the capability to model the complex non-linear 
relationships which are fine-tuned with the training data. 
The output layer consists of one neuron which is used to 
classify the output as leaking or not leaking.

The hidden layers include fully connected neurons, the 
output of each neuron is written as Eq. 11.

where yk is the output of each neuron at the hidden layer, 
xr,k is the output of the last layer, for the first layer of neu-
ral network, xr,k is the sample data. ωr,k is the weight of 
that neuron and b is the bias of that neuron, which are 
trained with the training datasets by the back-propa-
gation algorithm. f (·) is the activation function used to 
increase the nonlinear property during the propagation. 
In this study, the ‘ReLU’ function is used as the activation 
function of the hidden layer [4].

The output of the last hidden layer is then transferred 
into the neurons in the output layer, whose actions is writ-
ten as below.

where yk is the output of the last hidden layer, and yz is 
the output of the output layer. ω and b are the weight and 
bias as described before. g(·) is the sigmoid transfer func-
tion defined as Eq. 13

(11)yk = f

(

I
∑

r=1

xr,kωr,k + b

)

(12)yz = g
(

ykω + b
)

(13)g(x) = 1
1+e−x

The ANN model in this article is built and trained with 
TensorFlow in python environment, which learns the 
relationship between the output and input by a train-
ing process to classify the observed data into leaking 
and non-leaking situations. More detailed mathematical 
information about ANN can be found at [18].

Results and discussion
A pipe with 6  m effective length, 20  cm internal diam-
eter, and 1  cm original wall thickness is considered as 
the testbed in this study. The Monte Carlo simulations 
are repeated 1,000 times for each year. Hence the Monte 
Carlo simulation provides 1,000 random FOS value for 
each year, from which the failure probability of each 
year and the evolution of failure conditions (mean and 
standard deviation) with service time can be calculated. 
In this section, the value of inspection is firstly studied. 
The inspections data samples are assumed based on the 
accuracy of inspection tools and are generated by Monte 
Carlo simulation. After that, an ANN model is evaluated 
in its capability to predict the pipe’s failure probability 
over time using the inspection data. The prediction result 
of the ANN model is used to demonstrate the impor-
tance of an optimal maintenance by comparing it with 
the theoretically ground truth.

Illustration of the value of pipe inspection
The corrosion inspection is one of the most inspec-
tion items in the pipe maintenance procedures. Multi-
ple inspection methods, such as Magnetic flux leakage 
(MFL), Circumferential MFL, Tri-axial MFL, and Ultra-
sonics, have been used for the pipeline deterioration 
inspection [47]. To quantify the value of pipe inspections, 
we assume the corrosion depth is inspected at a specific 
year, T0. The inspected value is then used as the initial 

Fig. 5 Schematic of ANN architecture
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value for Monta Carlo simulation to determine the fol-
lowing years’ pipe thickness (Eq. 14). In other words, we 
assume the corrosion depth is a determined value at year 
T0 by inspection, which is used to predict the pipe con-
ditions during the subsequent years via the Monte Carlo 
simulations.

where dT is the pipe corrosion depth at year T (> T0), dtT0 
is the inspected corrosion depth at T0, other parameters, 
a, T, b, and c are the same with Eq. 7.

The distribution of the FOS at each year, with no 
inspection or with inspection at Year 20, is computed 
by Monte Carlo Simulations. For each year, the mean 
value, 10% quantile, and 90% quantile are computed and 
recorded. Figure  6 shows the computed distribution of 
FOS over 100  years. The solid lines are the prediction 
results assuming the pipe is not inspected. As can be 
seen in Fig.  5, the overall FOS values decrease with the 
service life increases. After the  70th year of service, the 
mean value of FOS is around 1, which implies that there 
is about 50% probability that the pipe would fail. Assume 
the average acceptable FOS of 1.5, the corresponding 
year for the water pipe to reach the threshold is around 
37 years.

To assess the effects of inspection, it is assumed that 
due to a more corrosive underground environment, 
the pipe’s corrosion depth determined by inspection 
at  20th year is 5  mm, which is slightly higher than the 
average value of 4.02 mm. The FOS of the pipe for the 
subsequently years calculated by the procedures (as 

(14)dT = dtT0 + a(T − T0)+ b
(

1− e−c(T−T0)
)

illustrated in Fig. 3) after incorporating the inspection 
data is shown in Fig. 6 by the dash lines. Both the mean 
value and ranges of FOS after considering the inspec-
tion are shown in the figure.

The results in Fig. 6 indicate if using average FOS of 
1.5 as an acceptable threshold for pipe replacement, 
the corresponding year for the water pipe to reach 
the threshold FOS is around 30 years. The result indi-
cates that incorporation of inspection data would fore-
cast unacceptable pipeline failure 8  year earlier than 
without inspection. From practice perspective, this 
information will be helpful for agencies to implement 
preventative maintenance such as corrosion protection 
measures or replacing the pipe sections before it fails. 
The final decision is also dependent upon the financial 
constraints and societal impacts of such actions.

The immediate value of the inspection is studied by 
comparing the FOS distributions at the  21st year, which 
is the next year after the inspection. Both of the fore-
cast FOS distributions follow lognormal distributions. 
As shown in Fig. 7, compared with without inspection, 
the possible FOS values of pipe predicted with inspec-
tion became more concentrated, and variations are 
reduced.

Figure 8 compares the standard deviation of FOS over 
time after inspection. The results show that inspection 
helps to narrow down the uncertainty range of pipe 
condition forecast, or FOS. For example, at the end of 
 40th year, the variance of the FOS without inspection is 
0.967. While with inspection data, the prediction vari-
ance in FOS is 0.475. This clearly shows that inspection 

Fig. 6 Development of pipe failure probability (indicated by the mean and range of factor of safety (FOS) over time without inspection (solid lines) 
or with inspection at Year 20
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data significantly reduces the variations or uncertain-
ties in the FOS.

Overall, the results indicate inspection collects pipe 
condition data and provide more accurate prediction of 
its future conditions. As shown in Figs. 5, 6 and 7 shows 
that value of inspection is to reduce the range of uncer-
tainty in forecasting the future conditions of the pipe. 
The variations in the model forecast are reduced (as 
much as 50.8% in this case) in this case after incorpo-
rating inspection data. The reduced variation in model 
forecast will help reducing the uncertainty during 
the decision-making process. The value of inspection 

gradually decreases over time, as indicated by that the 
range of forecast FOS uncertainty continues to increase 
over time. At certain time, another round of inspection 
is needed to reduce the uncertainty on pipe condition 
assessment.

It is also noted that, the inspection program ana-
lyzed here only considered the depth of corrosion, 
which is related to the capacity of the pipe to resist fail-
ure. Other parameters related to service load, such as 
internal water pressure, frost effects, and traffic loads, 
are not included. This information, if available, can be 
included to further reduce the uncertainty in the fore-
cast of water pipe failure.

Fig. 7 Distribution of predicted pipe failure condition (i.e., FOS) at the 21st year without inspection or with inspection at Year 20

Fig. 8 The variations of predicted pipe failure probability FOS without or with inspection (at Year 20)
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ML model with inspection data for reliable forecast 
of future pipe conditions
The previous discussions show inspection bring values 
in reducing the uncertainty in underground water pipe 
condition assessment. The natural next question is how 
to effectively incorporate inspection data for pipe failure 
probability prediction. We explore data-driven ML mod-
els to facilitate such purpose. The advantage of ML model 
is that it can extract the features from the complex data-
set without requiring a predefined physics-based model. 
The data-driven nature requires data for ML model train-
ing and validation. An Artificial Neuron Network (ANN) 
is used in this study due to its simplicity.

A few assumptions are made in this study to evalu-
ate the ability of ANN model in predicting the pipe fail-
ure probability at different ages. Firstly, we assume the 
inspection datasets are obtained from a large water sys-
tem. Specifically, we assume that there are 1,000 pipes 
with the same initial physical installed in the water sys-
tem, and the inspection process could provide values of 
all the variables according to the distribution listed in 
Table 1. We also assume the physics-based model intro-
duced in Illustration of the value of pipe inspection sec-
tion could reflect the pipe failure mechanism accurately. 
Hence the corresponding pipes’ status can be determined 
by the Monte Carlo simulation via the physics-based 
model. With the first assumption, the inspection will 
allow to capture the condition data for the 1,000 pipes, 
which would provide enough number of data samples for 
the ANN training and validation. The second assumption 
allows to use the average pipe conditions predicted by the 
physics-based model as a ground truth for evaluating the 
ML model performance.

To train the ANN model, we firstly generate the pseudo 
inspection dataset that contains the variable values and 
pipe status based on the assumptions. An ANN model 
with optimal structures is obtained after hyperparameter 
optimization. The ANN model contains 1 input layer, 1 
output layer, and 6 hidden layers. The activation function 
‘ReLU’ is selected for the input layer and the hidden lay-
ers. The ‘Sigmoid’ function was used in the output layer 
as the activation function. The input layer contains 21 
neurons that corresponding to all the pipe variables listed 
in Table  1. The output layer contains 1 neuron which 
classify the condition of the pipe as either ‘failure’ or 
‘functional’ based on its FOS. The hyperparameters of the 
considered ANN model are determined based on a trial-
and-error process. It should be noted some techniques, 
such as grid-searching and Bayesian optimization, can 
also be used to determine these hyperparameters [51]. 
We split the generated pseudo inspection data into train-
ing and testing dataset with a ratio of 7:3. The ANN mod-
el’s accuracy is evaluated by comparing the prediction 

results of testing set and the pipe status of the generated 
dataset. The accuracy of the trained ML achieves 99.1%. 
This high accuracy is because the ML model can well 
learn the pattern of the predefined physical model.

The process of predicting the pipe failure probabil-
ity assumes that the variables (except pipe thickness) in 
the future continue to follow the same distributions of 
inspection records which are also the predefined dis-
tributions in Table  1. Therefore, for each year with no 
inspection, 1,000 sets of random variables are generated 
except the pipe’s current thickness. The pipe’s thickness 
data is replaced with the pipe’s remaining thickness based 
on the results of nearest previous inspection. Thereaf-
ter, the generated datasets are fed into the trained ANN 
model. Accordingly, the model will predict either the 
pipe is failure or functional based on the inputs. The fail-
ure probability of the pipe can be computed by dividing 
the number of failures with the total number of samples 
(1,000 samples), as shown in Eq. 10.

The ground truth curve is obtained directly from the 
Monte Carlo simulation with physics-based model. And 
it is used as the baseline for comparison to verify the 
accuracy of the predicted results by ANN. The baseline 
is shown as ‘original data’ in Fig. 8. To evaluate the value 
of inspection, we firstly assume the inspection is con-
ducted regularly at 10-years interval. For example, if the 
inspection is conducted over 40-year period, pipe condi-
tion data is assumed to be collected at  10th,  20th,  30th and 
 40th and are used for ANN model training. The trained 
ANN model is used to predict pipe failure probability 
for the subsequent years. Similar analyses are conducted 
for ANN model trained with inspection data collected at 
10 year time interval over 50 years, 60 years, or 70 years 
of pipe service; the results are compared with the ground 
truth (Fig. 9).

Figure  9 shows the comparison results of predicted 
pipe conditions (i.e., its failure probability) by ML models 
trained with different years of inspection data. The com-
parison with baseline ground truth curve shows that the 
more training data obtained from inspection, the closer 
the forecast by the ANN model to the ground truth. For 
example, the ANN model trained with 40  years of data 
from 4 rounds of inspections at 10-year interval can pre-
dict the pipe failure probability within 4% of the ground 
truth values in the subsequent 20 years (40 to 60 years). 
The deviation from the ground truth curve increases in 
the subsequent years. If the next round of inspection 
data (i.e., inspection at  50th year) is available, the fur-
ther trained ANN model could predict within 2% of the 
ground truth values for the next 20 years. Incorporating 
more inspections, similar trends are observed. Interest-
ingly, for this case, ANN model trained with 7 rounds of 
inspection data  (10th year,  20th year,30th year,  40th year, 



Page 11 of 14Fan and Yu  J Infrastruct Preserv Resil            (2023) 4:20  

 50th year,  60th year,  70th year) is able to predict the fail-
ure probability that nearly overlap with the ground truth 
curve. That is, 7 rounds of inspection data (up to  70th 
year) would allow to accurately predict the pipe failure 
probability over the life span of 100 years.

The observations imply that ML model trained with 
pipe inspection data is able to provide reliable forecast 
of its failure probability over certain years. The reliabil-
ity of ML model prediction is further increased by incor-
poration of more inspection data. Therefore, the value 
of inspection is to further extend the range of years in 
reliable pipe condition prediction. It is also noted that 
inspection data beyond certain years of service (70 years 
in this case) does not bring added value. This might be 
attributed to the fact that the corrosion of water pipe has 
gone into steady deterioration rate at that stage. There-
fore, there should be an optimal inspection strategy, in 
terms of scheduling the inspection, that brings in the 
maximum value of the inspection data over the service 
life of the water pipe. This is further discussed in the fol-
lowing context.

Optimal inspection schedule based on ML model
The previous analyses indicate ML model trained with 
inspection data can predict future pipe conditions. The 
inaccuracy of its performance, however, can grow over 
the years in the future. Therefore, an optimal inspection 
schedule could provide acceptable reliability in pipe con-
dition prediction over the whole service life of water pipe. 
The term ‘optimal’ in this case refers to the inspection 
schedule that using the minimal number of inspections to 
constraint the uncertainty in future condition prediction 

to be within ± 5% of the true value based on prior inspec-
tion data. The idea of optimal inspection interval from 
ML model is illustrated in this section. The studied pipe 
is assumed to have the same design parameters and will 
be used for 100  years. An ANN model is used for pre-
dicting the pipe’s failure probability in its remaining life. 
The failure probability by Monte Carla simulation with 
physics-based model is used as the baseline (true value).

Figure 10 shows the pipe’s ground truth curve and the 
prediction results of the ANN model. Since the failure 
probability is low for the first 20  years, we assume the 
inspection is not necessary until the  20th year. There-
fore, the first inspection is arranged at the  20th year as 
shown in Fig.  9. After the inspection, the initial condi-
tion data  (1st year) and the inspection data at the  20th year 
are used to train the first ANN model. Figure 10 shows 
the first trained ANN quickly deviates from the ground 
truth curve in the subsequent years after year 20. Assum-
ing the prediction bias should be controlled within 5% 
error range of the ground truth, the next inspection date 
is expected to be arranged at  25th year. With the years 
of data (data from the  1st year and inspection data from 
both the  20th and  25th year), the prediction accuracy of 
new ANN model can be within 5% for the next 15 years. 
Therefore, the third inspection can then be made at the 
 40th year. With this time’s inspection data, the new fore-
cast accuracy is ensured for the next 20 years. The fourth 
inspection can then be done at  60th year to cover another 
20 years. Finally, the fifth inspection can be done at the 
 80th year, which will allow the ML model to cover the 
remaining service life of the water pipe up to 100  year. 
Overall, 5 rounds of inspections will be sufficient to 

Fig. 9 Results of predicted pipe failure probability with ANN model trained with different years of data collected with a fixed 10-year time 
inspection interval, with results of physics-based model as the ground truth
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provide reliable forecast (within 5% error) over the 100-
year life cycle of the water pipe.

The results shown in Fig.  9 indicate that the optimal 
inspection schedule is not evenly spaced, or the value 
the inspection data at different years is not equal. A few 
observations are summarized below.

a) Firstly, no inspection is needed during the first 
20 years because of the low probability of failure. The 
inspection data does not bring much added value for 
ML model.

b) Second, a more frequent inspection (between 20 to 
40 years) is needed due to the rapid change of water 
pipe’s failure probability. In other words, the inspec-
tion data brings higher value in ANN model training 
for future pipe condition prediction.

c) Third, regular inspection with approximate fixed 
time intervals can be used when pipes between 
40–80  years old. It is because on the one hand, the 
ANN model has received enough amount of data to 
capture the changing trend of the pipe failure prob-
ability. On the other hand, the corrosion rate of the 
pipe is becoming steady.

d) Finally, no value of inspection at the final stage of 
the water pipe is observed (80–100 years), the ANN 
model is able to accurately predict the pipe failure 
probability to the end of service life. This is possibly 
because the corrosion rate of pipe has become stable 
at this stage.

Overall, the results indicate that the inspection can 
efficiently narrow down the pipe failure uncertainty, as 
shown in Fig. 6. Using more times of inspections can also 

reduce the prediction error of the ML-based failure pre-
diction models. The results also indicate that the value 
of inspections is not equally contributing to the model 
prediction. For example, the optimal inspection sched-
ule reduces the number of inspections from 10 times (for 
fixed time inspection at 10-year interval) to 5 times over 
the 100-year service life, as illustrated in Figs.  9 and 10 
respectively.

Conclusion
The deteriorating of water distribution pipes requires a 
proactive plan for the maintenance, retrofit and renewal. 
Inspection plays an important role in supporting these 
decisions. The complex stochastic nature of infrastruc-
ture deterioration presents a major challenge to fore-
cast its performance. ML (ML) can potentially provide 
an important tool to uncover the value from inspec-
tion data. Analyses are conducted in this paper by using 
underground water pipe as the testbed. The results show 
that the value of inspection is to reduce the uncertainty 
in the forecast of pipe conditions or its factor of safety. 
The analyses also show that inspection at different time 
does not bring equal value, i.e., the optimal schedule for 
inspection is not necessarily equal in the time interval. 
An optimal inspection schedule can be designed based 
on a pre-set acceptable reliability level of ML model 
(ANN in this case) for future pipe condition forecast. 
ML model trained with data collected from the optimal 
inspection schedule can provide cost-effective and reli-
able forecast of pipe failure probability throughout its 
service period.

This study illustrates the value and impacts of inspec-
tion data on the development of optimal water pipe 

Fig. 10 Illustration of pipe condition forecast (within ± 5% error) with optimal inspection schedule covering the 100-year life of water pipe
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maintenance strategies. Due to limited pipe failure data 
samples available, a physics-based model is used to gen-
erate data needed for machine learning model training. It 
should be noted that the physics-based model might or 
might not sufficiently represent what happen in the real 
world. Real-world failure records of the pipes should be 
incorporated when utilizing the framework proposed in 
this study. However, the proposed framework of incorpo-
rating inspection data and ML model to optimal inspec-
tion schedule is applicable.
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