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Abstract 

The purpose of the paper is to improve the efficiency of vehicle based sensing technology in highway pavement 
condition assessment by evaluating the effect of four factors (sensor placement, pavement temperature, drive speed, 
and threshold for pavement distress classification) and providing suggestions to better improve the accuracy of 
pavement condition detection and minimize the interruption of pavement sensing operation. Two I-10 corridors in 
the Phoenix region were selected for vibration data collection and data analysis. A series of statistical analyses were 
performed to determine if each one of the factors has a significant impact on the pavement distress detection. The 
results of Analysis of Variance (ANOVA) tests and Analysis of Covariance (ANCOVA) tests show that the placement of 
sensors have a significant effect in the pavement condition assessments. The significant differences occurred in the 
group of sensors that were placed on the same side of the vehicle, as well as, in either front wheels or rear wheels of 
the vehicle. The effect of pavement temperature on the vehicle based sensing implementation is significant while 
the mean drive speed is not seen as a significant factor in the pavement condition survey. The two thresholds were 
determined to select points of interest (POI; cracks, potholes) for the pavement distress classification and these POIs 
are in good agreement with international roughness index (IRI) data in an ArcGIS map. The findings of the paper can 
be used to better improve the computing algorithms of vehicle based sensing techniques.
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Introduction
Evaluating road surface performance required costly 
equipment and high skilled staff. Traditionally, a road-
way profiler has been used by some of governments for 
pavement condition surveys. The survey result provides 
longitude roughness data that can be used by highway 
authorities for decision making for pavement mainte-
nance and repair. Generally, the annual costs of obtain-
ing roughness data and condition surveys could be 

more than one hundred thousand dollars [1] which is 
not affordable for most of highway agencies who have 
a need but with limited budget to conduct pavement 
condition surveys. To approach a low-cost and efficient 
monitoring system, the use of vibration data instead of 
pavement roughness index via different methodologies 
has been given attention in road condition assessment 
among highway agencies and institutes. There are two 
commonly used methods to collect vibration data; the 
first one being a smartphone based sensors, which is a 
convenient and easy way to gain acceleration data while 
another one is a vehicle mounted sensor used to col-
lect pavement sensing patterns and signals according to 
their demands. Many research studies showed that there 
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is a correlation between acceleration data and pavement 
roughness [2–6]. Thus, using accelerometers equipped 
in a smartphone or vehicle has been widely used in pave-
ment condition surveys.

Ho et al. [7] and Zhang et al. [8] conducted a year-long 
pavement condition survey using vehicle based pavement 
sensing techniques on the I-10 corridors in the Phoenix 
region. Their findings are strongly in support of vehicle 
mounted sensors for use in pavement condition assess-
ment. Based on their study, there are still some factors 
that could have an impact on the accuracy of pavement 
condition detection such as tire pressure, drive speed, 
placement of sensors, threshold for pavement distress 
classification, etc. Thus, a further investigation on how 
these factors would influence the implementation of 
vehicle based sensing work is needed.

Literature review
Road roughness and pavement condition index are two 
common parameters in pavement condition evaluation. 
Usually, the vehicle-mounted sensors are applied in a 
pavement condition survey to obtain roughness index 
through a specified automated methodology [9], how-
ever, which requires costly equipment and high skilled 
staff. A report also studied the relation between the 
roughness index and the pavement condition index (PCI) 
via visual inspection of different types of road deterio-
ration [10]. However, field observation and rating heav-
ily reply on human power and the results might not be 
consistent among field raters. Due to the limited budget 
and labor, highway agencies have been in search of a cost 
effective way to find an affordable pavement condition 
survey method such as accelerometers, real-time images, 
etc. A study by Yan et al. indicated that the acceleration 
signals have a significant effect on the deeper and longer 
cracks in the pavement condition [11]. A report by Alavi 
et al. expressed that the vertical acceleration data from a 
smartphone can be used in assessing overall airport pave-
ment condition [12]. Moreover, Douangphachanh et  al. 
indicated that the acceleration vibration data has a good 
linear relationship with PCI values [3, 6] and is correlated 
with roughness index [2]. These are evident that the use 
of accelerometers in pavement condition assessment has 
been dramatically increased.

To precisely analyze vibration signals and transfer 
the results in to the pavement distress classifications, a 
variety of computing algorithms have been used in the 
determination of pavement distress such as numeri-
cal analysis, supervised machine learning, and image 
processing through MATLAB software [11–18]. For 
example, Fast Fourier transform (FFT) and Short-term 
Fourier Transform (STFT) have been used to find the 
displacement data based on the vertical acceleration 

for evaluating road performance [5, 17]. Their results 
indicated that higher displacement values, and poor 
road conditions, visually matched with road conditions. 
Through numerical analysis of vertical acceleration, Yan 
et al. found that most cracks have positive vertical accel-
eration in pavement condition assessments [11] and the 
cracks can be identified by integrating the differential 
intensity and height changes from the data [19]. Addi-
tionally, using polynomial approximation is another way 
to determine the locations of potholes in the condition 
assessment [20]. More recently, machine learning based 
techniques have become a widely used method in road 
condition assessment. For example, k-nearest neighbor 
(KNN) is one of common and simple machine learn-
ing approaches to classify pavement conditions. Du 
et  al. used the KNN method to distinguish the abnor-
mal pavement types such as bump and pothole, and the 
results showed that the accuracy of the recognition is 
more than 90%, which proved the vibration data was 
appropriate to be processed in the condition assessment 
[13]. Additionally, Artificial Neural Network (ANN), 
fuzzy theory, and random forests regression have been 
broadly applied by numerous scholars to recognize road 
surface conditions for maintenance and rehabilitation 
purposes [14, 16, 21, 22].

Recent studies have suggested that using vertical 
accelerations from a single device or sensor to assess 
pavement conditions is not sufficient to facilitate pave-
ment distress classification [7, 8, 23, 24]. Thus, the use 
of multiple devices or sensors in vibration data collec-
tions have been used in several studies. For instance, 
Staniek indicated the use of three-dimensional analysis 
of acceleration vibrations could lead to a better and pre-
cise calculation for pavement condition indices [24]. To 
recognize the abnormal pavement performance, Chuang 
et  al. used a deep machine learning technique associ-
ated with vertical and lateral acceleration [23] and their 
results were successfully validated by the road network 
of Taipei city, Taiwan with an accuracy of 98%. Addition-
ally, the bagged trees classification and robust regression 
analysis were applied in pavement monitoring through 
three-dimensional rotations and the results of detection 
exhibited accuracy of more than 90% [25]. Ho et  al. [7] 
and Zhang et  al. [8] used magnitude values, which was 
combining all three accelerations in the three directions 
to monitor pavement conditions and their results were 
effectively validated with IRI segments.

Given all above studies, it is clearly the use of acceler-
ometers is getting popular among highway agencies and 
institutes for its affordable costs and reasonable results 
in pavement condition classifications. However, the fac-
tors that could have influenced the accuracy of pavement 
distress detection have not well studied yet. To address 
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these issues and better support the implementation of 
vehicle based sensing work, the paper evaluates the effect 
of the factors (sensor placement in vehicle, pavement 
temperature, drive speed, and thresholds for pavement 
distress classification) on the implementation of vehicle 
based sensing techniques using statistical analyses. The 
objectives of the paper are to:

1.	 evaluate the effect of individual factor on the pave-
ment sensing operation and provide suggestions to 
minimize its effect on the interruption of pavement 
condition and

2.	 support the currently used vehicle based sensing 
techniques in the pavement condition survey.

This paper presents statistical analysis using both anal-
yses of variance and analysis of covariance to evaluate 
the effect of different factors such as sensor placement, 
pavement temperature, speed, and threshold in pavement 
condition assessments based on a year-long data set.

Methods
Data acquisition
Two road sections were selected in Phoenix, Arizona for 
pavement condition surveys that are shown in Fig. 1. The 
length of road Sect. 1 (51st Ave to 27th Ave) is 3 miles and 
two lanes on eastbound (EB) were selected. Similarly, two 
lanes on northbound (NB) were selected in road Sect. 2 
(Chandler Blvd to Baseline Rd), and each of the lane has 
a length of 5 miles. All pavement sensing patterns and 
signals were collected monthly in a year long through 
multiple sensors by a 2016 Honda Accord. As shown in 
Fig. 2, sensors M1 to M4 were placed on the top of each 
control arm of the vehicle, and M5 was placed inside of 
the vehicle to gather sensing patterns simultaneously 
during travelling on the two road sections. A GoPro 
was attached to the front of the vehicle to record the 
real-time pavement conditions such as cracks, detection 
loop, and construction joints. The video is applied in the 
validation of pavement deterioration along with the IRI 
file for further pavement condition classification.

Fig. 1  Road sections in pavement condition surveys on the I-10 corridor in Phoenix, AZ. Source: https://​cdn.​arcgis.​com/​shari​ng/​rest/​conte​nt/​items/​
0df19​d2d94​0b476​58857​cc2fc​96238​40/​resou​rces/​styles/​root.​json

https://cdn.arcgis.com/sharing/rest/content/items/0df19d2d940b47658857cc2fc9623840/resources/styles/root.json
https://cdn.arcgis.com/sharing/rest/content/items/0df19d2d940b47658857cc2fc9623840/resources/styles/root.json
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Table  1 is a sample of pavement sensing files, which 
includes acceleration vibrations from three directions 
(e.g. x, y, and z), GPS coordinates, time, driving speed, 
and magnitude values from all five sensors. The details 
about the data collection process are explained in ref-
erences [7, 8]. In the pavement condition assessment, 
the driving speed was maintained from 50 to 55 miles 
per hour except for the traffic congestion that occurred. 

Also, the pavement temperature was recorded by an 
infrared thermometer during each pavement condition 
survey.

Data application
To meet assumptions of normality in statistical tests, 
all magnitude values were transformed into a logarithm 
scale. Figure 3 illustrates the density plots of the trans-
formed data (e.g. logM). It is clear to see that the distri-
butions of sensor 5 are significantly different than other 
sensors due to the placement in the pavement condi-
tion assessments.

Data analysis
This section introduces the methodologies that were 
used to evaluate the effect of sensors in the pavement 
sensing work and to determine the significant variables 
such as pavement temperature and mean speed that 
have an impact on the pavement condition assessment.

Effect of sensor placements in pavement condition 
assessment
To further investigate the effect of sensors in the pavement 
sensing work, the paper perform ANOVA tests associated 
with the cell means model through the following [26]:

where.
yij = magnitudes in log scale of jth months from the ith 

sensors;
µi = mean for all magnitudes from the ith sensor;
eij = random error.
In the study, the random error was assumed to be 

independent identically distributed to a normal distri-
bution with zero mean and constant variance in order 
to provide valid statistical inference.

(1)yij = EEµi + eij , i = 1, 2, . . . , tandj = 1, 2, . . . , r

Fig. 2  Sensor placements prior to field data collection. Note: M1 and M2 were placed on the front wheels of the vehicle, M3 and M4 were placed 
on the rear wheels of the vehicle. The vehicle in the figure is an example to show the sensor placement

Table 1  A Sample of pavement sensing file

LAT, LNG, and ALT represent latitude, longitude, and altitude in geographic 
coordinates

ACCTIME 2017–03-25 
02:34:40:003

2017–03-25 
02:34:40:034

2017–03-25 
02:34:40:066

XG1 -0.0880 0.0196 0.0196

YG1 0.2151 0.1369 0.1271

ZG1 -0.1662 0.0782 -0.1662

M1 0.2857 0.1588 0.2101

XG2 -0.1955 -0.1173 -0.2053

YG2 -0.0880 0.0391 0.0782

ZG2 -0.3715 -0.4790 -0.1369

M2 0.4289 0.4947 0.2588

XG3 0.1173 0.1173 0.0196

YG3 -0.2444 0.3128 0.1662

ZG3 0.0489 -0.1075 -0.0391

M3 0.2754 0.3510 0.1718

XG4 -0.3715 -0.2542 -0.3226

YG4 -0.0196 0.0587 0.2835

ZG4 -0.1760 -0.1760 -0.1075

M4 0.4115 0.3146 0.4427

XG5 0.0293 0.0391 0.0196

YG5 0.1857 0.1369 0.2639

ZG5 -0.0293 -0.0587 0.0489

M5 0.1903 0.1539 0.2691

LAT 33.4623942 33.4623942 33.4623942

LNG -112.1637207 -112.1637207 -112.1637207

ALT 323.399994 323.399994 323.399994

SPEED 59.38 59.38 59.38
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Fig. 3  Density plots of magnitude values in log scale from two road sections. a Density plots of magnitude values in log scale from eastbound lane 
1. b Density plots of magnitude values in log scale from eastbound lane 2. c Density plots of magnitude values in log scale from northbound lane 1. 
d Density plots of magnitude values in log scale from northbound lane 2

Fig. 4  The process of obtaining threshold values from pavement condition assessments
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The Tukey’s test was applied for pairwise comparison 
to determine where the significant differences occur 
associated with small p-values such as less than 0.05 (or 
less than 0.10). In the paper, the TukeyHSD function 
[27] in R software was applied to conduct 95% confi-
dence intervals and to investigate the significant differ-
ence in various groups based on simultaneous pairwise 
comparisons.

Effect of pavement temperature and drive speed 
in pavement condition assessment
The factorial treatment design was used to investigate the 
relationships among several types of treatments and vari-
ous conditions [26]. In the paper, the Analysis of covari-
ance (ANCOVA) tests were performed based on the 
factorial design to examine the interaction between sen-
sors, pavement temperature, or mean speed in pavement 
condition surveys. Three statistical models were built 
synchronously including the simple regression model, 
main effects model, and interaction model to access the 
interaction effects. The simple regression model [28] can 
be written as below:

where.
y = mean magnitude in log scale;
β0 = intercept;
β1 = regression coefficient as known as the slope;
X = inputs;
ε = estimated error.

(2)y = β0 + β1X1 + ε

The main effects model and interaction model were 
constructed to address the ANOVA tests and ANCOVA 
tests in the paper. The main effects model can be written 
as follow [28]:

where.
y = mean magnitude in log scale;
βi = estimated coefficients from the model;
Xi = inputs that consist of sensor and pavement 

temperature.
To test the interaction of the sensor and pavement 

temperature or sensor and speed, a model can be writ-
ten as below:

where.
yijk = mean magnitude in log scale of kth months with 

the jth pavement temperature.
(or mean speed) from the ith sensors;
µ = overall mean;
αi = fixed effect of the ith sensor;
βj = fixed effect of the jth pavement temperature (or 

mean speed);
(αβ)ij = interaction effect of the ith sensor and the jth 

temperature (or mean speed);
eijk = experimental error.
In the paper, an experimental error is assumed to be 

independent identically distributed to a normal distribu-
tion with zero mean and a constant variance [26].

Additionally, a hypothesis test is necessary to be con-
structed along with the ANCOVA tests to test the inter-
action of two variables through following form:

where.
(αβ)ij = interaction effect of the ith sensor and the jth 

temperature (or mean speed);
MS(AB) = mean square of sensors and pavement tem-

perature (or mean speed);
MSE = mean square of error.
Reject the null hypothesis (e.g. no sensor × pavement 

temperature interaction effects) if the p-value is small 
(e.g. less than 0.10) and conclude that the interaction 
effects exist. When the interaction effect exists, the result 
of the main effects is not to be discussed in detail. If the 
intersection effects are not significant, discuss the results 

(3)y = β0 + β1X1 + β2X2

(4)yijk = µ+ αi + βj + (αβ)ij + eijk

(5)H
(I)
0 : (αβ)ij = 0vs.H (I)

a : atleastone(αβ)ij �= 0

(6)Teststatistics : F (I) =
MS(AB)

MSE

Table 2  Results of ANOVA tests on four sensors for two road 
sections

EB represents eastbound and NB represents northbound

Analysis of Variance Table EB1

Df Sum Square Mean Square F value P-value

  Sensor 4 41.945 10.486 334.94  < 2.20E-16

  Residuals 40 1.252 0.0313

Analysis of Variance Table EB2

Df Sum Square Mean Square F value P-value

  Sensor 4 45.076 11.269 389.48  < 2.20E-16

  Residuals 40 1.157 0.0289

Analysis of Variance Table NB1

Df Sum Square Mean Square F value P-value

  Sensor 4 61.646 15.4115 585.65  < 2.20E-16

  Residuals 40 1.053 0.0263

Analysis of Variance Table NB2

Df Sum Square Mean Square F value P-value

  Sensor 4 62.129 15.532 539.54  < 2.20E-16

  Residuals 40 1.152 0.0288
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of the main effect model and conclude that the predictors 
(sensor, pavement temperature, or speed) have effect on 
the magnitudes if the p-value is small (e.g. less than 0.10).

The effect of thresholds in pavement condition assessment
Referring to the authors’ previous work [7, 8], the thresh-
old values that classify the pavement condition were 
obtained from distribution fitting and percentile analysis. 
Figure 4 illustrates the process of obtaining threshold val-
ues from eastbound lane 1 in road Sect.  1 (51st Ave. to 
27th Ave). A fitdistrplus package in R software was used 
to find the best distribution models based on the magni-
tude values from five sensors (e.g. M1 to M5). Then com-
puting the 99.9th percentile from the fitted models and 
the corresponding values are defined as thresholds. The 
remaining 0.1 percent of the data would indicate pave-
ment deterioration. Additionally, the paper analyzed a 
single sensor (e.g. M5) individually for condition assess-
ments. The concept of this new method is constructing 
95% confidence intervals to determine untypical points 
using standardization data, and those untypical points 
would indicate pavement deterioration in the condition 
assessments.

Results and discussion
This section depicts all results and discussion from the 
proposed methodologies to assess pavement conditions. 
The results of sensor effects in condition assessments and 
determination of threshold values are shown in Tables 2 
to 8 associated with Figs. 5 to 6.

Results in sensor placement effect
With the elimination of sensor 5, ANOVA tests and Tuk-
ey’s tests were conducted as expressed in Eq. (1), and the 
results are shown in Tables 2 and 3. The means of magni-
tudes in the log scale from four sensors (M1 to M4) differ 
according to small p-values (Table 2). The pairwise com-
parisons from Tukey’s tests show that the means of sen-
sor 1 that is mounted on the front left side of the vehicle 
differs from the means of the rest sensors for both lanes 
in road Sect. 2 and eastbound lane 1 in road Sect. 1 due 
to the p-values are less than 0.05 as shown in Table 3.

Moreover, ANOVA tests were performed again to 
determine whether or not there is a significant differ-
ence between the sensors that are mounted on the same 

Fig. 5  Threshold values for two road sections. a Threshold values 
from eastbound lane 1. b Threshold values from eastbound lane 
2. c Threshold values from northbound lane 1. d Threshold values 
from northbound lane 2. Note: the values on the top of the bar plot 
indicate the pavement temperature (Fahrenheit)
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side of the vehicle such as front (or rear) wheels and left 
(or right) side. As shown in Table 4, the small p-values 
(e.g. less than 0.05) indicate that the mean magnitudes 
of two sensors that mounted on the same side of the 
vehicle (e.g. M1 and M3) differ in log scale, as well as, 
the sensors on either front wheels or rear wheels of the 
vehicle. Therefore, the paper concludes that the place-
ments of sensors have a significant effect on the meas-
urements of road performance and the effect of sensor 
1 that is mounted on the left front wheel of the vehicle 
is most significant in pavement condition surveys than 
the rest of the sensors (e.g. M2, M3, and M4).

Results in interaction effects of sensor, pavement 
temperature, and mean speed
The simple regression model, main effect model, and 
interaction model were compared simultaneously in 
the paper as indicated in Table  5. For both road sec-
tions, the interaction models of sensors and pavement 
temperature are significant at the significance level of 
0.10 since the p-values are less than 0.10. Thus, the 
paper concludes that the effect of sensors depends 
on the pavement temperature in the pavement condi-
tion surveys. However, the p-values are not small (e.g. 
greater than 0.10) from the interaction models and 
main effect models when testing the interaction of sen-
sors and mean speed. Therefore, the result indicates 
that the mean speed is not an important factor in the 
pavement condition assessment.

Additionally, the p-values from the intersection of 
sensor 4 and pavement temperature for road Sect. 1 are 
0.419 and 0.384 (Table 6), for road Sect. 2 are 0.076 and 
0.060 (Table 6), which indicate that the interaction effect 
of sensor 4 and pavement temperature exist less signifi-
cantly than other groups and provide lower magnitude 
values in pavement condition surveys.

The paper aims to classify pavement conditions based 
on a preselected threshold value. However, since the 
means of vibration responses from the five sensors vary 
depending on the pavement temperature, it is somewhat 
difficult to appropriately determine a threshold value 
based on a year-long data set. Thus, the paper used data 
collected in the winter season from October to the fol-
lowing February intending to determine a threshold 
for pavement condition assessment. In this case, the 
ANOVA and ANCOVA tests were performed again to 
test the interaction of sensor and pavement temperature 
in the winter season. As shown in Table  7, all p-values 

are greater than 0.10, which indicate the effect of sens-
ing data on the pavement temperature is not significant 
in the winter season (October to the following February) 
in pavement condition assessments.

Results in threshold values in pavement distress classification
Figure 5 shows all threshold values that were used to clas-
sify pavement conditions in two road sections. The pave-
ment surface temperature was also shown in the figures 
and it was noticed that the determination of threshold 
values varies based on statistical analysis. As shown in 
Fig.  5, the maximum threshold values occurred in June 
and August in both road sections that were caused by 
higher pavement surface temperature. At the same time, 
the trend of threshold values from all sensors is approxi-
mately flat in both sections in the winter (October to 
February). Therefore, the paper suggests a winter season 
might be a good time to collect vibration data to avoid 
pavement temperature effects in assessing pavement con-
ditions while using a constant threshold value to imple-
ment pavement distress classification.

Table  8 shows all thresholds from sensors 1 to 4 that 
were placed on the control arms of the vehicle. Refer-
ring to the above analysis, the paper only analyzed the 
thresholds in the winter season (e.g. October to the fol-
lowing February) to calculate an average threshold value 
for determining the poor pavement condition in two road 
sections using the following equations:

where.
EBthreshold = mean threshold in road Sect. 1;
NBthreshold = mean threshold in road Sect. 2;
ETi,NTi = threshold values computed from the fitted 

distribution models;
i = 10, 11, 12, 1, and 2 that represent the month in data 

collection period.
As shown in Table 8, the means of the thresholds from 

sensors 1 to 4 on eastbound lanes are 1.83, 1.84, 1.78, 1.74, 
and 1.77. Then the average threshold can be computed by 
Eq.  (7) and EBthreshold = 1.83+1.84+1.78+1.74+1.77

5 = 1.79 . 
Similarly, the average threshold for northbound lanes is 
NBthreshold = 1.27+1.33+1.34+1.18+1.31

5 = 1.28 (Eq. (8)).

(7)
EBthreshold =

ET 10 + ET11 + ET 12 + ET 1 + ET2

n

(8)
NBthreshold =

NT10 + NT11 + NT12 + NT1 + NT2

n

Fig. 6  Poor pavement condition through multiple sensors in two road sections. a Poor pavement condition through multiple sensors (road Sect. 1). 
b Poor pavement condition through multiple sensors (road Sect. 2). Note: the selected significant points in the circle are validated through recorded 
video. c The significant points correspond to the road condition in road Sect. 2. Source: https://​cdn.​arcgis.​com/​shari​ng/​rest/​conte​nt/​items/​0df19​
d2d94​0b476​58857​cc2fc​96238​40/​resou​rces/​styles/​root.​json

(See figure on next page.)

https://cdn.arcgis.com/sharing/rest/content/items/0df19d2d940b47658857cc2fc9623840/resources/styles/root.json
https://cdn.arcgis.com/sharing/rest/content/items/0df19d2d940b47658857cc2fc9623840/resources/styles/root.json
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Fig. 6  (See legend on previous page.)
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Comparison of proposed threshold values with IRI data
The paper used the mean threshold values of 1.79  g 
and 1.28 g to identify pavement distress points (known 
as points of interest, POI) in the raw data for the win-
ter season (October to the following February) in the 
two road sections. Those selected POI were imported in 
ArcGIS software and graphically illustrated in Fig. 6. An 
IRI data was obtained from ADOT for comparison with 
the selected POI, and the correlation between select POI 
and IRI values are shown in Fig. 7. In this case, IRI val-
ues exceeding 95 is identified as a fair to poor condition 
were selected and graphed in a GIS map [29]. As can be 
seen in the road Sect. 1 of Fig. 6, poor IRI segments are 
in good match with the selected POI using the proposed 
threshold value. As for road Sect.  2, it is noticed that 
there is a segment circled in blue where the selected POI 
were displayed without IRI being appeared. This differ-
ence in an identification of pavement distress needs a fur-
ther verification so allowing the team to make a decision. A 
video made by Go-Pro was retrieved and the team was able 
to locate the area and made a few snap shots of images that 
show pavement surface conditions (Fig. 6c). Obviously, the 
images show deteriorated road surface conditions in 
support of the selected POI on a map. It can be concluded 
that the proposed threshold values are valid and effective in 
the pavement distress classification based on the comparison 
with IRI and the verification of field images.

Conclusions
The paper intends to evaluate the four factors (place-
ment of sensors, temperature, mean speed, and threshold 
values) influencing the accuracy of pavement condition 
detection has the following conclusions through pro-
posed methodologies:

1.	 The mean of magnitude values in log scale from sen-
sors 1 to 4 differ in the pavement condition surveys 
through ANOVA tests (Table 2). Among four sensors 
amounted in the vehicle, Sensor 1 has the most signifi-
cant difference from other sensors based on the Tukey’s 
tests (Table 3) in the pavement condition assessments.

2.	 The differences between sensors on the same side of 
the vehicle (e.g. left or right side, front or rear wheels) 
are significant in pavement condition surveys due to 
small p-vales from ANOVA tests (Table 4).

3.	 Through ANCOVA tests, the interaction effect of 
sensors, pavement temperature, and mean speed in 
condition assessments were investigated. The effect 
of pavement temperature on the pavement distress 
detection is significant based on small p-values 
occurred in interaction models (Table 5) in two road 
sections. the paper also suggested to collect vibration 
data during the winter season to reduce the effect 
of pavement temperatures in the pavement distress 
detection.

4.	 The effect of the mean speed in the pavement distress 
detection is not an important factor given the fact 
that larger p-values were calculated from main effect 
model and interaction model (Table 5).

5.	 Two thresholds (1.79  g for the section of 27th Ave. 
to 51st Ave and 1.28 g for the section of Baseline Rd. 
to Chandler Blvd.) were determined using statistical 
analysis to select POIs. Based on GIS mapping, these 
POIs are in good agreement with IRI data. The results 
indicate the threshold values are valid and effective in 
the detection of deteriorated pavement conditions.

6.	 The findings of the paper can be used to better 
improve the computing algorithm of vehicle based 
pavement sensing techniques.

Table 3  Results of Tukey’s test on four sensors for multiple comparisons

Pairwise comparisons (95% C.I.) NB1 Pairwise comparisons (95% C.I.) NB2

group difference lower upper p-value group difference lower upper p-value

2–1 0.109 0.093 0.311 0.049 2–1 0.212 0.017 0.406 0.028
3–1 0.216 0.013 0.418 0.033 3–1 0.251 0.056 0.445 0.007
4–1 0.071 -0.131 0.273 0.785 4–1 0.159 -0.035 0.354 0.142

3–2 0.107 -0.096 0.309 0.499 3–2 0.039 -0.156 0.233 0.950

4–2 -0.038 -0.241 0.164 0.957 4–2 -0.053 -0.247 0.142 0.886

4–3 -0.145 -0.347 0.057 0.236 4–3 -0.091 -0.286 0.103 0.592

2–1 0.262 0.077 0.448 0.003 2–1 0.272 0.078 0.466 0.003
3–1 0.320 0.134 0.505 0.000 3–1 0.318 0.124 0.511 0.000
4–1 0.231 0.045 0.416 0.010 4–1 0.211 0.017 0.405 0.028
3–2 0.057 -0.128 0.243 0.841 3–2 0.046 -0.148 0.240 0.921

4–2 -0.032 -0.217 0.154 0.968 4–2 -0.060 -0.254 0.133 0.837

4–3 -0.089 -0.274 0.097 0.579 4–3 -0.106 -0.300 0.088 0.466
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Table 4  Results of ANOVA tests on two sensors that mounted 
on the same side of the vehicle for two road sections

Road Sect. 1: EB1 sensor 1 and sensor 3

Df Sum Sq Mean Sq F value P-value

  Sensor 2 20.7128 10.3564 274.95 2.83E-15

  Residuals 20 0.7533 0.0377

Road Sect. 1: EB1 sensor 2 and sensor 4

Df Sum Sq Mean Sq F value P-value

  Sensor 2 21.232 10.6159 425.49 2.20E-16

  Residuals 20 0.499 0.0249

Road Sect. 1: EB2 sensor 1 and sensor 3

Df Sum Sq Mean Sq F value P-value

  Sensor 2 24.0376 12.019 375.44 2.20E-16

  Residuals 20 0.6403 0.032

Road Sect. 1: EB2 sensor 2 and sensor 4

Df Sum Sq Mean Sq F value P-value

  Sensor 2 21.0387 10.5194 406.86 2.20E-16

  Residuals 20 0.5171 0.0259

Road Sect. 2: NB1 sensor 1 and sensor 3

Df Sum Sq Mean Sq F value P-value

  Sensor 2 33.348 16.6742 615.59 2.20E-16

  Residuals 20 0.542 0.0271

Road Sect. 2: NB1 sensor 2 and sensor 4

Df Sum Sq Mean Sq F value P-value

  Sensor 2 28.2977 14.1489 553.9 2.20E-16

  Residuals 20 0.5109 0.0255

Road Sect. 2: NB2 sensor 1 and sensor 3

Df Sum Sq Mean Sq F value P-value

  Sensor 2 33.484 16.7421 604.01 2.20E-16

  Residuals 20 0.554 0.0277

Road Sect. 2: NB2 sensor 2 and sensor 4

Df Sum Sq Mean Sq F value P-value

  Sensor 2 28.6454 14.3227 479.69 2.20E-16

  Residuals 20 0.5972 0.0299

Road Sect. 1: EB1 sensor 1 and sensor 2

Df Sum Sq Mean Sq F value P-value

  Sensor 2 22.8455 11.423 326.02 5.45E-16

  Residuals 20 0.7007 0.035

Road Sect. 1: EB1 sensor 3 and sensor 4

Df Sum Sq Mean Sq F value P-value

  Sensor 2 19.099 9.5495 346.27 3.04E-16

  Residuals 20 0.5516 0.0276

Road Sect. 1: EB2 sensor 1 and sensor 2

Df Sum Sq Mean Sq F value P-value

  Sensor 2 24.8332 12.4166 478.95 2.20E-16

  Residuals 20 0.5185 0.0259

Road Sect. 1: EB2 sensor 3 and sensor 4

Df Sum Sq Mean Sq F value P-value)

  Sensor 2 20.2431 10.1216 316.86 7.18E-16

  Residuals 20 0.6389 0.0319

Table 4  (continued)

Road Sect. 2: NB1 sensor 1 and sensor 2

Df Sum Sq Mean Sq F value P-value

  Sensor 2 34.721 17.3605 640.94 2.20E-16

  Residuals 20 0.542 0.0271

Road Sect. 2: NB1 sensor 3 and sensor 4

Df Sum Sq Mean Sq F value P-value

  Sensor 2 26.925 13.4625 527.01 2.20E-16

  Residuals 20 0.5109 0.0255

Road Sect. 2: NB2 sensor 1 and sensor 2

Df Sum Sq Mean Sq F value P-value

  Sensor 2 34.58 17.2899 591.68 2.20E-16

  Residuals 20 0.584 0.0292

Road Sect. 2: NB2 sensor 3 and sensor 4

Df Sum Sq Mean Sq F value P-value

  Sensor 2 27.5498 13.7749 485.8 2.20E-16

  Residuals 20 0.5671 0.0284

Sensors 1 and 3, sensors 2 and 4 were placed the same side of the vehicle. 
Sensors 1 and 2 were placed on the front wheels of the vehicle, sensors 3 and 4 
were placed on rear wheels of vehicle
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Table 5  Results of ANOVA tests ANCOVA tests for two road sections

Df represents degrees of freedom and RSS represents residual sum of squares

Analysis of Variance Table of Sensor and Pavement Temperature Road Sect. 1 (EB1)

Model Residual Df RSS Df Sum of Square F P-value

Simple 50 1.959

Main effect 49 1.734 1 0.225 6.929 0.012

Interaction effect 45 1.462 4 0.272 2.09 0.097

Analysis of Variance Table of Sensor and Pavement Temperature Road Sect. 1 (EB2)

Model Residual Df RSS Df Sum of Square F P-value

Simple 50 2.094

Main effect 49 2.014 1 0.08 2.141 0.15

Interaction effect 45 1.691 4 0.322 2.145 0.091

Analysis of Variance Table of Sensor and Pavement Temperature Road Sect. 2 (NB1)

Model Residual Df RSS Df Sum of Square F P-value

Simple 50 2.337

Main effect 49 2.312 1 0.025 0.617 0.436

Interaction effect 45 1.85 4 0.462 2.808 0.037

Analysis of Variance Table of Sensor and Pavement Temperature Road Sect. 2 (NB2)

Model Residual Df RSS Df Sum of Square F P-value

Simple 50 2.492

Main effect 49 2.45 1 0.043 0.995 0.324

Interaction effect 45 1.927 4 0.523 3.055 0.026

Analysis of Variance Table of Sensor and Mean Speed Road Sect. 1 (EB1)

Model Residual Df RSS Df Sum of Square F P-value

Simple 20 0.61

Main effect 19 0.602 1 0.008 0.2954 0.595

Interaction effect 15 0.381 4 0.272 2.176 0.121

Analysis of Variance Table of Sensor and Mean Speed Road Sect. 1 (EB2)

Model Residual Df RSS Df Sum of Square F P-value

Simple 20 0.67

Main effect 19 0.624 1 0.047 1.872 0.191

Interaction effect 15 0.374 4 0.249 2.498 0.087

Analysis of Variance Table of Sensor and Mean Speed Road Sect. 2 (NB1)

Model Residual Df RSS Df Sum of Square F P-value

Simple 20 0.85

Main effect 19 0.776 1 0.074 2.106 0.167

Interaction effect 15 0.53 4 0.245 1.733 0.195

Analysis of Variance Table of Sensor and Mean Speed Road Sect. 2 (NB2)

Model Residual Df RSS Df Sum of Square F P-value

Simple 20 0.805

Main effect 19 0.726 1 0.079 2.409 0.142

Interaction effect 15 0.495 4 0.231 1.749 0.192
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Table 6  Coefficients of interaction terms from ANCOVA test of two road sections

Summary of Coefficients Road Sect. 1 (EB1)

Estimate Standard Error t value p-value

Sensor1: Pavement temperature 0.006 0.003 2.097 0.042

Sensor2: Pavement temperature 0.007 0.003 2.359 0.023

Sensor3: Pavement temperature 0.006 0.003 2.110 0.040

Sensor4: Pavement temperature 0.002 0.003 0.816 0.419

Summary of Coefficients Road Sect. 1 (EB2)

Estimate Standard Error t value p-value

Sensor1: Pavement temperature 0.006 0.003 1.890 0.065

Sensor2: Pavement temperature 0.008 0.003 2.438 0.019

Sensor3: Pavement temperature 0.008 0.003 2.289 0.027

Sensor4: Pavement temperature 0.003 0.003 0.879 0.384

Summary of Coefficients Road Sect. 2 (NB1)

Estimate Standard Error t value p-value

Sensor1: Pavement Temperature 0.007 0.003 2.281 0.027

Sensor2: Pavement Temperature 0.009 0.003 2.708 0.010

Sensor3: Pavement Temperature 0.010 0.003 3.005 0.004

Sensor4: Pavement Temperature 0.006 0.003 1.818 0.076

Summary of Coefficients Road Sect. 2 (NB2)

Estimate Standard Error t value p-value

Sensor1: Pavement Temperature 0.008 0.003 2.437 0.019

Sensor2: Pavement Temperature 0.009 0.003 2.882 0.006

Sensor3: Pavement Temperature 0.010 0.003 3.076 0.004

Sensor4: Pavement Temperature 0.006 0.003 1.929 0.060

Table 7  Results of ANOVA tests ANCOVA tests based on winter data

Df represents degrees of freedom and RSS represents residual sum of squares

Analysis of Variance Table Road Sect. 1 (EB1)

Model Residual Df RSS Df Sum of Square F P-value

Simple 20 0.610

Main effect 19 0.602 1 0.008 0.2954 0.595

Interaction effect 15 0.381 4 0.272 2.176 0.121

Analysis of Variance Table Road Sect. 1 (EB2)

Model Residual Df RSS Df Sum of Square F P-value

Simple 20 0.670

Main effect 19 0.624 1 0.047 1.872 0.191

Interaction effect 15 0.374 4 0.249 2.498 0.087

Analysis of Variance Table Road Sect. 2 (NB1)

Model Residual Df RSS Df Sum of Square F P-value

Simple 20 0.850

Main effect 19 0.776 1 0.074 2.106 0.167

Interaction effect 15 0.530 4 0.245 1.733 0.195

Analysis of Variance Table Road Sect. 2 (NB2)

Model Residual Df RSS Df Sum of Square F P-value

Simple 20 0.805

Main effect 19 0.726 1 0.079 2.409 0.142

Interaction effect 15 0.495 4 0.231 1.749 0.192
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Table 8  Summary of threshold values

M1 to M4 represent sensors 1 to 4. The first row represents the month in the pavement sensing work

Month EB1 M1 EB1 M2 EB1 M3 EB1 M4 EB2 M1 EB2 M2 EB2 M3 EB2 M4 Mean

3 2.04 1.35 2.2 1.63 1.62 1.61 1.89 1.66 1.75

4 2.62 1.64 1.72 1.73 1.6 1.38 1.27 1.65 1.7

5 2.55 2.32 2.35 1.77 2.15 1.94 1.96 1.45 2.06

6 3.31 2.71 2.15 2.2 2.8 2.54 1.8 2.23 2.47

8 2.66 2.33 3.71 1.74 2.34 2.5 3.41 1.76 2.56

9 1.12 1.77 2.43 1.87 0.99 2.09 2.11 1.85 1.78

10 2.05 1.7 2.1 1.64 1.62 1.85 1.97 1.67 1.83
11 1.87 1.65 2.17 1.89 1.57 1.67 2.06 1.8 1.84
12 1.9 1.3 2.15 1.92 1.6 1.42 1.92 2.02 1.78
1 1.6 1.83 1.79 1.4 2.25 1.52 1.7 1.82 1.74
2 1.57 1.48 2.17 1.89 1.55 1.51 2.19 1.77 1.77
Month NB1 M1 NB1 M2 NB1 M3 NB1 M4 NB2 M1 NB2 M2 NB2 M3 NB2 M4 Mean

3 1.42 1.13 1.74 1.37 1.32 1.07 1.6 1.32 1.37

4 1.26 0.94 1.03 1.18 1.22 0.91 0.95 0.92 1.05

5 1.5 1.25 1.47 1.11 1.53 1.34 1.58 1.24 1.38

6 2.16 1.45 1.32 1.49 2.01 1.35 1.24 1.36 1.55

8 1.27 2.11 2.04 1.63 1.3 2.32 2.05 1.62 1.79

9 1.05 1.52 1.69 1.55 0.91 1.48 1.58 1.51 1.41

10 1 1.41 1.45 1.3 1.03 1.3 1.44 1.25 1.27
11 1.23 1.28 1.66 1.3 1.22 1.19 1.55 1.24 1.33
12 1.25 1.14 1.52 1.47 1.2 1.14 1.5 1.46 1.34
1 1.09 1.22 1.35 1.04 1.18 1.22 1.17 1.14 1.18
2 1.07 1.06 1.72 1.37 1 1.09 1.71 1.42 1.31

Fig. 7  Plots of IRI value and Selected POIs
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