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Abstract 

Construction equipment tracking of highway construction site can obtain the spatiotemporal location in real time 
and provide data basis for construction risk control. The complete 2D moving of construction equipment in surveil-
lance videos could be spatially represented by the translation, rotation and size change of corresponding images. 
To describe the temporal relationships of these variables, this study proposes a construction equipment enclosing 
contour tracking method based on orientation-aware bounding box (OABB), where UAV surveillance videos are 
employed to alleviate the occlusion problem. The method balances the rotation insensitivity of horizontal bounding 
box and the complexity of pixel-level segmented contour, which has three modules. The first module integrates OABB 
into a deep learning detector to provide detected contours. The second module updates OABBs with Kalman predic-
tion to output tracked contours. The third module manages IDs of multiple tracked contours for construction equip-
ment motions. Five in-situ UAV videos including 4325 frames were employed as the evaluation dataset. The tracking 
performance achieved 2.657 degrees in angle error, 97.523% in MOTA and 83.243% in MOTP.

Keywords  Construction equipment tracking, UAV surveillance videos, Highway construction site, Orientation-aware 
bounding box, Rotating angle

Introduction
The motion of construction equipment in the 2D plane 
based on computer vision can be defined by translation 
and rotation. Considering that the distance from the pho-
tography plane to construction equipment might change, 
pixel size of corresponding equipment image also needs 
to be included. These constitute a complete 2D spatial 
description of the plane moving pattern of construction 
equipment, which is represented by the enclosing con-
tour in this study. Precise spatial–temporal information 

of construction equipment is one of the most important 
datatypes in construction sites [1–3], which can be used 
to provide location feedback for equipment engaged in 
hazardous operations and early warning for construc-
tion personnel around the equipment. Furthermore, such 
information can provide the basis for the organization 
and guidance of traffic flow at key nodes of construction 
sites and for the analysis of working productivity effi-
ciency [4, 5]. Enclosing contour tracking of construction 
equipment, used for relatively precise spatial–temporal 
information acquisition, has become critical to improve 
efficiency and ensure safety in construction sites.

Kinematic-based construction equipment tracking meth-
ods using installed devices (e.g., radio frequency identifica-
tion, global positioning systems, ultra-wideband, Bluetooth 
low-energy, accelerator) [2–12] have been validated with good 
accuracy and real-time processing speed for moving trajecto-
ries extraction. In addition to those approaches, vision-based 
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sensing methods have become promising due to non-contact, 
low cost and abundant data. Many methods have been con-
ducted treating equipment as a point, i.e., trajectory identifica-
tion), including 2D trajectory [13–16] and 3D trajectories [17, 
18]. These methods concentrate on the translations of con-
struction equipment, but when the construction equipment is 
close to each other or close to the workers, its volume cannot 
be ignored. Therefore, the identification of more accurate infor-
mation of construction equipment has attracted the attention 
of researchers, i.e., treating equipment as an enclosing contour.

Using horizontal bounding box (HBB) to represent the 
construction equipment enclosing contour and track the 
size (width and height) in addition to the translation (centre 
point coordinates) can alleviate the above limitations. HBB-
based construction equipment enclosing contour track-
ing methods can detect rough equipment regions [19–24]. 
However, HBB has no rotation sensitivity, and its region 
contains a large number of non-equipment parts. Pixel-
level segmented contour tracking is an appropriate way to 
accurately represent the construction equipment spatial–
temporal information [1]. But robust segmented contour 
tracking based on deep learning needs complex manual 
labelling and temporal contour association, which would be 
superfluous for the 2D spatio-temporal description.

Thus, to balance the rotation insensitivity of the HBB 
and the high calculation complexity of pixel-level seg-
mented contour, this study proposes an enclosing con-
tour tracking method for construction equipment based 
on OABB using UAV surveillance videos. This study is 
arranged as follows: Sect. " Literature review" presents a 
literature review on vision-based tracking for construc-
tion equipment and arbitrary-oriented object detection; 
Sect.  "  Methodology" illustrates the methodology of the 
proposed approach; Sect.  "  Evaluation and implementa-
tion details" describes the dataset used to evaluate the 
algorithm, the evaluation metrics and the implementa-
tion details; Sect.  "  Results and discussions" shows the 
tracking results both qualitatively and quantitatively, with 
a discussion of the key update factor; Sect. " Conclusions 
and future works" concludes the research.

Literature review
In this section, tracking methods on vision-based for 
construction equipment will be reviewed. Because this 
research integrates OABB into the tracking method, 
research work in the field of arbitrary-oriented object 
detection will also be reviewed comprehensively.

Vision‑based tracking methods for construction 
equipment
Many studies on construction equipment tracking based 
on computer vision techniques have been conducted. 

Some of them focus on the translation (moving trajec-
tory) identification which treat the construction equip-
ment as one point. Kim et  al. [13] presented a mobile 
construction equipment 2D trajectory extraction method 
based on deep learning detector and image rectification 
technique using UAV videos. Tang et  al. [14] took 2D 
tracks of construction equipment and predicted their 
locations using long short-term memory network and 
mixture density network. Zhao et al. [15] proposed a con-
struction equipment tracking for 2D trajectory extraction 
using deep learning. Zhu et  al. [16] proposed a particle 
filter-based construction equipment tracking method to 
acquire 2D trajectories. To calculate more accurate spa-
tial locations of construction equipment, they [18] also 
developed a novel Kalman filter-based tracking method 
to estimate 3D positions using stereo vision. Jog. et  al. 
[17] developed a multiple equipment position monitor-
ing method using 3D coordinates. These studies can 
timely and accuratel + y track construction equipment 
and obtain their trajectories. However, when construc-
tion equipment are close to each other or workers, only 
treating the construction equipment as a point will lead 
to the loss of information, which cannot be effectively 
described its spatial–temporal information.

The enclosing contour of the construction equipment 
using HBB can provide more information than the afore-
mentioned point-represented construction equipment 
methods, in addition to the trajectory there are time-var-
ying width and height. Zhu et  al. [24] presented an auto-
matic construction equipment detection and tracking 
method using HBBs for better precision and recall. Kim 
and Chi [20] adapted a 2D long-term construction equip-
ment tracking method integrated with real-time online 
learning-based detector and tracker. Kim and Chi [21] 
also conducted researches on excavator and truck tracking 
method based on cross-camera matching techniques. Chen 
et  al. [19] proposed a detection and tracking method for 
construction equipment to recognize their activities. Xiao 
and Kang [22] developed a construction equipment tacker 
using deep learning detector integrated technique. They 
[23] also proposed a robust night-time construction equip-
ment tracker using deep learning illumination enhance-
ment. These HBB-based tracking methods can reflect the 
size changes of the construction equipment. But when 
the aspect ratio of the construction equipment is much 
greater than 1 or the spatial distribution is dense, the HBB-
based enclosing contour would contain a lot of non-target 
information. Wang et al. and Bang et al. [1, 25] employed 
instance segmentation method to extract the pixel-level 
segmented contours of construction equipment. This is 
an appropriate way for the construction equipment repre-
sentation. But robust segmented contour tracking based 
on deep learning needs complex manual labelling and 
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temporal contour association, which would be superfluous 
for the moving pattern recognition and tracking.

Arbitrary‑oriented object detection methods
OABB is a rotatable rectangle with one more parameter 
rotating angle than HBB, which is the basis of arbitrary-
oriented object representation. Because the perspective 
of the overhead-view images can better reflect the mov-
ing patterns of targets, the basic five parameters can 
be extracted from images intuitively and accurately, so 
OABB is more used to detect the enclosing contour of 
targets in overhead-view images [26, 27].

In recent years, many researchers have devoted their 
efforts on five-parameter detection based on OABBs. In 
overhead-view images, targets are distributed with ran-
dom orientations, which makes detecting targets in this 
field challenging. Chen et  al. [28] designed a OABB-
based detection model consisted of two CNN networks, 
in which one CNN was for arbitrary-oriented regions 
with the orientation information and the other was for 
object recognition with multi-level feature extraction. Ma 
et al. [29] proposed a two-stage multi-oriented detector 
based on CNN in optical remote sensing images using for 
OABB prediction. Guo et al. [26] developed a single-stage 
orientation-aware construction vehicle precise detection 
approach using CNN with feature fusion technique.

Research challenges and objectives
As mentioned before, vision-based enclosing contour 
tracking of construction equipment is an important 
mean to obtain spatial–temporal information in large 
construction sites. The current vision-based construc-
tion equipment tracking methods needed to be strength-
ened in two aspects: in addition to the translation and 
size change information obtained by the point-repre-
sented or HBB-represented tracking methods, the rota-
tion information should be included; considering the 
complex manual labelling and temporal association in 
the pixel-level segmented contour, the concise tracking 

methodology balancing the accuracy and complexity 
should be considered.

The objective of this study is to develop an enclosing con-
tour tracking method of construction equipment to acquire 
not only moving trajectories but also temporal sizes and 
rotating angles. OABB instead of HBB was employed to 
establish the robust and accurate tracking model for con-
struction equipment using UAV surveillance videos.

Methodology
In this section, the three modules of the OABB based 
tracking method of construction equipment, including 
enclosing contour detection, enclosing contour update, 
and tracking ID managing, are described in detail. Firstly, 
the enclosing contour is parameterized using five vari-
ables of OABB, a CNN-based contour detection model 
with multi-level features is built and the loss function 
is defined; secondly, the video frames are input to the 
model to get detected contours, and the motion model of 
the construction equipment is built to get predicted con-
tours, tracked contours are updated from predicted con-
tours using the detected contours; finally, the intersection 
over union (IOU) of OABBs is used to add, keep or delete 
multiple construction equipment IDs to obtain the track-
ing status of each equipment.

Enclosing contour detection
The CNN-based detection module describes the con-
struction equipment in images by OABB enclosing con-
tours. Figure  1 shows the difference between HBB and 
OABB. HBB is defined by four parameters: centre point 
coordinate (x, y), width (w), and height (h), while OABB 
is defined by five parameters: x, y, w, h and rotating angle 
(r). Figure 1(b) compares the effects of equipment repre-
sentations with two kinds of bounding box. The enclos-
ing contour detection model, which aims to generate and 
regress OABBs, is modified from the CenterNet [30]. 
The model consists of two parts: backbone and detection 
head, as shown in Fig. 2.

Fig. 1  Difference between HBB and OABB: (a) description parameters, (b) equipment representations



Page 4 of 11Guo et al. J Infrastruct Preserv Resil             (2023) 4:4 

Backbone provides multi-level features of construc-
tion equipment. A modified ResNet-18 base network 
(mResNet-18) is employed with four residual blocks, each 
comprising four convolutional layers with two shortcut 
connections. The residual network has a better fitting 
ability for extracting more accurate features, and it can 
also solve the problem of optimisation training when the 

number of layers increases. Four deconvolution layers are 
added to recover the spatial information. To speed up the 
detection efficiency, the output size of the mResNet18 is 
M / 4 × N / 4 (the size of the input image is M × N).

There are four regression parts in the detection head 
based on the OABB: centre point regression (x, y), offset 
regression (offx, offy), width and height regression (w, h), 
and angle regression (r). The four regression parts aim to 
learn the integers of the centre point coordinates, deci-
mals of the centre point coordinate, width and height, 
and rotating angle of the OABBs with feature maps pro-
cessed by (3 × 3 × 64, 1 × 1 × 2), (3 × 3 × 64, 1 × 1 × 2), 
(3 × 3 × 64, 1 × 1 × 2), and (3 × 3 × 64, 1 × 1 × 1) convo-
lutional kernels, respectively. In the network inference 
stage, the heat maps from the centre point regression are 
processed based on 3 × 3 max-pooling, which functions 
as non-maximum suppression.

To decrease the difficulty of training and increase the 
efficiency of inference, a Gaussian heat map generated 

from the ground truth centre point coordinates (x0, y0) is 
employed in this research. wxy and ŵxy are the actual and 
predicted weights in the Gaussian heat map, respectively. 
The Gaussian heat map weight at coordinate (x, y) is cal-
culated based on a Gaussian kernel with six parameters: 
the Gaussian mean (μ1, μ2), Gaussian variance (σ1, σ1), 
and window size (r1, r2), using Eq. (1), as follows:

The final Gaussian heat map weights at the coordinates 
(xg, yg) are modified based on the rotating angle of the 
construction equipment as shown in Eq. (2).

The training loss of the enclosing contour detector 
(Ldet, defined by Eq.  (3)) is divided into four compo-
nents, designed based on the detection head: the centre 
loss (Lc), offset loss (Lo), width and height loss (Lwh), and 
angle loss (Lag). λc, λo, λwh, and λag are the corresponding 
weights, respectively. The centre loss employs focal loss 
for better training convergence, as controlled by Eq. (4), 
where α and β are adjustment parameters, and N is the 
number of heat map points, and the other three employ 
the L1 loss to regress the corresponding parameters.
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Fig. 2  Detailed architecture of the anchor-free equipment OABB detector
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The enclosing contour detection model is pretrained 
by construction equipment in MOCS proposed by An 
et al. [31]. For better generalization, the trained network 
is then fine-tuned by the collected overhead-view con-
struction equipment dataset. The images of this dataset 
are captured by drone-borne cameras at different heights 
and angle, containing 600 images and 1570 equipment.

Enclosing contour update
The detection module could generate high-confidence 
enclosing contour of construction equipment at each frame 
without considering the temporal context information, 
resulting in an inability to match construction equipment 
between different frames. Inspired by Bewley et  al. [32], 
this module employs a Kalman filter to model the frame-
by-frame enclosing contours from detection module in the 
time domain. The Kalman filter predicts the enclosing con-
tours based on the previous contours, and weights the pre-
dicted contours with the detected contours for much more 
accuracy. The state variables of OABB-based construction 
equipment motion (translation, size change and rotation) 
can be described as shown in Eq. (5):

where c′x,c′y,w′,h′ and r′ are the first derivatives of the 
corresponding OABB parameters. Assuming that the 
construction equipment is moving at a relatively low 
speed (reasonable for equipment at construction sites), 
the size and orientation of the equipment will change 
uniformly over a short time Δt. The state function 
describing OABB-based construction equipment motion 
could be expressed as Eq. (6):

(3)Ldet = �cLc + �oLo + �whLwh + �agLag
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where xk−1 represents the construction equipment state 
at the (k-1)th frame and x̂k|k−1 is calculated state estima-
tion at the kth frame using xk−1 and state function; �t is 
the time interval of per frame, and F is the state transition 
matrix; wk−1 indicates process noise of the investigated 
equipment motion model, assumed to be white noise with 
0 mean and Qk−1 = E

(

wk−1w
T
k−1

)

 covariance. The covari-
ance estimation of the state variables, described by the state 
covariance matrix P, can be obtained by linearization of the 
equipment motion model from Eq. (7):

where P̂k|k−1 illustrates the predicted state covariance 
matrix using optimal estimation Pk−1 and the investigated 
equipment motion model.

In Kalman prediction stage, the predicted contours have 
certain difference with actual situations. Therefore, at this 
stage, the contour information of the detected construction 
equipment would be used as the measured value(s) for the 
Kalman update. The state transition from the state vector to 
the measurements is shown in Eq. (8), where zk is the meas-
urement of the kth frame, and H is the measurement matrix. 
Only the former five parameters can be acquired from the 
actual detected contours; thus, the size of H is 5 × 10.

where vk represents the measurement noise, assumed to 
be white noise with 0 mean and Rk = E

(

vkv
T
k

)

 covariance. 
The Kalman gain ( κ ), calculated using Eq.  (9), is the core 
matrix in the Kalman filter, considering both the prediction 
and the measurements to update

Using the Kalman gain, the state vectors and state vari-
ances of the construction equipment from the Kalman 
prediction can be updated using Eqs. (10) and (11). And 
the updated OABB information of the construction equip-
ment considering temporal detection information can be 
set as the final tracked enclosing contour of the kth frame.
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Tracking ID managing
The allocation of construction equipment IDs is a 
core issue in multiple construction equipment track-
ing. Most HBB-based tracking methods lead to the 
overlapping of boxes for multiple objects, resulting 
in a high complexity in the data associations between 
frames. For the OABB represented construction equip-
ment, there is hardly no overlap between the OABBs. 
Therefore, this research employs the IOU of the OABB 
as the indicator for the ID managing part (calculated 
by Eq. (12)).

The ID allocation of construction equipment can be 
divided into three states: add, keep, and delete. The 
result of the detected contours and that of the pre-
dicted contours are used to calculate the IOU. When 
the ratio is greater than the pre-setting threshold 
(IOUt), the situation is denoted as ’matched’; other-
wise, it is denoted as ’unmatched’. When there is an 
unmatched detected contour and the situation lasts for 
three consecutive frames, a new equipment ID should 
be added. When there is an unmatched predicted 
contour and the situation lasts for three consecutive 
frames, the corresponding equipment ID should be 
deleted. The matched detected OABB is used as the 
measurement for participating in the Kalman update 
to generate the final tracked contour, and the corre-
sponding equipment ID is maintained.

Evaluation and implementation details
Dataset description
This dataset contains five video clips in various con-
struction environments, captured by cameras mounted 
on UAVs. All videos were captured in 1080 × 1080 
pixels and filmed at 30 frames per second (FPS) at 

(11)Pk=(I− κkH)P̂k|k−1

(12)I(U(a, b) =
OABBa

⋂

oABBb

OABBa
⋃

AABb

different heights and view angles. The dataset includes 
single and multiple equipment, static and moving 
equipment, hovering and fast-moving cameras, with a 
total length of 4325 frames, 18 equipment, and 8174 
contours, typical frames of evaluation videos are 
shown in Fig.  3. A detailed description is provided in 
Table  1. For convenience, annotation was performed 
every 10 frames. The labelling format is as follows: 
frame number, equipment ID, centre point coordi-
nates, width and height, angle, and category (confi-
dence score).

Evaluation metrics
The multiple object tracking (MOT) challenge [33] is a 
multiple object tracking benchmark, and is widely used 
to evaluate tracker performance. The evaluation met-
rics employed in this research are modified from the 
MOT challenge.

Multiple object tracking accuracy (MOTA) and mul-
tiple object tracking precision (MOTP) are core evalu-
ation indexes used to jointly measure a tracker’s ability 
to continuously track objects (i.e. accurately deter-
mining the number of objects in consecutive frames, 
and accurately delineating their positions, so as to 
achieve uninterrupted continuous tracking). MOTA 
mainly considers the accumulation of object-matching 
errors in tracking, and mainly includes FP, FN, and IDs 
(described as Eq. (13)).

FP and FN represent the wrongly tracked equip-
ment and unmatched ground truth equipment in the 
unmatched status, respectively. IDs denotes the num-
ber of ID switches assigned to ground truth equipment, 
and GT is the total number of ground truth equipment. 
MOTA measures the performance of trackers in detect-
ing objects and tracking, and is not affected by the 
detector performance. MOTP reflects the accuracy of 
determining the object position and size, and is highly 

(13)MOTA = 1−

∑

(FN + FP + IDs)
∑

GT
∈ (−∞, 1)

Fig. 3  Example frames of evaluation videos



Page 7 of 11Guo et al. J Infrastruct Preserv Resil             (2023) 4:4 	

affected by detector performance. The MOTP is calcu-
lated using Eq. (14).

where a is the frame number, b is the equipment 
number, ca is the number of trackers in the matched 
status, and IOU(a,b) is the IOU value of the matched 
equipment OABBs.

AR represents the mean square error of tracking 
rotating angles in degrees. MT represents the num-
ber of trajectories matching the ground truth success-
fully in over 80% of the total frames, respectively. RC 
and PR are the recall and precision, and represent the 
ratio of TP OABBs to ground truth OABBs and ratio 
of TP OABBs to all detected OABBs, respectively. Hz 
is the processing speed of the algorithms, including the 
detector in this research; which is different from that 
used in the MOT challenge.

Implementation details
In the enclosing contour detection module, the excava-
tor, truck, loader, roller and concrete mixer truck cat-
egories from the MOCS dataset [31] were selected for 
pretraining with 1000 epochs. The proposed dataset was 
processed using augmentation techniques, and then was 
re-trained or fine-tuned using the weights from pre-
training. The total re-training epoch was 350, with an 
initial learning rate of 1.25 × 10–4, and a 0.1-fold decay 
was performed at epochs 200 and 300. The loss weights 
in Eq. (3), i.e. λc, λo, λwh, and λag were set to 1.0, 1.0, 0.5, 
and 1.0, respectively. An Adam optimiser was employed 
in this training with default hyperparameters to achieve 
better convergence.

In the enclosing contour update module, as shown in 
Eq.  (15), the state covariance matrix P0 was initiated, 
and the measurement covariance matrix Rk was set as 
the identity matrix. To find the proper parameter of the 
process covariance matrix Qk, λ was used to represent 
the relationship between Rk and Qk, and is set as 5.0. 
IOUt was set as 0.8.

(14)MOTP =

∑

b,a IOU(a, b)
∑

a ca
∈ (0, 1)

In the experiments, a modified tracking method from 
SORT (mSORT) [32] was chosen as the baseline method 
to compare with the proposed method in this study to 
test the tracking results of evaluation videos. Because 
SORT method is one of the state-of-the-art methods in 
the field of multiple object tracking, characterized by a 
flexible framework and fast tracking speed. In addition, 
the mSORT used for comparison with the proposed 
method employed the same detector backbone, based 
on HBB generation and regression to detect construc-
tion equipment, and was trained using the same data-
set. It also used Kalman filtering for HBB prediction of 
construction equipment and used more complex linear 
assignment and IOU of HBBs for ID management.

The hardware platform employed mainly includes an 
Intel Xeon(R) E5-2620 v4 CPU, a Nvidia GTX 1080Ti 
GPU, and 32 GB of memory.

Results and discussions
Tracking results
The experimental results using the proposed method 
and the baseline method are shown in Table  2. To bet-
ter compare the differences between the two methods, 
Fig.  4 shows the tracking results of five video example 
frames, where the solid line box represents results from 
the proposed method and the dashed line box from 
mSORT. The tracking performance of the five video 
clips from the evaluation dataset was averaged. The 
proposed method achieved the recall of 99.381%, preci-
sion of 98.165%, MOTA of 97.523%, MOTP of 83.243%. 
Meanwhile, MT = 18 indicates that the proposed method 
successfully tracked all 18 trajectories of construction 

(15)�0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 10 0 0 0 0

0 0 0 0 0 0 10 0 0 0

0 0 0 0 0 0 0 10 0 0

0 0 0 0 0 0 0 0 10 0

0 0 0 0 0 0 0 0 0 10

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,�k = �,�k = ��

Table 1  Description of evaluation dataset for overhead-view construction equipment tracking

Name FPS Resolution Length/frame Equipment Contours Description

CVT-01 30 1080 × 1080 1250 1 1250 excavator in operation

CVT-02 30 1080 × 1080 325 2 350 static vehicles from low height

CVT-03 30 1080 × 1080 600 4 1739 road paving equipment

CVT-04 30 1080 × 1080 650 8 1679 static vehicles from high height

CVT-05 30 1080 × 1080 1500 3 2856 equipment in cooperative operation

Total / / 4325 18 8174 /
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equipment. From the tracking results, it can be seen that 
the proposed method can accurately and robustly track 
construction equipment from the overhead-view videos. 
Specifically, the proposed method improves 25.387% over 
mSORT on precision and 24.549% on MOTP. It is worth 
noting that the proposed method achieves 97.523% 
MOTA, which proves high robustness. The MOTP met-
ric can also be improved by improving the backbone 
with higher feature extraction efficiency and increasing 
the amount of training data. The overall AR achieved an 
averaged 2.657 degrees, which validates the effectiveness 
of the rotation tracking. There is no significant difference 
between the tracking speed of the proposed method and 
mSORT, both up to about 30 frames per second, which 
can be called real-time processing algorithms. If the 
speed of the algorithm needs to be further increased, it 
can be done by improving the hardware capability or by 
using techniques such as parallel coding.

In the evaluation results, CVT-01 contains only one 
moving construction equipment, and the proposed 
method achieved 88.025% of MOTP, which improved 
24.801% comparing to mSORT. That proves the effec-
tiveness of the proposed OABB for single equipment 
representation. The two parked construction equip-
ment filmed with a fast-rotating camera are continu-
ously assigned two IDs in CVT-02, with a MOTP of 
81.804%. The proposed method improved 27.406% of 
MOTP than mSORT. CVT-03 contains dense multi-
ple construction equipment and has a construction 
equipment moving out of view and another equipment 
moving into view, and the proposed method success-
fully deleted the ID of the former when it disappeared, 
and allocated a new ID for the latter with a MOTP of 
84.790%. There are eight successive different construc-
tion equipment entering in CVT-04 with a MOTP of 
76.59%, and the proposed method correctly handles 

the complex destruction and creation of equipment 
IDs with accurate detections. The AR achieved 4.374 
degrees, which is the highest among the five videos. 
That validates the difficulty of small equipment rota-
tion identification. CVT-05 contains two construc-
tion equipment in cooperative operation; one of them 
moves out of view, and then moves into view again. 
The proposed method achieved 84.366% of MOTP. 
The equipment was allocated to different IDs, because 
the proposed method could not re-recognise the same 
equipment which re-entered the view. In conclu-
sion, the tracking results illustrate that the proposed 
method can accurately detect construction equipment 
and stably track different equipment, and has a signifi-
cant improvement on tracking accuracy comparing to 
mSORT.

Influences of OABB update parameter
The enclosing contour update is conducted by the fusion 
of detected OABB and predicted OABB. The meas-
urement covariance matrix R represents the detection 
noise in the equipment OABB generation and regres-
sion, which is validated as a high-confidence detector. 
Thus, R is set to a small value (the identity matrix in this 
research). The process covariance matrix Q reflects the 
process noise of the assumed dynamic motion model, 
and is abstracted from the complex actual situation. λ 
controls the ratio of Q to R, and Table 3 shows the quan-
titative evaluation results for different λs.

Table 3 indicates that when λ is greater than or equal 
to 5.0, that is, the measurement error is relatively small, 
there is an increase in the MOTA, but there are no evi-
dent changes in the other indicators. Therefore, in this 
study, λ is set to 5.0. This experiment also proves that 
the proposed tracking method is robust to the assump-
tions of the construction equipment motion model.

Table 2  Quantitative evaluation tracking results for the evaluation dataset

Name Tracking method RC PR MOTA MOTP AR MT Hz

CVT-01 Proposed method 100 100 100 88.025 2.564 1 33

mSORT 100 80.985 100 63.224 / 1 33

CVT-02 Proposed method 100 100 100 81.804 2.889 2 32

mSORT 100 74.267 100 54.398 / 2 33

CVT-03 Proposed method 100 95.714 95.522 84.790 2.029 4 29

mSORT 100 78.932 93.745 58.753 / 4 30

CVT-04 Proposed method 98.485 97.015 95.455 76.590 4.374 8 28

mSORT 96.229 76.468 92.698 57.441 / 8 39

CVT-05 Proposed method 99.123 99.123 98.246 84.366 2.322 3 30

mSORT 97.554 73.815 96.256 56.852 / 3 30

Overall Proposed method 99.381 98.165 97.523 83.243 2.657 18 29

mSORT 98.754 72.778 95.763 58.694 / 18 30
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Conclusions and future works
This study proposes a fully automated vision-based 
enclosing contour tracking method for construction 
equipment of highway construction sites to obtain the 
spatial–temporal information of equipment motion. The 
conclusions could be drawn as follows:

(1) The proposed method integrated OABB to CNN 
enclosing contour detection of construction equipment; 
presented a ten-parameter motion model of construc-
tion equipment for enclosing contour prediction and 

updating using Kalman filtering; and finally employed 
IOU metric instead of complex data association pro-
cess for ID management of multiple construction 
equipment.

(2) The proposed method was tested using five evalu-
ation videos, obtaining 2.657 degrees in angle error, 
97.523% of MOTA and 83.269% of MOTP, a satisfactory 
level in multiple object tracking field. And the proposed 
method could track all 18 trajectories of construction 
equipment. The experimental results show the advantage 

Fig. 4  Tracking results comparison between the proposed method and mSORT

Table 3  Quantitative evaluation tracking results with different λs

λ RC PR MOTA MOTP AR MT Hz

1.0 97.523 98.438 95.975 83.448 2.657 17 29

5.0 99.381 98.165 97.523 83.269 2.657 18 29

10.0 99.381 98.165 97.523 83.243 2.655 18 29

20.0 99.381 98.165 97.523 83.211 2.655 18 29
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of arbitrary-oriented object tracking compared to the 
widely-used mSORT method.

In this study, the proposed method is suitable for accu-
rate tracking of construction equipment within the field 
of view. The limitation of this paper is that when the 
tracked construction equipment gradually moves out of 
the field of view and then enters the field of view again, 
the proposed method will renumber the equipment as 
a new construction equipment, that is, the proposed 
method does not have the ability to re-identify the equip-
ment. The future work will focus on improving the re-
identification capability to track construction equipment 
in re-entering view. Another future direction is to light-
weight the contour detection network which is expected 
to be deployed on mobile devices.
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