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Abstract

Rutting is a typical distress of asphalt pavement related to material, structural, loading, and environmental conditions
of the pavement. This work presents a thorough and targeted synthesis of literature on current predictive models

for rutting development in asphalt pavement, including the mechanical model, empirical model, machine learning
model, and their combinations. By introducing and comparing the characteristics, advantages, and limitations of dif-
ferent model types, we focused on suitable approaches that predict rutting given the available information in the cor-
responding studies. Furthermore, we conducted a practitioner survey to identify performance deterioration models
used by various highway agencies for asphalt pavement and to capture insights and experiences of users on the exist-
ing models in terms of reliability, precision, input and output parameters, consideration of maintenance and reha-
bilitation history, implementation considerations, etc. This review sheds light on the developing trend of predictive
models for rutting and other distresses of asphalt pavement.
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Introduction

Asphalt pavement (a.k.a. flexible pavement) has been
widely applied since the 1920s and is named for its sur-
face layer, which is mainly constructed with aggregates
and liquid asphalt binder. Currently, more than 90 percent
of pavements in the U.S. are asphalt pavement, because
of their durability, resilience, cost efficiency, and eco-
friendliness [1]. Compared with rigid pavement, asphalt
pavement features more flexibility due to the viscous
nature of asphalt binder, and partial energy from the traf-
fic load can be dissipated through pavement deformation
to resist fatigue damage to the pavement [2]. A properly
designed and constructed asphalt pavement can typically
last 15 to 20 years without total replacement. Asphalt
pavement also features lower construction time and lower
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raw material cost than rigid pavement. Moreover, asphalt
pavement can be largely recycled to serve as an additive to
improve the stiffness of virgin pavement [3].

For longer service life and more cost-effective deci-
sions, it is crucial to focus on the performance evalua-
tion and prediction of asphalt pavement [4—7]. Currently,
more than 1/3 of the annual highway budget is spent on
maintenance and rehabilitation (M&R) of state and local
roads in the U.S. [8]. Additionally, a pavement in good
condition can benefit the safety and riding quality of the
driving public. Asphalt pavement suffers from synthetic
effects of the environmental and traffic loads [9]; as a
multilayer structure made of composite materials, its dis-
tress mode and degree can vary with its material compo-
sition, structural configuration, and environmental and
loading conditions. All these factors make the deteriora-
tion of asphalt pavement a complex and highly dynamic
process [10].

Cumulative efforts have been made to character-
ize deteriorations in asphalt pavement materials and
structures. Accordingly, various models have been pro-
posed for the deterioration evaluation and prediction
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in terms of individual distress modes or comprehensive
performance of asphalt pavement. Table 1 lists repre-
sentative national highway research programs in the
U.S. in which performance models of asphalt pavement
were proposed, modified, calibrated and/or validated.
These major projects have been either funded by the
Federal Highway Administration (FHWA) or belong to
the National Cooperative Highway Research Program
(NCHRP) and the Strategic Highway Research Program
(SHRP). These projects typically include comprehensive
information such as fundamental mechanisms of asphalt
pavement distress modes, laboratory characterizations
from the deterioration initiation, propagation to material
failure, field calibrations of deterioration development
models, and recommendations for pavement design,
maintenance, and rehabilitation. Furthermore, the meth-
odologies and models recorded in reports, articles, and
standards capture the ideas, experience, and concerns of
people in academia and industry on this topic.

Table 1 indicates that rutting has gained wide and con-
tinuous attention among all typical individual distresses
of asphalt pavement. Rutting results from permanent
deformation of asphalt pavement layers under traffic and
environmental excitations. As for the asphalt layer, rut-
ting is considered to develop with a series of material
rearrangement and deterioration under load repetitions
at intermediate and high temperatures [11]. In addition
to compromised life and performance of asphalt pavement
(similar to other individual distresses), the specific negative
impacts of rutting include moisture accumulation caus-
ing vehicle hydroplaning and surface unevenness causing
higher fuel consumption and air and noise pollution [12].
As a result, characterization and prediction of rutting
development in asphalt pavement are of vital importance
from the economic, safety, and environmental aspects.

Despite recent advances in modeling rutting devel-
opment in asphalt pavement, the relevant informa-
tion is scattered across various publications and there
is a lack of synthesis of the published literature. Fur-
thermore, there is the need to gauge the state of the
practice by highway agencies in terms of their use of
rut prediction models and their perception of emerg-
ing techniques. In this context, this review aims to
gather relevant information on asphalt pavement per-
formance models, mainly from the commonly used
databases: Transport Research International Docu-
mentation Database, Google Scholar, and Web of
Science, supplemented by a nationwide survey of prac-
titioners. The main objectives of this review are to:

« describe the type, form, and parameters of cur-
rent models for the asphalt pavement deterioration
evaluation and prediction;
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« introduce the application of current models in
terms of their considerations of field conditions,
accuracies, advantages, and limitations;

» compare different model types in the asphalt pave-
ment deterioration evaluation and prediction and
summarize the trend and direction for the model
evolution and future development.

Model types

This section briefly introduces different types of models,
including their histories, mechanisms, and applications.
They are solely or jointly applied in the final models for
the deterioration evaluation and prediction. Different
model types not only reflect the interest and selection
of researchers, but also reflect technology developments
and engineering requirements.

Mechanical models

Mechanical models treat asphalt mixture — the mate-
rial of asphalt pavement surface — as a time- and rate-
dependent material [13]. It displays responses within
four fundamental categories under external excitations:
viscoelasticity, viscoplasticity, viscodamage, and micro-
damage healing [13]. All distress modes are representa-
tions of damages in the macro scale, which initiate from
micro damages within the material [2]. Evidence includes
the tertiary creep in the rutting test and post-peak behav-
ior of the stress—strain response in the compressive
strength test [2, 13, 14]. The test results can be better
matched by introducing viscodamage models, which take
actions from the initiation and propagation of micro-
cracks in the previous stages.

Table 2 shows two examples of mechanical models
coupling viscoelastic, viscoplastic, and viscodamage
models to simulate asphalt mixture responses under
external loads and at arbitrary temperatures [14, 15]. The
apparent (measured) strain is decomposed into three
components, of which each is associated with material
properties, environmental and loading conditions, and
classic mechanical theories. Mechanical models mainly
require material properties and model coefficient values
measured and calibrated from laboratory tests, respec-
tively. Calibrated mechanical models can have desir-
able predictions over new sets of experimental data if
the applied theories are sufficiently generalized and
advanced [13-15].

The major limitation of mechanical models is their
complexity. The stress state and environmental condition
of a field pavement vary with time and location, which
results in dynamic analysis and process. It would be dif-
ficult to achieve timely decision-making in the pavement
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Table 1 Representative national projects on asphalt pavement performance models

Program Year Project Number Distress Mode
FHWA 1984 FHWA RD-84-018 - Fatigue damage
- Rutting
1998 FHWA RD-98-132 - Roughness
2012 FHWA HRT-11-045 - Rutting
« Fatigue cracking
NCHRP 1986 NCHRP 01-10 - Rutting
- Fatigue cracking
1989 NCHRP 10-26 - Roughness
+ Rutting
- Cracking
1996 NCHRP 01-31 - Roughness
1998 NCHRP 01-36 - Fatigue damage
2000 NCHRP 09-20 - Roughness
- Rutting
- Fatigue cracking
2000 NCHRP 10-48 - Fatigue damage
2003 NCHRP 09-17 - Rutting
2004 NCHRP 01-37 - Bottom-up fatigue (or alligator) cracking
« Surface-down fatigue (or longitudinal) cracking
« Rutting
- Thermal cracking
2005 NCHRP 04-19(2) - Rutting
« Cracking (no model was built)
2006 NCHRP 09-19 - Rutting
2007 NCHRP 09-34 + Moisture damage (rutting and fatigue cracking
served as indirect indicators)
2009 NCHRP 01-42 « Top-down fatigue cracking
2009 NCHRP 09-38 - Fatigue cracking
2010 NCHRP 01-41 - Reflection cracking
2011 NCHRP 09-22 « Rutting
- Fatigue cracking
- Thermal cracking
2011 NCHRP 09-33A - Rutting
- Fatigue cracking
- Thermal cracking
2012 NCHRP 09-30A - Rutting
2013 NCHRP 09-44A - Fatigue damage
2016 NCHRP 09-49A - Transverse cracking
- Longitudinal cracking
- Rutting
2018 NCHRP 01-52 - Top-down cracking
SHRP 1993 SHRP A-357 - Fatigue cracking
- Rutting
- Thermal cracking
1994 SHRP A-404 - Fatigue damage
1994 SHRP A-415 - Rutting

maintenance and rehabilitation with such a time-con-
suming method. Currently, pure mechanical models are
mainly applied in laboratory tests on asphalt mixture
samples in which the environmental and loading condi-
tions are simple and uniform.

Numerical methods play an important role in mechani-
cal models. For example, finite element (FE) is a typical

numerical method providing numerical solutions for
the governing equations (i.e., differential equations) that
describe engineering problems [16]. The FE method
solves the engineering problem of a complex system by
dividing the system into finite elements. By solving the
equation system assembled by all element equations to
the original problem, the solutions at all element points
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Table 2 Examples of mechanical models for asphalt mixtures considering viscoelasticity, viscoplasticity, and viscodamage

Term Description

Author Component Expression
Darabi et al. [15]  Viscoelasticity —ve CO(T)JU+IO AC(Yt — wr)?d[
T
Viscoplasticity _vp vp TP R(®,T)
gy =Ty 19VP< f:p a/p > 3o

Viscodamage (1—¢) <r —a> I

Yo

QS:FVd|:

Zhang et al.[14] Viscoelasticity

o) =94 fK(r—r)a‘kkerrsz(r—r)

Viscoplasticity P — l"(d>(f))N ag

Viscodamage £ = A(AJg)”

} exp (Keef) 9"

T

&} - viscoelastic strain tensor; (Y- instantaneous compliance ten-

sor; T- temperature; G - stress tensor; AC - transient time-depend-
ent comphance tensor; ¥ - Helmholtz free energy.

- rate of viscoplastic strain tensor; 1" - viscoplasticity viscos-
|ty parameter at the reference temperature 9" - Arrhenius-type
temperature term; T*” - deviatoric effective shear stress; a- mate-
rial parameter; /1 - first stress invariant; R - hardening function;

P - effective viscoplastic strain; F- viscoplastic potential function; N
- viscoplastic rate sensitivity exponent.

¢- damage density; '@ - damage viscosity parameter; 7/ -
deviatoric stress in damaged state; Yo - threshold damage force;

q - material constant; k - model parameter; €. - effective strain; "¢
- Arrhenius-type temperature term in damaged state.

oy~ stress tensor; g - viscoelastic volumetric strain; e - viscoelastic
deviatoric strain; Kand G - relaxation bulk modulus and relaxation
shear modulus; §; - Kronecker delta.

”dt

- rate of viscoplastic strain with respect to time; T - viscosity
related parameter; N - viscoplastic rate dependent exponent; f -
viscoplastic yield function; g - viscoplastic potential function.

£- rate of damage density with respect to time; AJg - pseudo J-inte-
gral per loading step; A and n - Paris's law coefficients independent
of loading mode, rate and temperature.

can be obtained. For mechanical models of asphalt mix-
ture as in Table 2, the FE model is typically built for the
asphalt pavement of interest, and behaviors of the asphalt
layer are defined with mechanical models. Commer-
cial packages conducting FE analysis include ABAQUS,
ANSYS and COMSOL [6, 7, 9, 14, 15, 17-19]. These
packages provide a platform to couple multiple material
models and solve complex equation systems. Currently,
pavement FE model with the implementation of mechan-
ical models of asphalt mixture is limited for the long-
term rutting considering the computational time and
storage space. Other numerical methods such as the dis-
crete element method (DEM) that considers the mechan-
ical nature of asphalt mixture are currently restricted in
simulating laboratory and field tests on small-scale speci-
mens as well due to the model assumption, computa-
tional time, and storage space [20-23].

Empirical models

Empirical models are typically built with data on pave-
ment conditions other than material or structural
responses. Pavement performance is associated with a
given set of material properties, structural configuration,
and loading and environmental conditions via regres-
sion analysis [1]. The advantages of empirical models, as
opposed to mechanical models, are their simplicity of
the model construction and explicit relations between
pavement performance and these external factors. For
example, Archilla and Madanat [24] first identified from

extensive literature several factors affecting the rut-
ting development in asphalt pavements, summarized as
material properties, vehicle axles, thawing index, and
load numbers. They then selected the exponential func-
tion from research on the rutting development in pave-
ments, unbound granular materials, and natural soils.
The exponential function can characterize the rutting
development in the field road tests they studied. Finally,
they specified values for model coefficients by perform-
ing statistical analysis. Recently, with the development of
regression analysis, advanced model forms and regression
approaches have been proposed. For example, a nonlinear
mixed-effects model was applied in the evaluation and
prediction of cracking progression in pavements [10].

The major disadvantage of empirical models is the
over-reliance of model coefficient values on the database
for model calibration, which is common in data-driven
models. As a result, the constructed empirical models
can hardly characterize or predict performance of pave-
ments of which any condition has changed. Moreover,
considering the complexity of model structure and cali-
bration algorithm, empirical models tend to have limited
accuracy.

Mechanistic-empirical models

Mechanistic-empirical (ME) models are the widely
applied models for pavement performance evaluation
and prediction. They take advantage of the rationality
and simplicity of mechanical empirical models. Pavement
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responses, mechanical theories, external factors, and
statistical analysis are involved in ME models at differ-
ent degrees. The idea of the ME approach can date back
to the 1950s when the vertical compressive strain on the
subgrade surface was used as an indicator for pavement
rutting [1, 25]. This example presents the concept of “crit-
ical pavement response” that considers the failure crite-
rion of a distress mode, and such a response is related to
material properties, structural configuration, and envi-
ronmental and loading conditions of the pavement.
Current progress in ME models is mainly recorded and
implemented in the Mechanistic-Empirical Pavement
Design Guide and the software AASHTOWare Pavement
ME Design [26]. The procedures for using ME models
to evaluate and predict pavement performance are pre-
sented in Figure 1. Accordingly, required information
to calibrate an ME model are shown in Figure 1 as well.
Inputs and outputs can be found in the laboratory and
field test results and databases such as the Long-Term
Pavement Performance (LTPP) database. A pavement
distress model typically includes three parts: the math-
ematical form characterizing the development of a dis-
tress mode; model parameters representing pavement
responses, material properties, environmental and load-
ing conditions; and model coefficients to be calibrated.
As for pavement responses, either a layered elastic

Traffic Climate
Material Pavement
Properties Structure

Pavement Responses

Pavement Distress Models

Pavement Performance
Predictions

Fig. 1 Flow of pavement performance evaluation and prediction
using mechanistic-empirical models (revised from [27])
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solution (JULEA) or the FE approach can be used accord-
ing to the design guide [26] in which the previous one is
a closed-form analytical solution predicting pavement
responses at arbitrary locations.

As mechanical models, the pavement FE model can
be built in packages introduced in Section 2.1 as well as
those aimed for pavement analysis such as ELLIPAVE,
MICHPAVE and EverStressFE. However, there are sev-
eral differences between applications of FE methods in
mechanical and ME models of pavement rutting. First,
pavement responses required in ME models are typical
elastic or linear viscoelastic responses. Second, packages
such as ELLIPAVE and MICHPAVE simplify the pave-
ment FE model in terms of the structure dimension and/
or load configuration. In general, representative pave-
ment responses rather than true pavement responses are
applied in ME models.

Machine learning models
To treat pavement performance characterization and
prediction as regression problems, machine learning
(ML) models are relatively innovative, relative to empiri-
cal models. The quantitative relations between model
input variables (pavement condition) and output vari-
ables (pavement performance) are constructed by sophis-
ticated model structures and learning algorithms that can
improve automatically through the data for model con-
struction [28]. Figure 2 illustrates several artificial neural
networks (ANNSs), which are typical ML models inspired
by the biological nervous system. The feedforward neural
network (NN) in Fig. 2, as an example, is a multi-layered
architecture including the input layer, hidden layer, and
output layer. Each block or circle simulates a neuron in
the human brain and each line represents the connec-
tion between neurons. The numbers of neurons in the
input layer and output layer are determined by the spe-
cific problem — the numbers of outputs and associated
influencing factors. The numbers of hidden layers and
their contained neurons and the transfer function are
selected by users. The feedforward NN adjusts the weight
factor of each connection and the bias to the neuron in
the model training and validation until the difference
between the actual and predicted outputs drops below
the threshold or the iteration number goes beyond the
threshold. Meanwhile, recurrent neural network (RNN),
deep belief network (DBN), fuzzy neural network (FNN),
etc., as shown in Fig. 2 with modified model structures
and learning algorithms, have been explored according to
the types of the problem and data [29].

Decision tree is another ML model available for regres-
sion problems [31]. The space of input variables is split
into multiple distinct and non-overlapping regions in
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Fig. 2 Structures of typical ANN models [30]

which each output variable has one representative value
(e.g. sample mean) as the prediction [32]. As shown in
Fig. 3, the decision tree starts from the root node, which
represents the whole data. In each decision node, the
value of one input variable is tested as the decision maker.
Accordingly, the values of output variable(s) are split
until one leaf node with the prediction is reached [33]. In
the model construction, the specific input variable and
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(b) RNN with Self-Feedback at Hidden Layer
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layer layer

(d) FNN

test criterion are selected for the decision node, which
typically leads to the minimal difference between actual
and predicted output values in the split according to eval-
uation metrics such as least squares (LS) and least abso-
lute deviation (LAD) [34]. This procedure is recursively
repeated until the stop criterion such as the maximum
depth of the decision tree, minimum sample number per
leaf node, etc. is satisfied.

Root Node
l
| l
Decision Node Decision Node
\
Leaf Node Leaf Node Leaf Node

Fig. 3 lllustration of decision tree
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As a generalization of the classification problem, the
regression problem can be solved with support vec-
tor machine (SVM) and is referred to as support vector
regression (SVR) [35]. A regression model expressed as
Equation 1 is applied for the data fitting and prediction
(36],

1

f&0) = (ai —a})k(xi,x) + b (1)

i=1

where o; and o are Lagrange multipliers; k is the kernel
function for vector x; and x; b is the intercept; [ is the
number of samples for model training. Compared with
traditional regression models which train models by
minimizing the differences between predicted and actual
output values of all samples in the training dataset, SVR
introduces the insensitive region within which the errors
are not counted [35]. Accordingly, the model training
is an optimization problem by maximizing the insensi-
tive region while minimizing the errors of samples out-
side the insensitive region. Kernel function is applied to
map the original sample features (i.e., inputs) to a higher
dimension, which eases the capture of nonlinear patterns
in the data.

In addition to the three types of models introduced
above, ML models and algorithms such as k-nearest
neighbors (KNN) can deal with rutting performance
characterization and prediction as regression problems.
However, essentially as data-driven models, quantity and
quality of collected data for model training and valida-
tion significantly affect properties of the constructed
ML models and their applicability [37-40]. Besides, the
tradeoff between bias and variance affects model com-
plexity and applied learning algorithms, which leads to
potential problems such as underfitting (high bias and
low variance) and overfitting (low bias and high vari-
ance). Specifically, ML models have limitations in dealing
with engineering problems such that they are prone to
provide implicit or even unreasonable relations between
input and output variables.

Probabilistic models

The models mentioned above can be categorized as
deterministic models except that some ML models
introduce the probabilistic framework to represent and
manipulate uncertainty about models and predictions
[41]. In contrast, probabilistic models provide a sequence
of outputs with corresponding probabilities. Such models
consider the dynamic nature of pavements in terms of the
deterioration, environmental and loading conditions, and
M&R histories [42]. Therefore, they are widely applied in
predicting comprehensive indices for the pavement con-
dition, such as the International Roughness Index (IRI). A
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representative probabilistic model in the pavement per-
formance modeling is Markov Chain Process (MCP).

In MCP, the time history of the condition index is first
divided into multiple condition states. The term trans-
iting the condition index between condition states is
called Transition Probability Matrix (TPM), expressed as
Equation 2,

LE1 fetl S s |
11 P12 L P1(n—11) Py )
L+ L+ L+
0 pyp « Pon—1) Pan
P= : N AAS | @
: 0 " Py
0 o .- 0 1
in which
n
L+l
>t =1 (3)
j=1
where p*1is the probability that the condition from i at

ij
state t to j at state £ + 1, which is defined and calculated

by users from collected pavement performance data [43].
In MCBD, the transition probabilities are assumed constant
and the current condition is only relied on the previous
one. For example, the IRI at state ¢ can be expressed in
terms of its initial value as Equation 4 [42].

IRI; =P x IRI;_; = ... = P! x IRIy (4)

MCP requires the user to have clear perceptions of
the data and pavement condition to deal with tasks such
as defining condition indices and partitioning condi-
tion time histories. The major limitations of probabil-
istic models are that they cannot provide explicit forms
predicting continuous pavement condition with asso-
ciated model parameters and time, and those station-
ary transition probabilities oversimplify the problem
and cause systematic error. Such error accumulates in
the state transition and reduces the prediction accuracy
progressively.

Models for rutting development

Rutting or permanent deformation in asphalt pavement
occurs in both surface and supporting layers. This review
introduces rutting in surface layers which are made of
asphalt mixtures. Rutting typically accumulates at inter-
mediate and high temperatures and under repetitive
traffic loads [44]. The major laboratory test equipment
characterizing rutting development in asphalt mixture
samples (cylinders or slabs) include Asphalt Mixture Per-
formance Tester (AMPT) [45], Hamburg Wheel Track-
ing Device (HWTD) [46], Asphalt Pavement Analyzer
(APA) [47], Superpave Shear Tester (SST) [48], French
Pavement Rutting Tester [49], Georgia Loaded Wheel
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Tester [50], Vertically Loaded Wheel Tester (VLWT) [11,
51, 52], etc. In these tests, the samples are under either
repetitive wheel loads or continuous haversine compres-
sive loads. Temperature and load speed/cycle remain
constant during each test. The test results show the rut-
ting development in asphalt mixtures share a typical
shape as shown in Fig. 4. It can be divided into three dis-
tinctive stages based on the acceleration rate. Shape func-
tions capturing the whole or partial curve were utilized
in constructing empirical and ME models. Physical inter-
pretations or hypotheses on the mechanisms of three
stages contributed to the theory and parameter selection
of mechanical, ME, and ML models.

Mechanical models

According to mechanical models introduced in Sec-
tion 2.1, the main contributor to rutting development
in asphalt mixtures is viscoplastic strain. As shown in
Table 2, the fundamental components determining the
initiation and development of viscoplastic strain are the
yield surface function, potential function, and constitu-
tive model [13]. The yield surface function, which is the
same as potential function in associated viscoplastic
models, determines the initiation, rate, and direction of
viscoplastic strain [54]. It is related to material inher-
ent properties (e.g., strength) and behaviors (e.g., work-
hardening) [2]. Typical yield surface models for asphalt
mixtures include von Mises [55], Mohr—Coulomb [56],
Drucker—Prager [57], and their modified versions [58].
The constitutive model is responsible for predicting

A
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material responses under various environmental and
loading conditions based on fundamental mechanics and
theories such as thermodynamics [13, 15, 59], energy bal-
ance [58, 60], arbitrary Lagrangian-Eulerian [61], etc.

As described before, current applications of mechani-
cal models with comprehensive consideration of viscoe-
lasticity, viscoplasticity, viscodamage, and micro-damage
healing are limited to asphalt mixture samples. As for
numerical methods (models) of asphalt pavements which
are implemented with mechanical models of asphalt mix-
tures, mechanical models are typically simplified. Table 3
presents examples of asphalt pavement numerical mod-
els. It can be seen that:

+ The applied mechanical models of viscoplastic-
ity include creep model, which is included in the
material library of ABAQUS, and generalized Kel-
vin model, which typically characterizes viscoelastic
materials. Initiation and accumulation of permanent
strain rely more on time rather than stress state of
the material and exist for the entire service life of
the pavement. Characterizations of viscoplasticity as
a damage mode of the material are not reflected in
these models;
The type, weight, and speed variations of traffic vehi-
cles were rarely considered, which proved to signifi-
cantly affect the stress/strain state and rutting devel-
opment [4, 11, 62]; and
+ The applications of proposed numerical models in
rutting development prediction at a network level are

.

Loading cycles

Fig.4 Permanent strain and strain rate versus the number of loading cycles [53]



Page 9 of 21

(2023) 4:17

Deng and Shi J Infrastruct Preserv Resil

‘Kemybiy snoutelunow Jo suoidas dasis pue
Buoj ur yrdap
Buni jo uondipaid ajgeidasde ue papiroid [opoul 34

9101
80 WOl pabues s10308) YIS "SIUSWSINSEIW PIaY Yd1ew 0}
PaYIYS 37 01 papaau UaWdo[RASP BUIIINI PR1DIPaId

“JURISUOD 219M Paads 3)21YaA pue ainjesaduwal Yl Ydiym Ul

S1S91 YIIM ||[oM paydlewl pcmEQ07w>wU @C_ﬁ_ﬁ pPo121pald

9] 3531 (47v) A1y

BuIpeo| pa1eJa|222e Ue Ul SUSWRINSeaW Yim Adeindde Jo
92163p 9|qeuoseas e pey Juswdojaasp bumni paidIpald -
{[€9] SUOIIBAISSGO P[RY PAYDIBW SIUSW

-aned Jo apoul ain|ie} pa1dIpald 9|yoid adepns Juswaned
(pawiiojap) 3y uo paseq pasodoid sem UoLIR1LD aiN|ie} v «

‘PI3Y 9Y3 Ul paInseaw sem ainjesadual ay «

‘paie|

-NWIS SeM SPEO| 1B[NDIYIA JO JUDWSAOW 33 PUE 'SSSIIS
[eriuUabUE] pue [eD11J3A OUI PaSOAWI0IIP Sem D.JINS
JUSWaARd pUE 2111 9y} USMID] SSIIS 1DRIUOD Y| +

'$9|2A0 Peo| 000’5 A19AS Parsnipe pue pjay ayi ul
paInseaw Sem 1| ‘sSn|Npow 1aAe| 31eiq||ed 01 JaKe)
1eydse ay1 1o pazijiin sem ainiesaduwial abesane ay] -
's9|2/A2 peo Jo Jaquinu

9DUSJ931 33 SI /N PUE '51591 AI01RIOCe| WO PRUIRIFO S
yoiym ‘a1eds bo|-b0| e ul $91243 Jo Jagquinu 1sulebe (J4)
uonewlIoep Jusuewad JO SAIND Y1 Jo 3do[s S| g a1aym

?ZV (N)ad = (N)ad

g HEEIRS)

peo| [\ J31je uonewloap Juauewiad ay] ‘siskjeue pajels
-|9228 Ue Ag pa[9pOU Sem UOJPU0d Bulpeo| pay ay] 's|9
-A9| PRO| JUaJoiIP 10} Pasn 9loM sainssaid o111 1UeIsuUo)) »

1591 9Y3 Ul PaInseaw sem ainiesadwsy oy -

‘paads 3|D1YaA 33 S| YA pue

JulId100J 2111 9Y1 SI G AU YSaW JO 3ZIS 3y} m_ﬂw_mr_i
g0 — 4

AQ pa1e|Nd[ed Sem PeO| JB|NDIYDA B JO [BAISIUI WL 9Y]

r9] speo

1521 91 JO swi} [L10) paise| 1ey) paljdde sem peo| dais v -
"[€9] PISPISUOD DISM JIPURM [9YM ISIDA

-SUBJ} PUB SSJ1S 10IUOD ULIOJIUN-UON "UORNGHISIP 95I9A
-SUeJ} e YIIM PeO| D11e1S-ISenb se pajapowl sem peo| ay] -

159) UOI$S21dUI0D D1[2AD [eIxelun woly
PaUIULIR1SP S1a1aweled [opow aie /g pue 2 ‘03 0l pue
‘spniuubew peoj si 04 ‘1 Suil 18 Uleils [e101 51 (1)3 aUaym

=/
T+3+ ATﬁv dxa — _v\w X)G=Ws

Se aunxiw

1jeydse ay1 J0J Pazi|iin sem [SPOW UIA[RY pazleiausb v «
Auawaned U3 10§ SNOVEY U1 JING Sem [9powi 34 € v »

919A0 Y3-u 1e

sninpow Bulpeo| 01 sninpow Buipeojun Jo ofel s Yp pue
‘snjnpow bulpeo si 77 queisuod buluspiey sty :yibuans
PIBIA S3SIA| UOA SI 40 'S53115 D11011ASP DI2AD S| 0 3IayM

|—u
(%) Xt 5l = s

5191940 Y1-U 1@ ufens usuBlulad patejnwindde

9] "$9|9AD PeO| 1591 91 Ul D1ISB| JBaUl| pUB 3|2AD peo|
1514 941 Ul Dse|d01Se|s Se PI[SPOLU SEM [eLIS1eW SU] «
‘Juswaned oy 1o}

SNOVEY Ul |ING Sem [Spow 34 dLIaWWAsixe g v -

'$159)

3[BDS-||NJ WO PaUIR1GO Sislaweied SAIINIISUOD aJe U pue
w 'Ly pue ‘awy buipeo si 1 129)3 211se|dodsIA ay1 1oy
10108} 1ys ainiesadwial i Lo !ssai1s DL0IRIASP S| 0 31ayM

() oty =

“ S| 9idpupd aunye

-1adwia)-awi 8y} BuPspISUOD 1.l ulells d13se|dodsIA 3y «
‘Juswaned ayy 1oy

SNOVGY Ul NG Sem [2pow 34 DUIBWWASIXe OT V

'$159)

daa1> woly paulriqo sisiauwieled ale U pue W ‘y pue ‘D
Bulpeo] SI 7 !552.1S D1I0IRIASP 1US[RAINDS [BIXRIUN S| .0 AIYM
wyoV =3

Se pauyap sem 21eJ Uless daaid ay]

‘syuswaned 1oy SNOVGY Ul 3ING 21am

[¥9] [opow 34 ¢ e pue [€9] [9pow 34 utens suejd gz v -

VAINERERN

[99] ‘[e 18 NN

I REREN

(¥9]
‘|e 12 bueny pue

[€9] |2 33 Buey

s)nsay

suonipuo) Huipeo pue [eluswUOIIAUT

|ela3e|y Jo s|apo
|eSIUBYIA PUR JUSWIDARY JO S|SPOIAl [BILBWNN

loyny

Juswdolanap buiiini 1oy syuawiaaed 1jeydse Ul sainIxiw 3jeydse 10} S|oPoW [BDIURYDIW SAIRIUSSAIADY € djqeL



Page 10 of 21

(2023) 4:17

Deng and Shi J Infrastruct Preserv Resil

1591 2R SO SY1 U0 STUSWIRINSEIW PIRY YLM |[oM
payd1ew pue pauleigo sem juswdojpasp bunini asimdaig

‘pase
-PISUOD ISPUBM [93UM JO 12943 SU1 YUM (1y¥S3) PeO| 3|Xe
9|buls 1usjeAINDS Y3 AQ pajuasaidal sem duyell plal «
'SUOD9S JusWISARd ||e JO)

paz|13N pue pauleIgo a1am sajyoid ainjesaduwal pialq «

‘ApN3s ay3 ul pasodoud sayoeoidde
Paseq-soIueUAPOULIDYY pue -ABISUD AQ PI|SPOW I19M
UOI1BWIOJRP J11se|d JO UOIN|OAS PUR UOIeNIUI 9Y) pue
‘SaINIX|w Jjeydse 2e|d-ul JO JUSIUOD PIOA JIB 31 YIIM
91P[2410D O] PAWINSSE SeM UONEIYISUSP ‘A|[eoY1ads

‘JoAe| 3jeydse ay1 JO SSaUNDIYL YL S| DY ‘2)1| 9IAIDS
9|0ym a1 buunp s1sixe pue moy diseld syl Ag pain
-qIuod JusWaIdU Ldap 1n1 31 5193 ‘)1 321A135 31 JO
96e1S [eIIUI 9Y1 1B SISIXS A|UO puUR UOIeDYISUSP AQ
P31INQLIIUOD JUSWIDUI Y3dap InJ a3 §I SU2Py auaym
PHW G o +p() Ry O =)y

Se MO|} Jeays pue

UOIBDYISUSP WIOJ) 1NSaI 01 PAWINSSe sem idap 1ni [e10] «
‘|opow 34 pue Wa1sAs

Jnse[s pasahe| syl Ag papiaoid aiem sasuodsal Juswaaed
yoiym ur pasodoid sem yiomawiel) sisAjeue Juswaned v «

[89] '|e 13 bueny

s}jnsay

SuoIpuo) Bulpeo pue |eIUSWUOIIAUT

|ea3ely Jo S|apo
[eSIUBYDS\ PUR JUBWISARY JO S|SPOIA [EDLIBWINN

Joyny

(panunuod) € ajqey



Deng and Shi J Infrastruct Preserv Resil (2023) 4:17

not practical, due to their current performance and
expenses of ABAQUS and similar tools.

To improve the efficiency of computation and analy-
sis, a variety of techniques have been adopted by some
numerical models, such as pavement geometry simplifi-
cation [63], load equivalency [64, 65], and analysis accel-
eration [66]. These techniques provide convenience in
implementing mechanical models, as complicated as in
Table 2, into pavement numerical models. The models in
Table 2 have been implemented into FE models of a slab
in the wheel tracking test to compare different loading
modes [69] and a pavement structure to conduct sensitiv-
ity analysis [70].

Empirical models and mechanistic-empirical models

Both empirical and ME models include shape functions
characterizing entire (Stage I+II+III) or partial (Stage
I+1II) curve of the rutting development such as polyno-
mial, exponential, and multi-staged functions. Com-
pared with mechanical and numerical models, empirial
and ME models can consider and incorporate realistic
and precise environmental and loading conditions more
conveniently.

Table 4 introduces empirical and ME models with
either representative forms, parameters, or procedures
to process field conditions. The fundamental discrepancy
between empirical and ME models is that empirical mod-
els ignore the role of pavement structure as a system that
responds and deteriorates according to external environ-
mental and loading conditions. Asphalt layers of asphalt
pavements do not deteriorate as asphalt mixture samples
in the laboratory. Therefore, the material properties uti-
lized for the empirical model calibration [71-76] may
have different effects on different pavement structures.
Some structural parameters were considered in empiri-
cal models, such as the layer thickness [24], layer depth
[76], and stress state [76, 77]; the first two are too general
and the last one proved to be more affected by the load-
ing condition [11].

The pavement responses included in ME models were
either measured [83] or calculated [11, 26, 74, 81]. In fact,
the introduction of the “mechanistic” part contributes to
the “empirical” part as well. A recent study [11] pointed
out that the introduction of pavement responses reduced
the dependency of rest regression parameters since pave-
ment responses changed accordingly with environmental
and loading conditions. Therefore, a highly nondetermin-
istic regression analysis for traditional empirical models
can be simplified.

To account for the dynamic nature of field tempera-
ture and traffic load, the service time of the pavement
was partitioned. Temperatures were averaged [76] or
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represented by extreme ones [24]; and traffic load was
categorized [24, 83] or converted to the standard one
[72, 74, 75]. Moreover, a statistical model for the wheel
wander was considered for a more representative load-
ing condition as the field [26]. The accumulated rut depth
required transfer to the current time period, which is also
a method considering the dynamic nature of field condi-
tions [26, 76].

Improvements for empirical and ME models can be
made on modeling the variation of traffic load speed for
the increasing consideration of viscoelastic models for
the asphalt layer [11, 26]. Pavement deterioration mod-
els can also be implemented into ME models to achieve
more representative pavement responses.

Machine learning models

Construction of an ML model for rutting development
includes collection and organization of material, struc-
ture, traffic, environment, and pavement performance
(i.e., rut depth) data for representative model inputs and
outputs. As mentioned in Section 2.4, the selection of
ML model structures and learning algorithms, according
to the requirements and characteristics of the problem
and data, is important. Currently there is no significant
difference between applications of ML models in rutting
and other distress or for asphalt mixtures in the labora-
tory and asphalt pavements in the field.

Alharbi [87] applied an NN with one hidden layer to
predict rutting index from pavement age, thickness, aver-
age temperatures, etc. Compared with linear regression
models, trained NN improved the prediction accuracy
(R?) by 75.61%. Gong et al. [88] applied two NN to com-
pare predicted total rut depth with the transfer function
in the Pavement ME Design Guide [26]. The first NN
applied one hidden layer and individual rut depth in the
AC layer, base layer, and subgrade as inputs. The second
NN had two hidden layers and used additional 18 mate-
rial, structural, environmental, traffic and time param-
eters as inputs. In comparison, two linear regression
models were built with identical inputs as NNs to rep-
resent the transfer function in the Pavement ME Design
Guide. The two applied NNs improved the prediction
accuracy (R?) by 22% and 88%. Moreover, by using the
random forest algorithm, the relevancy of each input
to the total rut depth was measured and ranked. Amin
and Ajakaiye [89] applied an NN with two hidden layers
to predict maximum rut depth from the information of
traffic, climate, time and pavement surface condition and
profile. A total of 638 road segments were utilized and
contributions of all inputs were evaluated by sensitivity
analysis. Haddad et al. [90] tuned the hyperparameters
and determined an NN with three hidden layers to pre-
dict rut depth from 29 selected input variables. Using
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5558 and 1388 datapoints as the training and testing
datasets, much higher accuracy was achieved with NN
(R?=0.94 and 0.82) than the one with linear regression
model (R?=0.28). Deng and Shi [39] applied an NN with
one hidden layer to predict rut depth with corresponding
pavement condition for the state of Idaho. Particle swarm
optimization (PSO) was utilized to calibrate model coeffi-
cients, i.e., weights and biases of artificial neurons. More-
over, this study investigated the relationships between the
model accuracy and updating efficiency and the number
of calibrated parameters. The authors found that an opti-
mum number of hidden neurons may exist to balance
the tradeoff between model accuracy and reproducibility
with limited computation time [39].

Examples introduced above features the architecture
of feedforward NN. Recurrent neural network (RNN)
is a descendant of feedforward NN and each neuron in
the hidden layer(s) of RNN can send produced output
to itself. In the time scale, a neuron at each time step is
triggered by the output from the previous step and the
input for this step [91]. Obviously, RNN is suitable for
modeling time series data since they can remember and
pass information through time [92]. Okuda et al. [92] and
Choi and Do [93] trained RNNSs to predict rut depth from
time-series data of traffic, climate, and inspection history.
Good agreements were achieved between predicted and
measured rut depths.

Deng and Shi [40] applied gene expression program-
ming (GEP) in determining both the form and parameter
values of predictive models for distress development in
asphalt pavement (including rutting). The authors devel-
oped the GEP on the basis of genetic algorithm (GA)
and genetic programming (GP), in which variables, con-
stants, and arithmetic and logic operators are treated as
elements of the gene and experience mutation, crossover
and selection similar to those in natural selection [94].
As an ML model, GEP addressed the issue of model form
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being implicit. However, GEP would produce a model
violating the deterioration mechanism of asphalt pave-
ment when the training dataset contained outliers.

Liu et al. [95] compared four ML models: feedforward
NN, SVR, random forest (RF), and gradient boosting
(GB) in predicting rut depth of asphalt pavements in the
LTPP database in which RF and GB are ensemble learn-
ing algorithms applied with decision trees. RF eventually
aggregates predictions from individual trees constructed
with random subsets of data [96] and GB incrementally
corrects predictions from the previously constructed tree
with a newly constructed tree. In addition to RF and GB,
available ensemble learning algorithms include adaptive
boosting, extreme gradient boosting, etc., and their appli-
cations and comparison can be found in a comprehensive
study on predicting rut depth in asphalt mixtures [97]. In
Liu et al’'s work [95], 27 input variables were utilized to
predict rut depth in asphalt pavements in the LTPP data-
base. Four applied ML models achieved higher accuracy
with R? values around 0.90 compared with linear regres-
sion model with R? value around 0.57.

Summary

The characteristics of major models applied for charac-
terizing and predicting rutting development in asphalt
pavements are presented in Fig. 5. Compared with empir-
ical models, mechanical models feature higher versatil-
ity by utilizing general models and criteria describing
the behaviors, damages, and failures of materials and
structures. They were developed based on a solid foun-
dation of classic theories and numerous validations,
which include the conditions of field asphalt pavements.
As for empirical models, their model accuracy can be
negatively affected by predicting pavements with condi-
tions outside the dataset for model training. However,
due to the dynamic nature of field condition in time
and location, mechanical models should be repetitively

Usability
Mechanistic-empirical Emplrlcal
model Model
Universality Interpretability

Generalizability

Mechanics-driven

Fig. 5 Characteristics and connections of asphalt pavement rutting models

ML model with
explicit form

Data-driven
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called to conduct the procedures from determining the
material state to calculating the pavement damage. The
required computational time and model complexity limit
the application of mechanical models in practical use.
To achieve a balance between these two model types,
ME models were developed by introducing pavement
responses and/or simplified mechanical theories and cri-
teria; and this should extend the model application since
the values of these terms rely on the pavement internal
(material and structure) and external (load and environ-
ment) conditions.

Compared with empirical models, ML models offer
higher fitting and prediction accuracies by adopting
sophisticated model structures and calibration algo-
rithms. However, the relations between pavement perfor-
mance (i.e., rut depth) and influential factors described
by the model tend to be implicit with the increase of
model complexity. The corresponding disadvantages
are as follows. First, the relations are difficult to check
and can be irrational due to overfitting. Second, adding
or replacing data for model training are always accom-
panied by the hyperparameter tuning to ensure the best
model performance, which may be an obstacle for some
users. ML models with explicit forms such as NNs with
shallow structures and GEP may be an option to leverage
the benefits of both empirical models and ML models.

As for the connection between mechanical models
and ML models, currently mechanical information pri-
marily serves in the pre-processing and post-analysis of
the ML modeling framework, such as feature selection
and final model determination. Potential improvements
can be made on using ML algorithms to effectively solve
mechanical models or implementing physics-guided
modeling techniques into ML model construction similar
to those in solving partial differential equations [98].

State of the practice: results from the nationwide
survey

A practitioner survey was designed to identify perfor-
mance deterioration models used by various highway
agencies in the United States for asphalt pavements and
to capture the insights and experiences of users on the
existing models in terms of reliability, precision, input
and output parameters, consideration of M&R history,
implementation considerations, etc. The survey instru-
ment was distributed to listservs such as Pav_Net and
TriDurLE_Communications as well as selected state
departments of transportation (DOTs). The complete
version of the survey is provided in the Supplementary
Information. Table 5 presents a summary of the technical
questions asked in the survey. The survey was delivered
online via the platform Qualtrics® during March to May
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Table 5 Summary of technical questions in the survey

Questionnaire topics

- Specific distresses concerned in the applied models. (Q1)
- Resources of applied models. (Q2)
- Limitations of applied models. (Q3)

- Inputs of applied models including the name, difficulties in the usage,
etc. (Q4-Q10)

« Purposes of the applied models. (Q11-Q13)
- Performance of the applied models. (Q14-Q19)

- Management of the applied models including the quality check,
improvements, etc. (Q20-Q21)

- Expectations of applied models. (Q22-Q23)
- Opinions on the artificial intelligence models (Q24-Q25)

2021 and there was a total of 43 effective responses col-
lected from 23 states of the United States.

The survey revealed that rutting (15.7%) was among
the five distresses concerned most by the researchers
and technicians in state DOTs out of a total of 166 choice
counts. Currently, the tools developed or purchased by
individual agencies are the most popular choices for the
pavement distress development prediction and manage-
ment. Those tools include professional statistical pack-
ages such as R, business analytics services such as Power
BI, and basic data visualization and analysis tools such
as Excel spreadsheet, etc. The software built upon the
AASHTO mechanistic-empirical (ME) pavement design
guide - AASHTOWare Pavement ME Design ranked
second (26.3%) in the survey out of a total of 38 choice
counts. Considering the variety of applied tools, their
limitations provided by the participants are quite scat-
tered, from data quality to software update.

This survey also asked questions about model inputs.
Following the mainstream predictive models such as the
ME models, the model inputs were divided into four cat-
egories: traffic, climate, material, and structure. Figure 6
shows their necessities in the predictive models and
difficulties to be obtained according to the user experi-
ence of the participants from 71 and 33 choice counts,
respectively. The collective user experience indicates that
the traffic information was more difficult to be obtained
than the climatic information because of the lack of
the traffic monitoring system (TMS) in certain areas.
In comparison, climate data are more accessible from
national weather databases and services. It was interest-
ing to notice that the information on pavement struc-
tures and materials was believed to be important and
necessary in the predictive models, yet a portion of the
participants reported that variables of these two catego-
rizes were not considered in the models or systems they
currently applied. For those variables which are difficult
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Fig. 6 Information of four major model inputs

to be obtained, the typical solutions include referring to
recommended values in the systems, papers and reports,
and using models without them.

According to the survey responses, the main purpose
of using these predictive models was to obtain distress
indices for the pavement management. Therefore, the
applied predictive models were expected with high quali-
ties. Figure 7 shows the top five qualities of a good pre-
dictive model voted and ranked by the participants out
of a total of 25 choice counts. It can be summarized that
the accuracy, complexity, and applicability are most con-
cerning for those model users. Specifically, 80 percent
of the participants expected the predictive models with
the accuracy (R?) over 0.80. Nearly 50 percent of the par-
ticipants believed that the main factor causing the poor

predictions was the limited data for the model calibra-
tion. The solutions they could think of included increas-
ing data amount for the mode construction and the
frequency of the model validation, performing outlier
reviews, etc. As for the model reliability and ruggedness,
they were proposed based on the experience of the par-
ticipants in obtaining very different predictions in pave-
ments with similar conditions.

The survey asked questions specifically on the arti-
ficial intelligence (AI) models (traditional ML & DL
models) because these are emerging and promis-
ing choices for pavement performance prediction.
Responses of the participants on the knowledge of and
attitude towards the AI models are presented in Fig. 8.
More than 90 percent of the participants did not use

30%

25%

20%

15%

10%

- I I I I l
0%

Accuracy  Reliability Ease of use Solid Clear form
and foundation on
ruggedness mechanistic
theory

Fig. 7 Top five model qualities
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m Use
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without a chance

# Do not think they are
appropriate
Do not know

= Replace current models with
Al models

= Try both and pick a better
one

= Still use traditional models

Others

Fig. 8 Responses of the participants on the Al models (a) knowledge and (b) attitude

Al models as the predictive models and half of the par-
ticipants had no idea what the AI models were out of a
total of 25 choice counts. However, it is promising that
32 percent of the participants showed interest in using
Al models as their predictive models and 64 percent
of the participants were willing to try after compar-
ing with traditional models, out of a total of 25 choice
counts. Therefore, it is worthwhile to develop and pro-
mote Al models as the predictive models for pavement
distresses.

Conclusions and recommendations

In this study, a literature review on current predictive
models of asphalt pavement performance was conducted.
Specifically, we used rutting development as an example
to compare different model types. We also conducted
and analyzed a practitioner survey to capture the insights
and experiences on the existing models by users at vari-
ous U.S. highway agencies. The main findings in this
study can be summarized as follows.

Mechanical model can have desirable prediction
performance given that the applied theories are suf-
ficiently generalized and advanced. Due to its com-
plexity and time consumption, however, the mechan-
ical model has limited applications in predicting the
long-term performance of field pavement sections.
Empirical model has advantages such as simplic-
ity of the model construction and explicit relations
between pavement performance and influencing fac-
tors. However, the empirical model has restricted
applications for cases outside the training dataset due
to the over-reliance of model coefficient values.
Mechanistic-empirical model takes advantages of the
mechanical model and empirical model with basic
accuracy, rationality, and simplicity. Such a model
considers the pavement conditions and responses in
a mechanistic manner.

Machine learning model takes advantage of artifi-
cial intelligence and has sophisticated model struc-
tures and operations. Such a model can efficiently
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and automatically capture the quantitative relations
between pavement performance and influencing fac-
tors. However, it has potential issues of overfitting,
and similar to the empirical model, it has restricted
applications for cases outside the training dataset.

Finally, according to the characteristics of different
model types and expectations in model properties by
practitioners, future research should focus on the models
benefiting from model combinations such as ML models
with explicit forms, mechanical models solving by ML
algorithms, and physics-guided ML models.
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