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Modeling the rutting performance of asphalt 
pavements: a review
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Abstract 

Rutting is a typical distress of asphalt pavement related to material, structural, loading, and environmental conditions 
of the pavement. This work presents a thorough and targeted synthesis of literature on current predictive models 
for rutting development in asphalt pavement, including the mechanical model, empirical model, machine learning 
model, and their combinations. By introducing and comparing the characteristics, advantages, and limitations of dif-
ferent model types, we focused on suitable approaches that predict rutting given the available information in the cor-
responding studies. Furthermore, we conducted a practitioner survey to identify performance deterioration models 
used by various highway agencies for asphalt pavement and to capture insights and experiences of users on the exist-
ing models in terms of reliability, precision, input and output parameters, consideration of maintenance and reha-
bilitation history, implementation considerations, etc. This review sheds light on the developing trend of predictive 
models for rutting and other distresses of asphalt pavement.

Keywords  Asphalt pavement, Rutting, Regression model, Mechanistic-empirical model, Machine learning model

Introduction
Asphalt pavement (a.k.a. flexible pavement) has been 
widely applied since the 1920s and is named for its sur-
face layer, which is mainly constructed with aggregates 
and liquid asphalt binder. Currently, more than 90 percent 
of pavements in the U.S. are asphalt pavement, because 
of their durability, resilience, cost efficiency, and eco-
friendliness [1]. Compared with rigid pavement, asphalt 
pavement features more flexibility due to  the viscous 
nature of asphalt binder, and partial energy from the traf-
fic load can be dissipated through pavement deformation 
to resist fatigue damage to the pavement [2]. A properly 
designed and constructed asphalt pavement can typically 
last 15 to 20 years without total replacement. Asphalt 
pavement also features lower construction time and lower 

raw material cost than rigid pavement. Moreover, asphalt 
pavement can be largely recycled to serve as an additive to 
improve the stiffness of virgin pavement [3].

For longer service life and more cost-effective deci-
sions, it is crucial to focus on the performance evalua-
tion and prediction of asphalt pavement [4–7]. Currently, 
more than 1/3 of the annual highway budget is spent on 
maintenance and rehabilitation (M&R) of state and local 
roads in the U.S. [8]. Additionally, a pavement in good 
condition can benefit the safety and riding quality of the 
driving public. Asphalt pavement suffers from synthetic 
effects of the environmental and traffic loads [9]; as a 
multilayer structure made of composite materials, its dis-
tress mode and degree can vary with its material compo-
sition, structural configuration, and environmental and 
loading conditions. All these factors make the deteriora-
tion of asphalt pavement a complex and highly dynamic 
process [10].

Cumulative efforts have been made to character-
ize deteriorations in asphalt pavement materials and 
structures. Accordingly, various models have been pro-
posed for the deterioration evaluation and prediction 
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in terms of individual distress modes or comprehensive 
performance of asphalt pavement. Table  1 lists repre-
sentative national highway research programs in the 
U.S. in which performance models of asphalt pavement 
were proposed, modified, calibrated and/or validated. 
These major projects have been either funded by the 
Federal Highway Administration (FHWA) or belong to 
the National Cooperative Highway Research Program 
(NCHRP) and the Strategic Highway Research Program 
(SHRP). These projects typically include comprehensive 
information such as fundamental mechanisms of asphalt 
pavement distress modes, laboratory characterizations 
from the deterioration initiation, propagation to material 
failure, field calibrations of deterioration development 
models, and recommendations for pavement design, 
maintenance, and rehabilitation. Furthermore, the meth-
odologies and models recorded in reports, articles, and 
standards capture the ideas, experience, and concerns of 
people in academia and industry on this topic.

Table 1 indicates that rutting has gained wide and con-
tinuous attention among all typical individual distresses 
of asphalt pavement. Rutting results from permanent 
deformation of asphalt pavement layers under traffic and 
environmental excitations. As for the asphalt layer, rut-
ting is considered to develop with a series of material 
rearrangement and deterioration under load repetitions 
at intermediate and high temperatures [11]. In addition 
to compromised life and performance of asphalt pavement 
(similar to other individual distresses), the specific negative 
impacts of rutting include moisture accumulation caus-
ing vehicle hydroplaning and surface unevenness causing 
higher fuel consumption and air and noise pollution [12]. 
As a result, characterization and prediction of rutting 
development in asphalt pavement are of vital importance 
from the economic, safety, and environmental aspects.

Despite recent advances in modeling rutting devel-
opment in asphalt pavement, the relevant informa-
tion is scattered across various publications and there 
is a lack of synthesis of the published literature. Fur-
thermore, there is the need to gauge the state of the 
practice by highway agencies in terms of their use of 
rut prediction models and their perception of emerg-
ing techniques. In this context, this review aims to 
gather relevant information on asphalt pavement per-
formance models, mainly from the commonly used 
databases: Transport Research International Docu-
mentation Database, Google Scholar, and Web of 
Science, supplemented by a nationwide survey of prac-
titioners. The main objectives of this review are to:

•	 describe the type, form, and parameters of cur-
rent models for the asphalt pavement deterioration 
evaluation and prediction;

•	 introduce the application of current models in 
terms of their considerations of field conditions, 
accuracies, advantages, and limitations;

•	 compare different model types in the asphalt pave-
ment deterioration evaluation and prediction and 
summarize the trend and direction for the model 
evolution and future development.

Model types
This section briefly introduces different types of models, 
including their histories, mechanisms, and applications. 
They are solely or jointly applied in the final models for 
the deterioration evaluation and prediction. Different 
model types not only reflect the interest and selection 
of researchers, but also reflect technology developments 
and engineering requirements.

Mechanical models
Mechanical models treat asphalt mixture – the mate-
rial of asphalt pavement surface – as a time- and rate-
dependent material [13]. It displays responses within 
four fundamental categories under external excitations: 
viscoelasticity, viscoplasticity, viscodamage, and micro-
damage healing [13]. All distress modes are representa-
tions of damages in the macro scale, which initiate from 
micro damages within the material [2]. Evidence includes 
the tertiary creep in the rutting test and post-peak behav-
ior of the stress–strain response in the compressive 
strength test [2, 13, 14]. The test results can be better 
matched by introducing viscodamage models, which take 
actions from the initiation and propagation of micro-
cracks in the previous stages.

Table  2 shows two examples of mechanical models 
coupling viscoelastic, viscoplastic, and viscodamage 
models to simulate asphalt mixture responses under 
external loads and at arbitrary temperatures [14, 15]. The 
apparent (measured) strain is decomposed into three 
components, of which each is associated with material 
properties, environmental and loading conditions, and 
classic mechanical theories. Mechanical models mainly 
require material properties and model coefficient values 
measured and calibrated from laboratory tests, respec-
tively. Calibrated mechanical models can have desir-
able predictions over new sets of experimental data if 
the applied theories are sufficiently generalized and 
advanced [13–15].

The major limitation of mechanical models is their 
complexity. The stress state and environmental condition 
of a field pavement vary with time and location, which 
results in dynamic analysis and process. It would be dif-
ficult to achieve timely decision-making in the pavement 
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maintenance and rehabilitation with such a time-con-
suming method. Currently, pure mechanical models are 
mainly applied in laboratory tests on asphalt mixture 
samples in which the environmental and loading condi-
tions are simple and uniform.

Numerical methods play an important role in mechani-
cal models. For example, finite element (FE) is a typical 

numerical method providing numerical solutions for 
the governing equations (i.e., differential equations) that 
describe engineering problems [16]. The FE method 
solves the engineering problem of a complex system by 
dividing the system into finite elements. By solving the 
equation system assembled by all element equations to 
the original problem, the solutions at all element points 

Table 1  Representative national projects on asphalt pavement performance models

Program Year Project Number Distress Mode

FHWA 1984 FHWA RD-84-018 • Fatigue damage
• Rutting

1998 FHWA RD-98-132 • Roughness

2012 FHWA HRT-11-045 • Rutting
• Fatigue cracking

NCHRP 1986 NCHRP 01-10 • Rutting
• Fatigue cracking

1989 NCHRP 10-26 • Roughness
• Rutting
• Cracking

1996 NCHRP 01-31 • Roughness

1998 NCHRP 01-36 • Fatigue damage

2000 NCHRP 09-20 • Roughness
• Rutting
• Fatigue cracking

2000 NCHRP 10-48 • Fatigue damage

2003 NCHRP 09-17 • Rutting
2004 NCHRP 01-37 • Bottom-up fatigue (or alligator) cracking

• Surface-down fatigue (or longitudinal) cracking
• Rutting
• Thermal cracking

2005 NCHRP 04-19(2) • Rutting
• Cracking (no model was built)

2006 NCHRP 09-19 • Rutting
2007 NCHRP 09-34 • Moisture damage (rutting and fatigue cracking 

served as indirect indicators)

2009 NCHRP 01-42 • Top-down fatigue cracking

2009 NCHRP 09-38 • Fatigue cracking

2010 NCHRP 01-41 • Reflection cracking

2011 NCHRP 09-22 • Rutting
• Fatigue cracking
• Thermal cracking

2011 NCHRP 09-33A • Rutting
• Fatigue cracking
• Thermal cracking

2012 NCHRP 09-30A • Rutting
2013 NCHRP 09-44A • Fatigue damage

2016 NCHRP 09-49A • Transverse cracking
• Longitudinal cracking
• Rutting

2018 NCHRP 01-52 • Top-down cracking

SHRP 1993 SHRP A-357 • Fatigue cracking
• Rutting
• Thermal cracking

1994 SHRP A-404 • Fatigue damage

1994 SHRP A-415 • Rutting
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can be obtained. For mechanical models of asphalt mix-
ture as in Table 2, the FE model is typically built for the 
asphalt pavement of interest, and behaviors of the asphalt 
layer are defined with mechanical models. Commer-
cial packages conducting FE analysis include ABAQUS, 
ANSYS and COMSOL [6, 7, 9, 14, 15, 17–19]. These 
packages provide a platform to couple multiple material 
models and solve complex equation systems. Currently, 
pavement FE model with the implementation of mechan-
ical models of asphalt mixture is limited for the long-
term rutting considering the computational time and 
storage space. Other numerical methods such as the dis-
crete element method (DEM) that considers the mechan-
ical nature of asphalt mixture are currently restricted in 
simulating laboratory and field tests on small-scale speci-
mens as well due to the model assumption, computa-
tional time, and storage space [20–23].

Empirical models
Empirical models are typically built with data on  pave-
ment conditions other than material or structural 
responses. Pavement performance is associated with a 
given set of material properties, structural configuration, 
and loading and environmental conditions via regres-
sion analysis [1]. The advantages of empirical models, as 
opposed to mechanical models, are their simplicity of 
the model construction and explicit relations between 
pavement performance and these external factors. For 
example, Archilla and Madanat [24] first identified from 

extensive literature several factors affecting the rut-
ting development in asphalt pavements, summarized as 
material properties, vehicle axles, thawing index, and 
load numbers. They then selected the exponential func-
tion from research on the rutting development in pave-
ments, unbound granular materials, and natural soils. 
The exponential function can characterize the rutting 
development in the field road tests they studied. Finally, 
they specified values for model coefficients by perform-
ing statistical analysis. Recently, with the development of 
regression analysis, advanced model forms and regression 
approaches have been proposed. For example, a nonlinear 
mixed-effects model was applied in the evaluation and 
prediction of cracking progression in pavements [10].

The major disadvantage of empirical models is the 
over-reliance of model coefficient values on the database 
for model calibration, which is common in data-driven 
models. As a result, the constructed empirical models 
can hardly characterize or predict performance of pave-
ments of which any condition has changed. Moreover, 
considering the complexity of model structure and cali-
bration algorithm, empirical models tend to have limited 
accuracy.

Mechanistic‑empirical models
Mechanistic-empirical (ME) models are the widely 
applied models for pavement performance evaluation 
and prediction. They take advantage of the rationality 
and simplicity of mechanical empirical models. Pavement 

Table 2  Examples of mechanical models for asphalt mixtures considering viscoelasticity, viscoplasticity, and viscodamage

Author Component Expression Term Description

Darabi et al. [15] Viscoelasticity εveij = C0(T )σ ij + ψ

0 �C(ψ t − ψτ )
dσ ij

dτ
dt εveij  - viscoelastic strain tensor; C0 - instantaneous compliance ten-

sor; T- temperature; σ ij - stress tensor; �C  - transient time-depend-
ent compliance tensor; ψ - Helmholtz free energy.

Viscoplasticity
ε̇
vp
ij = Ŵ

vp
0 ϑvp

〈

τ vp−αI1−R(p,T )

τ vp−αI

〉N
∂F
∂σ ij

ε̇
vp
ij  - rate of viscoplastic strain tensor; Ŵvp

0  - viscoplasticity viscos-
ity parameter at the reference temperature; ϑvp - Arrhenius-type 
temperature term; τ vp - deviatoric effective shear stress; a- mate-
rial parameter; I1 - first stress invariant; R - hardening function; 
P - effective viscoplastic strain; F- viscoplastic potential function; N 
- viscoplastic rate sensitivity exponent.

Viscodamage
φ̇ = Ŵvd

[

(1−φ)2
〈

τ vd−αI
〉

Y0

]q

exp (kεeff )ϑ
vd

φ - damage density; Ŵvd - damage viscosity parameter; τ vd - 
deviatoric stress in damaged state; Y0 - threshold damage force; 
q - material constant; k - model parameter; εeff  - effective strain; ϑvd 
- Arrhenius-type temperature term in damaged state.

Zhang et al. [14] Viscoelasticity
σij = δij

t
∫

0

K(t − τ)
∂εvekk
∂τ

dτ + 2
t
∫

0

G(t − τ)
∂eveij
∂τ

dτ
σij - stress tensor; εvekk - viscoelastic volumetric strain; eveij  - viscoelastic 
deviatoric strain;  K and G - relaxation bulk modulus and relaxation 
shear modulus; δij - Kronecker delta.

Viscoplasticity ε̇
vp
ij = Ŵ��(f )�N ∂g

∂σij
ε̇
vp
ij  - rate of viscoplastic strain with respect to time; T - viscosity 

related parameter; N - viscoplastic rate dependent exponent; f - 
viscoplastic yield function; g - viscoplastic potential function.

Viscodamage ξ̇ = A(�JR)
n ξ̇ - rate of damage density with respect to time; �JR - pseudo J-inte-

gral per loading step; A and n - Paris’s law coefficients independent 
of loading mode, rate and temperature.
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responses, mechanical theories, external factors, and 
statistical analysis are involved in ME models at differ-
ent degrees. The idea of the ME approach can date back 
to the 1950s when the vertical compressive strain on the 
subgrade surface was used as an indicator for pavement 
rutting [1, 25]. This example presents the concept of “crit-
ical pavement response” that considers the failure crite-
rion of a distress mode, and such a response is related to 
material properties, structural configuration, and envi-
ronmental and loading conditions of the pavement.

Current progress in ME models is mainly recorded and 
implemented in the Mechanistic-Empirical Pavement 
Design Guide and the software AASHTOWare Pavement 
ME Design [26]. The procedures for using ME models 
to evaluate and predict pavement performance are pre-
sented in Figure  1. Accordingly, required information 
to calibrate an ME model are shown in Figure 1 as well. 
Inputs and outputs can be found in the laboratory and 
field test results and databases such as the Long-Term 
Pavement Performance (LTPP) database. A pavement 
distress model typically includes three parts: the math-
ematical form characterizing the development of a dis-
tress mode; model parameters representing pavement 
responses, material properties, environmental and load-
ing conditions; and model coefficients to be calibrated. 
As for pavement responses, either a layered elastic 

solution (JULEA) or the FE approach can be used accord-
ing to the design guide [26] in which the previous one is 
a closed-form analytical solution predicting pavement 
responses at arbitrary locations.

As mechanical models, the pavement FE model can 
be built in packages introduced in Section 2.1 as well as 
those aimed for pavement analysis such as ELLIPAVE, 
MICHPAVE and EverStressFE. However, there are sev-
eral differences between applications of FE methods in 
mechanical and ME models of pavement rutting. First, 
pavement responses required in ME models are typical 
elastic or linear viscoelastic responses. Second, packages 
such as ELLIPAVE and MICHPAVE simplify the pave-
ment FE model in terms of the structure dimension and/
or load configuration. In general, representative pave-
ment responses rather than true pavement responses are 
applied in ME models.

Machine learning models
To treat pavement performance characterization and 
prediction as regression problems, machine learning 
(ML) models are relatively innovative, relative to empiri-
cal models. The quantitative relations between model 
input variables (pavement condition) and output vari-
ables (pavement performance) are constructed by sophis-
ticated model structures and learning algorithms that can 
improve automatically through the data for model con-
struction [28]. Figure 2 illustrates several artificial neural 
networks (ANNs), which are typical ML models inspired 
by the biological nervous system. The feedforward neural 
network (NN) in Fig. 2, as an example, is a multi-layered 
architecture including the input layer, hidden layer, and 
output layer. Each block or circle simulates a neuron in 
the human brain and each line represents the connec-
tion between neurons. The numbers of neurons in the 
input layer and output layer are determined by the spe-
cific problem – the numbers of outputs and associated 
influencing factors. The numbers of hidden layers and 
their contained neurons and the transfer function are 
selected by users. The feedforward NN adjusts the weight 
factor of each connection and the bias to the neuron in 
the model training and validation until the difference 
between the actual and predicted outputs drops below 
the threshold or the iteration number goes beyond the 
threshold. Meanwhile, recurrent neural network (RNN), 
deep belief network (DBN), fuzzy neural network (FNN), 
etc., as shown in Fig.  2 with modified model structures 
and learning algorithms, have been explored according to 
the types of the problem and data [29].

Decision tree is another ML model available for regres-
sion problems [31]. The space of input variables is split 
into multiple distinct and non-overlapping regions in 

Fig. 1  Flow of pavement performance evaluation and prediction 
using mechanistic-empirical models (revised from [27])



Page 6 of 21Deng and Shi ﻿J Infrastruct Preserv Resil            (2023) 4:17 

which each output variable has one representative value 
(e.g. sample mean) as the prediction [32]. As shown in 
Fig. 3, the decision tree starts from the root node, which 
represents the whole data. In each decision node, the 
value of one input variable is tested as the decision maker. 
Accordingly, the values of output variable(s) are split 
until one leaf node with the prediction is reached [33]. In 
the model construction, the specific input variable and 

test criterion are selected for the decision node, which 
typically leads to the minimal difference between actual 
and predicted output values in the split according to eval-
uation metrics such as least squares (LS) and least abso-
lute deviation (LAD) [34]. This procedure is recursively 
repeated until the stop criterion such as the maximum 
depth of the decision tree, minimum sample number per 
leaf node, etc. is satisfied.

Fig. 2  Structures of typical ANN models [30]

Fig. 3  Illustration of decision tree
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As a generalization of the classification problem, the 
regression problem can be solved with support vec-
tor machine (SVM) and is referred to as support vector 
regression (SVR) [35]. A regression model expressed as 
Equation 1 is applied for the data fitting and prediction 
[36],

where αi and α∗
i  are Lagrange multipliers; k is the kernel 

function for vector xi and x; b is the intercept;  I is the 
number of samples for model training. Compared with 
traditional regression models which train models by 
minimizing the differences between predicted and actual 
output values of all samples in the training dataset, SVR 
introduces the insensitive region within which the errors 
are not counted [35]. Accordingly, the model training 
is an optimization problem by maximizing the insensi-
tive region while minimizing the errors of samples out-
side the insensitive region. Kernel function is applied to 
map the original sample features (i.e., inputs) to a higher 
dimension, which eases the capture of nonlinear patterns 
in the data.

In addition to the three types of models introduced 
above, ML models and algorithms such as k-nearest 
neighbors (KNN) can deal with rutting performance 
characterization and prediction as regression problems. 
However, essentially as data-driven models, quantity and 
quality of collected data for model training and valida-
tion significantly affect properties of the constructed 
ML models and their applicability [37–40]. Besides, the 
tradeoff between bias and variance affects model com-
plexity and applied learning algorithms, which leads to 
potential problems such as underfitting (high bias and 
low variance) and overfitting (low bias and high vari-
ance). Specifically, ML models have limitations in dealing 
with engineering problems such that they are prone to 
provide implicit or even unreasonable relations between 
input and output variables.

Probabilistic models
The models mentioned above can be categorized as 
deterministic models except that some ML models 
introduce the probabilistic framework to represent and 
manipulate uncertainty about models and predictions 
[41]. In contrast, probabilistic models provide a sequence 
of outputs with corresponding probabilities. Such models 
consider the dynamic nature of pavements in terms of the 
deterioration, environmental and loading conditions, and 
M&R histories [42]. Therefore, they are widely applied in 
predicting comprehensive indices for the pavement con-
dition, such as the International Roughness Index (IRI). A 

(1)f (x) =
I

∑

i=1

(

ai − a∗i
)

k(xi, x)+ b

representative probabilistic model in the pavement per-
formance modeling is Markov Chain Process (MCP).

In MCP, the time history of the condition index is first 
divided into multiple condition states. The term trans-
iting the condition index between condition states is 
called Transition Probability Matrix (TPM), expressed as 
Equation 2,

in which

where pt,t+1

ij  is the probability that the condition from i at 
state t to j at state t + 1 , which is defined and calculated 
by users from collected pavement performance data [43]. 
In MCP, the transition probabilities are assumed constant 
and the current condition is only relied on the previous 
one. For example, the IRI at state t can be expressed in 
terms of its initial value as Equation 4 [42].

MCP requires the user to have clear perceptions of 
the data and pavement condition to deal with tasks such 
as defining condition indices and partitioning condi-
tion time histories. The major limitations of probabil-
istic models are that they cannot provide explicit forms 
predicting continuous pavement condition with asso-
ciated model parameters and time, and those station-
ary transition probabilities oversimplify the problem 
and cause systematic error. Such error accumulates in 
the state transition and reduces the prediction accuracy 
progressively.

Models for rutting development
Rutting or permanent deformation in asphalt pavement 
occurs in both surface and supporting layers. This review 
introduces rutting in surface layers which are made of 
asphalt mixtures. Rutting typically accumulates at inter-
mediate and high temperatures and under repetitive 
traffic loads [44]. The major laboratory test equipment 
characterizing rutting development in asphalt mixture 
samples (cylinders or slabs) include Asphalt Mixture Per-
formance Tester (AMPT) [45], Hamburg Wheel Track-
ing Device (HWTD) [46], Asphalt Pavement Analyzer 
(APA) [47], Superpave Shear Tester (SST) [48], French 
Pavement Rutting Tester [49], Georgia Loaded Wheel 

(2)P =













pt,t+1

11
pt,t+1

12
. . . pt,t+1

1(n−1) pt,t+1

1n

0 pt,t+1

22
. . . pt,t+1

2(n−1) pt,t+1

2n
.
.
. 0

. . . pt,t+1

3(n−1)

.

.

.

0 0 · · · 0 1













(3)
n

∑

j=1

pt,t+1

ij = 1

(4)IRIt = P× IRIt−1 = . . . = P
t × IRI0
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Tester [50], Vertically Loaded Wheel Tester (VLWT) [11, 
51, 52], etc. In these tests, the samples are under either 
repetitive wheel loads or continuous haversine compres-
sive loads. Temperature and load speed/cycle  remain 
constant during each test. The test results show the rut-
ting development in asphalt mixtures share a typical 
shape as shown in Fig. 4. It can be divided into three dis-
tinctive stages based on the acceleration rate. Shape func-
tions capturing the whole or partial curve were utilized 
in constructing empirical and ME models. Physical inter-
pretations or hypotheses on the mechanisms of three 
stages contributed to the theory and parameter selection 
of mechanical, ME, and ML models.

Mechanical models
According to mechanical models introduced in Sec-
tion  2.1, the main contributor to rutting development 
in asphalt mixtures is viscoplastic strain. As shown in 
Table  2, the  fundamental components determining the 
initiation and development of viscoplastic strain are the 
yield surface function, potential function, and constitu-
tive model [13]. The yield surface function, which is the 
same as potential function in associated viscoplastic 
models, determines the initiation, rate, and direction of 
viscoplastic strain [54]. It is related to material inher-
ent properties (e.g., strength) and behaviors (e.g., work-
hardening) [2]. Typical yield surface models for asphalt 
mixtures include von Mises [55], Mohr–Coulomb [56], 
Drucker–Prager [57], and their modified versions [58]. 
The constitutive model is responsible for predicting 

material responses under various environmental and 
loading conditions based on fundamental mechanics and 
theories such as thermodynamics [13, 15, 59], energy bal-
ance [58, 60], arbitrary Lagrangian-Eulerian [61], etc.

As described before, current applications of mechani-
cal models with comprehensive consideration of viscoe-
lasticity, viscoplasticity, viscodamage, and micro-damage 
healing are limited to asphalt mixture samples. As for 
numerical methods (models) of asphalt pavements which 
are implemented with mechanical models of asphalt mix-
tures, mechanical models are typically simplified. Table 3 
presents examples of asphalt pavement numerical mod-
els. It can be seen that:

•	 The  applied mechanical models of viscoplastic-
ity include creep model, which is included in the 
material library of ABAQUS, and generalized Kel-
vin model, which typically characterizes viscoelastic 
materials. Initiation and accumulation of permanent 
strain rely more on time rather than stress state of 
the material and exist for the entire service life of 
the pavement. Characterizations of viscoplasticity as 
a damage mode of the material are not reflected in 
these models;

•	 The type, weight, and speed variations of traffic vehi-
cles were rarely considered, which proved to signifi-
cantly affect the stress/strain state and rutting devel-
opment [4, 11, 62]; and

•	 The  applications of proposed numerical models in 
rutting development prediction at a network level are 

Fig. 4  Permanent strain and strain rate versus the number of loading cycles [53]
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not practical, due to their current performance and 
expenses of ABAQUS and similar tools.

To improve the efficiency of computation and analy-
sis, a variety of techniques have been adopted by some 
numerical models, such as pavement geometry simplifi-
cation [63], load equivalency [64, 65], and analysis accel-
eration [66]. These techniques provide convenience in 
implementing mechanical models, as complicated as in 
Table 2, into pavement numerical models. The models in 
Table 2 have been implemented into FE models of a slab 
in the wheel tracking test to compare different loading 
modes [69] and a pavement structure to conduct sensitiv-
ity analysis [70].

Empirical models and mechanistic‑empirical models
Both empirical and ME models include shape functions 
characterizing entire (Stage I+II+III) or partial (Stage 
I+II) curve of the rutting development such as polyno-
mial, exponential, and multi-staged functions. Com-
pared with mechanical and numerical models, empirial 
and ME models can consider and incorporate  realistic 
and precise environmental and loading conditions more 
conveniently.

Table  4 introduces empirical and ME models with 
either representative forms, parameters, or procedures 
to process field conditions. The fundamental discrepancy 
between empirical and ME models is that empirical mod-
els ignore the role of pavement structure as a system that 
responds and deteriorates according to external environ-
mental and loading conditions. Asphalt layers of asphalt 
pavements do not deteriorate as asphalt mixture samples 
in the laboratory. Therefore, the material properties uti-
lized for the empirical model calibration [71–76] may 
have different effects on different pavement structures. 
Some structural parameters were considered in empiri-
cal models, such as the layer thickness [24], layer depth 
[76], and stress state [76, 77]; the first two are too general 
and the last one proved to be more affected by the load-
ing condition [11].

The pavement responses included in ME models were 
either measured [83] or calculated [11, 26, 74, 81]. In fact, 
the introduction of the “mechanistic” part contributes to 
the “empirical” part as well. A recent study [11] pointed 
out that the introduction of pavement responses reduced 
the dependency of rest regression parameters since pave-
ment responses changed accordingly with environmental 
and loading conditions. Therefore, a highly nondetermin-
istic regression analysis for traditional empirical models 
can be simplified.

To account for the dynamic nature of field tempera-
ture and traffic load, the service time of the pavement 
was partitioned. Temperatures were averaged [76] or 

represented by extreme ones [24]; and traffic load was 
categorized [24, 83] or converted to the standard one 
[72, 74, 75]. Moreover, a statistical model for the wheel 
wander was considered for a more representative load-
ing condition as the field [26]. The accumulated rut depth 
required transfer to the current time period, which is also 
a method considering the dynamic nature of field condi-
tions [26, 76].

Improvements for empirical and ME models can be 
made on modeling the variation of traffic load speed for 
the increasing consideration of viscoelastic models for 
the asphalt layer [11, 26]. Pavement deterioration mod-
els can also be implemented into ME models to achieve 
more representative pavement responses.

Machine learning models
Construction of an ML model for rutting development 
includes collection and organization of material, struc-
ture, traffic, environment, and pavement performance 
(i.e., rut depth) data for representative model inputs and 
outputs. As mentioned in Section  2.4, the selection of 
ML model structures and learning algorithms, according 
to the requirements and characteristics of the problem 
and data, is important. Currently there is no significant 
difference between applications of ML models in rutting 
and other distress or for asphalt mixtures in the labora-
tory and asphalt pavements in the field.

Alharbi [87] applied an NN with one hidden layer to 
predict rutting index from pavement age, thickness, aver-
age temperatures, etc. Compared with linear regression 
models, trained NN improved the prediction accuracy 
(R2) by 75.61%. Gong et al. [88] applied two NNs to com-
pare predicted total rut depth with the transfer function 
in the Pavement ME Design Guide [26]. The first NN 
applied one hidden layer and individual rut depth in the 
AC layer, base layer, and subgrade as inputs. The second 
NN had two hidden layers and used additional 18 mate-
rial, structural, environmental, traffic and time param-
eters as inputs. In comparison, two linear regression 
models were built with identical inputs as NNs to rep-
resent the transfer function in the Pavement ME Design 
Guide. The two applied NNs improved the prediction 
accuracy (R2) by 22% and 88%. Moreover, by using the 
random forest algorithm, the relevancy of each input 
to the total rut depth was measured and ranked. Amin 
and Ajakaiye [89] applied an NN with two hidden layers 
to predict maximum rut depth from the information of 
traffic, climate, time and pavement surface condition and 
profile. A total of 638 road segments were utilized and 
contributions of all inputs were evaluated by sensitivity 
analysis. Haddad et  al. [90] tuned the hyperparameters 
and determined an NN with three hidden layers to pre-
dict rut depth from 29 selected input variables. Using 
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tiff
ne

ss
 

un
de

r r
ut

tin
g 

co
nd

iti
on

.

Th
e 

m
ix

tu
re

 s
tiff

ne
ss

 d
ep

en
ds

 o
n 

th
e 

st
iff

ne
ss

 o
f i

ts
 c

on
ta

in
ed

 
bi

nd
er

,
S b

it
,v
=

3
η
0

W
eq
t w

w
he

re
 η
0 i

s 
th

e 
bi

nd
er

 v
is

co
si

ty
 a

t t
he

 a
ve

ra
ge

 p
av

in
g 

te
m

pe
ra

-
tu

re
 d

ur
in

g 
pa

ve
m

en
t s

er
vi

ce
 li

fe
; W

eq
 is

 th
e 

nu
m

be
r o

f s
ta

nd
-

ar
d 

w
he

el
 p

as
se

s 
fro

m
 th

e 
tr

affi
c 

sp
ec

tr
um

; t
w

 is
 th

e 
w

he
el

 
lo

ad
in

g 
tim

e 
re

la
te

d 
to

 th
e 

tr
affi

c 
sp

ee
d.

Kh
ed

r a
nd

 M
ik

ha
il 

[7
2]

ε
p
=

A
N
−
m

w
he

re
  ε

p
 is

 th
e 

pe
rm

an
en

t s
tr

ai
n;

 A
 a

nd
 m

 a
re

 m
od

el
 p

ar
am

-
et

er
s.

• E
nv

iro
nm

en
ta

l c
on

di
tio

n 
is

 re
fle

ct
ed

 o
n 

th
e 

m
od

el
 p

ar
am

et
er

 
A

,
A
=

J(

σ E

)

S

w
he

re
 σ

 is
 d

ev
ia

to
r s

tr
es

s; 
 J 

an
d 
S 

ar
e 

m
at

er
ia

l c
on

st
an

ts
; E

 
is

 re
si

lie
nt

 m
od

ul
us

 o
f a

sp
ha

lt 
m

ix
tu

re
;

• T
ra

ffi
c 

lo
ad

 w
as

 re
pr

es
en

te
d 

by
 E

SA
L 

in
 th

e 
st

ud
y.

A
rc

hi
lla

 a
nd

 M
ad

an
at

 [2
4,

 7
8]

R
D
it
≈

β
i1
0
+

t
∑ s=

1

a
i
e
xp

[

β
8

(

TI
s

1
0
0
0

)
]

β
9

�
N
is

N
1
−
β
9

is

w
he

re
 R
D
it
 is

 ru
t d

ep
th

 fo
r s

ec
tio

n 
i  a

t t
im

e 
t  ;

 N
is
 is

 th
e 

va
ri-

ab
le

 re
pr

es
en

tin
g 

th
e 

cu
m

ul
at

iv
e 

nu
m

be
r o

f l
oa

d 
re

pe
tit

io
ns

 
ap

pl
ie

d 
to

 p
av

em
en

t s
ec

tio
n 
i  u

p 
to

 ti
m

e 
pe

rio
d 
s ; β

i1
0 i

s 
ru

t 
de

pt
h 

im
m

ed
ia

te
ly

 a
ft

er
 c

on
st

ru
ct

io
n 

fo
r p

av
em

en
t s

ec
tio

n 
i  ; 
TI
s i

s 
th

e 
th

aw
in

g 
in

de
x 

du
rin

g 
tim

e 
pe

rio
d 
s  ;

 β
8 a

nd
  β
9 a

re
 

th
e 

th
aw

in
g 

in
de

x 
fa

ct
or

 a
nd

 N
is
 e

xp
on

en
t; 
a
i i

s 
a 

co
rr

ec
tio

n 
fa

ct
or

.

• a
i i

s 
a 

co
rr

ec
tio

n 
fa

ct
or

 re
la

te
d 

to
 th

e 
th

ic
kn

es
s 

of
 a

ll 
pa

ve
m

en
t 

la
ye

rs
 a

nd
 th

ei
r c

on
tr

ib
ut

io
ns

 to
 th

e 
pa

ve
m

en
t r

es
is

ta
nc

e;
• T
I i

s 
re

la
te

d 
to

 m
ea

n 
m

in
im

um
 a

nd
 m

ax
im

um
 te

m
pe

ra
tu

re
s 

of
 th

e 
pe

rio
d;

• �
N
is
 is

 re
la

te
d 

to
 th

e 
lo

ad
s 

in
 fr

on
t a

xl
e 

of
 th

e 
ve

hi
cl

e,
 

in
 s

in
gl

e 
lo

ad
 a

xl
e(

s)
 o

f t
he

 v
eh

ic
le

 a
nd

 in
 ta

nd
em

 lo
ad

 a
xl

e(
s)

 
of

 th
e 

ve
hi

cl
e,

 n
um

be
r o

f l
oa

d 
ax

le
s 

an
d 

st
an

da
rd

 a
xl

e 
lo

ad
;

• T
hi

s 
m

od
el

 w
as

 m
od

ifi
ed

 fo
r t

he
 W

es
Tr

ac
k 

Ro
ad

 T
es

t 
in

 a
no

th
er

 s
tu

dy
 b

y 
th

e 
au

th
or

s 
[7

3]
. P

re
di

ct
ed

 ru
t d

ep
th

 a
cc

u-
m

ul
at

ed
 w

ith
 re

sp
ec

t t
o 

th
e 

ex
po

ne
nt

ia
l o

f l
oa

d 
re

pe
tit

io
ns

. 
M

at
er

ia
l p

ro
pe

rt
ie

s 
su

ch
 a

s 
vo

id
s 

fil
le

d 
w

ith
 a

sp
ha

lt 
(V

FA
) w

er
e 

in
vo

lv
ed

 in
 th

e 
m

od
el

 a
s 

w
el

l.

Ep
ps

 [7
4]

ln
(r
d
)
=

−
6
.1
6
5
1
+

0
.3
0
9
9
1
ln
(E
SA
L)

+
0
.0
0
2
9
4
3
0
5
V
2 a
ir

+
0
.0
6
8
8
2
7
6
P
2 a
sp
−

0
.0
6
5
7
8
0
3
P
a
sp
P
2
0
0
+

0
.6
0
0
4
9
8
(fi
n
e
−

p
lu
s)

−
1
.5
9
1
6
7
(c
o
a
rs
e)

+
2
.3
5
2
7
6
(r
ep
la
ce
)

+
0
.2
1
3
2
7
ln
(E
SA
L)
(c
o
a
rs
e)

−
0
.1
4
0
3
8
6
ln
(E
SA
L)
(r
ep
la
ce
)

w
he

re
 rd

 is
 ru

t d
ep

th
; E
SA
L  

is
 e

qu
iv

al
en

t s
in

gl
e 

ax
le

 lo
ad

; 
V
a
ir
 is

 a
ir 

vo
id

 c
on

te
nt

; P
a
sp

 is
 a

sp
ha

lt 
co

nt
en

t; 
P
2
0
0 i

s 
pe

r-
ce

nt
 a

gg
re

ga
te

 fi
ne

r t
ha

n 
N

o.
 2

00
 s

ie
ve

; fi
n
e
−

p
lu
s , 
co
a
rs
e  

an
d 
re
p
la
ce

 a
re

 v
ar

ia
bl

es
 w

hi
ch

 ta
ke

 th
e 

va
lu

e 
of

 u
ni

ty
 

in
 th

e 
fin

e 
pl

us
, c

oa
rs

e,
 o

r r
ep

la
ce

m
en

t m
ix

es
.

• T
he

 re
gr

es
si

on
 m

od
el

 d
er

iv
ed

 fr
om

 th
e 

W
es

Tr
ac

k 
te

st
 

an
d 

se
rv

ed
 a

s 
Le

ve
l-1

 m
od

el
. T

he
 ru

t d
ep

th
 w

as
 re

la
te

d 
to

 th
e 

lo
ad

 re
pe

tit
io

n 
an

d 
m

at
er

ia
l p

ro
pe

rt
ie

s 
ob

ta
in

ed
 

fro
m

 la
bo

ra
to

ry
 te

st
s.

W
itc

za
k 

[7
5]

Th
e 

fie
ld

 ru
t d

ep
th

 R
u
t  w

as
 a

ss
oc

ia
te

d 
w

ith
 th

e 
flo

w
 n

um
be

r 
F n

 fr
om

 th
e 

re
pe

at
ed

 lo
ad

 te
st

 a
nd

 th
e 

pe
rm

an
en

t s
tr

ai
n 
ε
p
 

fro
m

 th
e 

re
pe

at
ed

 lo
ad

 p
er

m
an

en
t d

ef
or

m
at

io
n 

te
st

:
lo
g
(R
u
t )
=

lo
g
(

R
u
t 1
,0
0
0
,0
0
0

)

−
0
.0
0
2
(l
o
g
(E
S
A
L
))
2

+
0
.2
8
1
5
(l
o
g
(E
S
A
L
))
−

1
.6
0
7
9

w
he

re
 E
SA
L  

is
 e

qu
iv

al
en

t s
in

gl
e 

ax
le

 lo
ad

; R
u
t 1
,0
0
0
,0
0
0 i

s 
th

e 
ru

t 
de

pt
h 

at
 1

 m
ill

io
n 

ES
A

Ls
.

• T
he

 fl
ow

 n
um

be
r F

n 
fro

m
 th

e 
la

bo
ra

to
ry

 re
pe

at
ed

 lo
ad

 te
st

 
sh

ou
ld

 b
e 

co
nv

er
te

d 
to

 th
e 

te
m

pe
ra

tu
re

 a
nd

 tr
affi

c 
le

ve
l 

in
 th

e 
fie

ld
;

• M
at

er
ia

ls
 a

nd
 te

st
 re

su
lts

 fr
om

 F
H

W
A

-A
LF

 a
nd

 W
es

Tr
ac

k 
te

st
s 

w
er

e 
ut

ili
ze

d 
to

 d
er

iv
e 

th
is

 re
gr

es
si

on
 m

od
el

 [7
9]

.
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Ta
bl

e 
4 

(c
on

tin
ue

d)

M
od

el
 T

yp
e

Sh
ap

e
A

ut
ho

r
M

od
el

 F
or

m
Lo

ad
in

g 
an

d
En

vi
ro

nm
en

ta
l C

on
di

tio
ns

Ji 
et

 a
l. 

[7
6]

R
D
=

6
.7
1
4
×

1
0
−
1
1
(N

)0
.6
2
7
4
(T
)5
.2
7
0
2
(d
)0
.5
5
4
2
×

(τ
/
[τ
])
1
.9
2
7
9
(υ

d
/
2
0
)−

(m
+
1
)

w
he

re
 R
D

 is
 th

e 
ru

t d
ep

th
 a

ft
er

 N
 n

um
be

r o
f l

oa
d 

re
pe

ti-
tio

ns
; T

 is
 p

av
em

en
t t

em
pe

ra
tu

re
; d

 is
 p

av
em

en
t d

ep
th

; 
τ

 a
nd

  [τ
] a

re
 th

e 
m

ax
im

um
 s

he
ar

 s
tr

es
s 

of
 a

sp
ha

lt 
la

ye
rs

 
an

d 
sh

ea
r s

tr
en

gt
h 

of
 a

sp
ha

lt 
m

ix
tu

re
s; 
v d

 is
 v

eh
ic

le
 s

pe
ed

; 
m

 is
 th

e 
cr

ee
p 

co
effi

ci
en

t o
f a

sp
ha

lt 
m

ix
tu

re
s 

ob
ta

in
ed

 
fro

m
 la

bo
ra

to
ry

 te
st

s.

• T
hi

s 
re

gr
es

si
on

 m
od

el
 d

er
iv

ed
 fr

om
 a

n 
A

LF
 te

st
. T

he
 ru

t d
ep

th
 

w
as

 c
al

cu
la

te
d 

ea
ch

 m
on

th
 a

nd
 th

e 
m

on
th

ly
 lo

ad
 re

pe
tit

io
ns

 
sh

ou
ld

 b
e 

fir
st

 a
dj

us
te

d 
ac

co
rd

in
g 

to
 th

e 
av

er
ag

e 
m

on
th

ly
 

pa
ve

m
en

t t
em

pe
ra

tu
re

 a
nd

 a
dd

ed
 to

 th
e 

pr
ev

io
us

 o
ne

s;
• A

 s
im

ila
r m

od
el

 w
as

 p
ro

po
se

d 
an

d 
ca

lib
ra

te
d 

in
 a

 p
re

vi
ou

s 
st

ud
y 

[8
0]

. I
n 

th
is

 s
tu

dy
, t

he
 ru

t d
ep

th
 a

cc
um

ul
at

io
n 

fo
llo

w
ed

 
th

e 
m

et
ho

d 
pr

op
os

ed
 b

y 
D

ea
co

n 
et

 a
l. 

[8
1]

 a
nd

 w
as

 v
al

id
at

ed
 

w
ith

 in
de

pe
nd

en
t fi

el
d 

ru
tt

in
g 

pe
rf

or
m

an
ce

 d
at

a.

Th
re

e-
St

ag
e

Zh
ou

 e
t a

l. 
[8

2]
A

 th
re

e-
st

ag
e 

m
od

el
 w

as
 p

ro
po

se
d 

fo
r s

im
ila

r r
ut

tin
g 

de
ve

l-
op

m
en

t o
bs

er
ve

d 
in

 (a
cc

el
er

at
ed

 lo
ad

 fa
ci

lit
y)

 A
LF

 te
st

s:
      

ε
p
=

a
N
b
,N

<
N
P
S

ε
p
=

ε
P
S
+

c(
N
−

N
P
S
),
N
P
S
≤

N
≤

N
ST

ε
p
=

ε
ST

+
d
(e

f(
N
−
N
ST
)
−

1
),
N
≥

N
ST

w
he

re
 ε
p
 is

 p
er

m
an

en
t s

tr
ai

n;
 ε
P
S a

nd
  N

P
S a

re
 th

e 
pe

rm
a-

ne
nt

 s
tr

ai
n 

an
d 

nu
m

be
r o

f l
oa

d 
re

pe
tit

io
ns

 c
or

re
sp

on
di

ng
 

to
 th

e 
in

iti
at

io
n 

of
 th

e 
se

co
nd

ar
y 

st
ag

e;
 ε
ST

 a
nd

  N
ST

 a
re

 
th

e 
pe

rm
an

en
t s

tr
ai

n 
an

d 
nu

m
be

r o
f l

oa
d 

re
pe

tit
io

ns
 c

or
re

-
sp

on
di

ng
 to

 th
e 

in
iti

at
io

n 
of

 th
e 

te
rt

ia
ry

 s
ta

ge
; a

, b
, c

, d
, a

nd
 f 

 
ar

e 
m

od
el

 c
oe

ffi
ci

en
ts

.

• A
LF

 te
st

s 
in

di
ca

te
d 

po
ss

ib
le

 o
cc

ur
re

nc
e 

of
 th

e 
th

ird
 s

ta
ge

 
of

 ru
tt

in
g 

de
ve

lo
pm

en
t i

n 
th

e 
fie

ld
;

• T
hi

s 
pr

op
os

ed
 m

od
el

 w
as

 u
til

iz
ed

 in
 a

 la
bo

ra
to

ry
 re

pe
at

ed
 

lo
ad

 te
st

 o
n 

fie
ld

 s
am

pl
es

 in
 w

hi
ch

 th
e 

en
vi

ro
nm

en
ta

l 
an

d 
lo

ad
in

g 
co

nd
iti

on
s 

w
er

e 
co

ns
ta

nt
.

Ko
rk

ia
la

-T
an

tt
u 

an
d 

D
aw

so
n 

[7
7]

ε
p
=

a
N
b
+

A
(

N
1
0
0
0

)

B
−

C
(

eD
(N

/
1
0
0
0
)
−

1
)

w
he

re
 ε
p
 is

 p
er

m
an

en
t s

tr
ai

n;
 N

 is
 th

e 
nu

m
be

r o
f l

oa
d 

re
pe

ti-
tio

ns
; a

, b
, A

, B
, C

 a
nd

 D
 a

re
 re

gr
es

si
on

 p
ar

am
et

er
s.

Th
is

 m
od

el
 w

as
 u

til
iz

ed
 in

 a
 h

ea
vy

 v
eh

ic
le

 s
im

ul
at

or
 (H

VS
) 

te
st

 o
n 

a 
fu

ll-
sc

al
e 

pa
ve

m
en

t. 
Th

e 
en

vi
ro

nm
en

ta
l a

nd
 lo

ad
in

g 
co

nd
iti

on
s 

w
er

e 
ke

pt
 c

on
st

an
t.

M
ec

ha
ni

st
ic

-E
m

pi
ric

al
Tw

o-
St

ag
e

Ke
ni

s 
[8

3]
R
p
(N

)
=

R
4
(d
/
2
)µ

sy
sN

−
α
sy
s

w
he

re
 R
p
(N

) i
s 

th
e 

pe
rm

an
en

t d
ef

or
m

at
io

n 
at

 lo
ad

 re
pe

tit
io

n 
N

 ; R
4
(d
/
2
) i

s 
th

e 
ge

ne
ra

l d
efl

ec
tio

n 
re

sp
on

se
 o

f p
av

em
en

t 
su

rf
ac

e 
as

 a
 fu

nc
tio

n 
of

 lo
ad

 d
ur

at
io

n 
an

d 
te

m
pe

ra
tu

re
; µ

sy
s 

is
 a

 s
ys

te
m

 ru
tt

in
g 

ch
ar

ac
te

ris
tic

 re
pr

es
en

tin
g 

th
e 

fra
ct

io
na

l 
pa

rt
 o

f t
he

 g
en

er
al

 re
sp

on
se

 th
at

 b
ec

om
es

 p
er

m
an

en
t; 

α
sy
s i

s 
a 

sy
st

em
 ru

tt
in

g 
ch

ar
ac

te
ris

tic
 re

pr
es

en
tin

g 
th

e 
ra

te
 

of
 c

ha
ng

e 
of

 p
er

m
an

en
t d

ef
or

m
at

io
n.

A
cc

or
di

ng
 to

 a
n 

ap
pl

ic
at

io
n 

of
 V

ES
YS

 m
od

el
 [8

4]
, t

he
 ru

t d
ep

th
 

in
 th

e 
as

ph
al

t l
ay

er
 c

an
 b

e 
ca

lc
ul

at
ed

 b
y

R
p
(N

)
=

n
∑ i=
1

N
2
∫ N
1

(

U
+ i
−

U
− i

)

µ
sy
sN

−
α
sy
s
d
N
 

w
he

re
 U

+ i
 a

nd
 U

− i
 a

re
 d

efl
ec

tio
ns

 a
t t

op
 a

nd
 b

ot
to

m
 o

f i
-t

h 
fin

ite
 la

ye
r d

ue
 to

 a
xl

e 
gr

ou
p.

D
ea

co
n 

et
 a

l. 
[8

1]
R
D
=

K
γ
i j

w
he

re
 K

 is
 th

e 
m

od
el

 p
ar

am
et

er
; γ

i j i
s 

th
e 

pl
as

tic
 s

tr
ai

n 
at

 th
e 

j-t
h 

ho
ur

 o
f t

ra
ffi

ck
in

g.

• T
he

 a
cc

um
ul
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io

n 
of

 p
la

st
ic

 s
tr

ai
n 

is

γ
i j
=

a
j

[

(

γ
i j−
1

a
j

)

1
/
c

+
�
n
j

]

c

a
j
=

a
e
xp
(b
τ
)γ

e j
γ
i 1
=

a
1
[�

n
1
]c

w
he

re
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5558 and 1388 datapoints as the training and testing 
datasets, much higher accuracy was achieved with NN 
(R2=0.94 and 0.82) than the one with linear regression 
model (R2=0.28). Deng and Shi [39] applied an NN with 
one hidden layer to predict rut depth with corresponding 
pavement condition for the state of Idaho. Particle swarm 
optimization (PSO) was utilized to calibrate model coeffi-
cients, i.e., weights and biases of artificial neurons. More-
over, this study investigated the relationships between the 
model accuracy and updating efficiency and the number 
of calibrated parameters. The authors found that an opti-
mum number of hidden neurons may exist to balance 
the tradeoff between model accuracy and reproducibility 
with limited computation time [39].

Examples introduced above features the architecture 
of feedforward NN. Recurrent neural network (RNN) 
is a descendant of feedforward NN and each neuron in 
the hidden layer(s) of RNN can send produced output 
to itself. In the time scale, a neuron at each time step is 
triggered by the output from the previous step and the 
input for this step [91]. Obviously, RNN is suitable for 
modeling time series data since they can remember and 
pass information through time [92]. Okuda et al. [92] and 
Choi and Do [93] trained RNNs to predict rut depth from 
time-series data of traffic, climate, and inspection history. 
Good agreements were achieved between predicted and 
measured rut depths.

Deng and Shi [40] applied gene expression program-
ming (GEP) in determining both the form and parameter 
values of predictive models for distress development in 
asphalt pavement (including rutting). The authors devel-
oped the  GEP on the basis of genetic algorithm (GA) 
and genetic programming (GP), in which variables, con-
stants, and arithmetic and logic operators are treated as 
elements of the gene and experience mutation, crossover 
and selection similar to those in natural selection [94]. 
As an ML model, GEP addressed the issue of model form 

being implicit. However, GEP would produce a model 
violating the deterioration mechanism of asphalt pave-
ment when the training dataset contained outliers.

Liu et al. [95] compared four ML models: feedforward 
NN, SVR, random forest (RF), and gradient boosting 
(GB) in predicting rut depth of asphalt pavements in the 
LTPP database in which RF and GB are ensemble learn-
ing algorithms applied with decision trees. RF eventually 
aggregates predictions from individual trees constructed 
with random subsets of data [96] and GB incrementally 
corrects predictions from the previously constructed tree 
with a newly constructed tree. In addition to RF and GB, 
available ensemble learning algorithms include adaptive 
boosting, extreme gradient boosting, etc., and their appli-
cations and comparison can be found in a comprehensive 
study on predicting rut depth in asphalt mixtures [97]. In 
Liu et al.’s work [95], 27 input variables were utilized to 
predict rut depth in asphalt pavements in the LTPP data-
base. Four applied ML models achieved higher accuracy 
with R2 values around 0.90 compared with linear regres-
sion model with R2 value around 0.57.

Summary
 The characteristics of major models applied for charac-
terizing and predicting rutting development in asphalt 
pavements are presented in Fig. 5. Compared with empir-
ical models, mechanical models  feature higher versatil-
ity by utilizing general models and criteria describing 
the behaviors, damages, and failures of materials and 
structures. They were developed based on a solid foun-
dation of classic theories and numerous validations, 
which include the conditions of field asphalt pavements. 
As for empirical models, their  model accuracy can be 
negatively affected by predicting pavements with condi-
tions outside the dataset for model training. However, 
due to the dynamic nature of field condition in time 
and location, mechanical models should be repetitively 

Fig. 5  Characteristics and connections of asphalt pavement rutting models
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called to conduct the procedures from determining the 
material state to calculating the pavement damage. The 
required computational time and model complexity limit 
the application of mechanical models in practical use. 
To achieve a balance between these two model types, 
ME models were developed by introducing pavement 
responses and/or simplified mechanical theories and cri-
teria; and this should extend the model application since 
the values of these terms rely on the pavement internal 
(material and structure) and external (load and environ-
ment) conditions.

Compared with empirical models, ML models offer 
higher fitting and prediction accuracies by adopting 
sophisticated model structures and calibration algo-
rithms. However, the relations between pavement perfor-
mance (i.e., rut depth) and influential factors described 
by the model tend to be implicit with the increase of 
model complexity. The corresponding disadvantages 
are  as follows. First, the relations are difficult to check 
and can be irrational due to overfitting. Second, adding 
or replacing data for model training are always accom-
panied by the hyperparameter tuning to ensure the best 
model performance, which may be an obstacle for some 
users. ML models with explicit forms such as NNs with 
shallow structures and GEP may be an option to leverage 
the benefits of both empirical models and ML models.

As for the connection between mechanical models 
and ML models, currently mechanical information pri-
marily serves in the pre-processing and post-analysis of 
the ML modeling framework, such as feature selection 
and final model determination. Potential improvements 
can be made on using ML algorithms to effectively solve 
mechanical models or implementing physics-guided 
modeling techniques into ML model construction similar 
to those in solving partial differential equations [98].

State of the practice: results from the nationwide 
survey
A practitioner survey was designed to identify perfor-
mance deterioration models used by various highway 
agencies in the United States for asphalt pavements and 
to capture the insights and experiences of users on the 
existing models in terms of reliability, precision, input 
and output parameters, consideration of M&R history, 
implementation considerations, etc. The survey instru-
ment was distributed to listservs such as Pav_Net and 
TriDurLE_Communications as well as selected state 
departments of transportation (DOTs). The complete 
version of the survey is provided in the Supplementary 
Information. Table 5 presents a summary of the technical 
questions asked in the survey. The survey was delivered 
online via the platform Qualtrics® during March to May 

2021 and there was a total of 43 effective responses col-
lected from 23 states of the United States.

The survey revealed that rutting (15.7%) was among 
the five distresses concerned most by the researchers 
and technicians in state DOTs out of a total of 166 choice 
counts. Currently, the tools developed or purchased by 
individual agencies are the most popular choices for the 
pavement distress development prediction and manage-
ment. Those tools include professional statistical pack-
ages such as R, business analytics services such as Power 
BI, and basic data visualization and analysis tools such 
as Excel spreadsheet, etc. The software built upon the 
AASHTO mechanistic-empirical (ME) pavement design 
guide - AASHTOWare Pavement ME Design ranked 
second (26.3%) in the survey out of a total of 38 choice 
counts. Considering the variety of applied tools, their 
limitations provided by the participants are quite scat-
tered, from data quality to software update.

This survey also asked questions about model inputs. 
Following the mainstream predictive models such as the 
ME models, the model inputs were divided into four cat-
egories: traffic, climate, material, and structure. Figure 6 
shows their necessities in the predictive models and 
difficulties to be obtained according to the user experi-
ence of the participants from 71 and 33 choice counts, 
respectively. The collective user experience indicates that 
the traffic information was more difficult to be obtained 
than the climatic information because of the lack of 
the traffic monitoring system (TMS) in certain areas. 
In comparison, climate data are more accessible from 
national weather databases and services. It was interest-
ing to notice that the information on pavement struc-
tures and materials was believed to be important and 
necessary in the predictive models, yet a portion of the 
participants reported that variables of these two catego-
rizes were not considered in the models or systems they 
currently applied. For those variables which are difficult 

Table 5  Summary of technical questions in the survey

Questionnaire topics

• Specific distresses concerned in the applied models. (Q1)

• Resources of applied models. (Q2)

• Limitations of applied models. (Q3)

• Inputs of applied models including the name, difficulties in the usage, 
etc. (Q4-Q10)

• Purposes of the applied models. (Q11-Q13)

• Performance of the applied models. (Q14-Q19)

• Management of the applied models including the quality check, 
improvements, etc. (Q20-Q21)

• Expectations of applied models. (Q22-Q23)

• Opinions on the artificial intelligence models (Q24-Q25)
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to be obtained, the typical solutions include referring to 
recommended values in the systems, papers and reports, 
and using models without them.

According to the survey responses, the main purpose 
of using these predictive models was to obtain distress 
indices for the pavement management. Therefore, the 
applied predictive models were expected with high quali-
ties. Figure 7 shows the top five qualities of a good pre-
dictive model voted and ranked by the participants out 
of a total of 25 choice counts. It can be summarized that 
the accuracy, complexity, and applicability are most con-
cerning for those model users. Specifically, 80 percent 
of the participants expected the predictive models with 
the accuracy (R2) over 0.80. Nearly 50 percent of the par-
ticipants believed that the main factor causing the poor 

predictions was the limited data for the model calibra-
tion. The solutions they could think of included increas-
ing data amount for the mode construction and the 
frequency of the model validation, performing outlier 
reviews, etc. As for the model reliability and ruggedness, 
they were proposed based on the experience of the par-
ticipants in obtaining very different predictions in pave-
ments with similar conditions.

The survey asked questions specifically on the arti-
ficial intelligence (AI) models (traditional ML & DL 
models) because these are emerging and promis-
ing choices for pavement performance prediction. 
Responses of the participants on the knowledge of and 
attitude towards the AI models are presented in Fig. 8. 
More than 90 percent of the participants did not use 

Fig. 6  Information of four major model inputs

Fig. 7  Top five model qualities
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AI models as the predictive models and half of the par-
ticipants had no idea what the AI models were out of a 
total of 25 choice counts. However, it is promising that 
32 percent of the participants showed interest in using 
AI models as their predictive models and 64 percent 
of the participants were willing to try after compar-
ing with traditional models, out of a total of 25 choice 
counts. Therefore, it is worthwhile to develop and pro-
mote AI models as the predictive models for pavement 
distresses.

Conclusions and recommendations
In this study, a literature review on current predictive 
models of asphalt pavement performance was conducted. 
Specifically, we used rutting development as an example 
to compare different model types. We also conducted 
and analyzed a practitioner survey to capture the insights 
and experiences on the existing models by users at vari-
ous U.S. highway agencies. The main findings in this 
study can be summarized as follows.

•	 Mechanical model can have desirable prediction 
performance given that the applied theories are suf-
ficiently generalized and advanced. Due to its com-
plexity and time consumption, however, the mechan-
ical model has limited applications in predicting the 
long-term performance of field pavement sections.

•	 Empirical model has advantages such as simplic-
ity of the model construction and explicit relations 
between pavement performance and influencing fac-
tors. However, the empirical model has restricted 
applications for cases outside the training dataset due 
to the over-reliance of model coefficient values.

•	 Mechanistic-empirical model takes advantages of the 
mechanical model and empirical model with basic 
accuracy, rationality, and simplicity. Such a model 
considers the pavement conditions and responses in 
a mechanistic manner.

•	 Machine learning model takes advantage of artifi-
cial intelligence and has sophisticated model struc-
tures and operations. Such a model can efficiently 

Fig. 8  Responses of the participants on the AI models (a) knowledge and (b) attitude
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and automatically capture the quantitative relations 
between pavement performance and influencing fac-
tors. However, it has potential issues of overfitting, 
and similar to the empirical model, it has restricted 
applications for cases outside the training dataset.

Finally, according to the characteristics of different 
model types and expectations in model properties by 
practitioners, future research should focus on the models 
benefiting from model combinations such as ML models 
with explicit forms, mechanical models solving by ML 
algorithms, and physics-guided ML models.
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