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Abstract 

This paper applies the mechanics-based approach and five machine learning algorithms to classify the failure mode 
(leak or rupture) of steel oil and gas pipelines containing longitudinally oriented surface cracks. The mechanics-based 
approach compares the nominal hoop stress remote from the surface crack at failure and the remote nominal hoop 
stress to cause unstable longitudinal propagation of the through-wall crack to predict the failure mode. The employed 
machine learning algorithms consist of three single learning algorithms, namely naïve Bayes, support vector machine 
and decision tree; and two ensemble learning algorithms, namely random forest and gradient boosting. The classifica-
tion accuracy of the mechanics-based approach and machine learning algorithms is evaluated based on 250 full-scale 
burst tests of pipe specimens collected from the open literature. The analysis results reveal that the mechanics-based 
approach leads to highly biased classifications: many leaks erroneously classified as ruptures. The machine learn-
ing algorithms lead to markedly improved accuracy. The random forest and gradient boosting models result in the 
classification accuracy of over 95% for ruptures and leaks, with the accuracy of the decision tree and support vector 
machine models somewhat lower. This study demonstrates the value of employing machine learning models to 
improve the integrity management practice of oil and gas pipelines.
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Introduction
Buried steel pipelines are part of critical infrastructure 
systems in a modern society and widely recognized as 
the most efficient and safest means to transport crude oil, 
natural gas and other hydrocarbon products. The struc-
tural integrity of these pipelines is threatened by various 
failure mechanisms such as the third-party interference, 
corrosion, stress corrosion cracking and ground move-
ment. Among them, cracking is one of the most serious 
failure mechanisms [16]. According to the data released 
by the Canadian Energy Pipeline Association [14, 15], 

cracking accounted for 15.8% and 13% of the total inci-
dents on oil and gas transmission pipelines in Canada 
between 2010 and 2014 and 2016–2020, respectively. 
When an operating pipeline fails at a longitudinally ori-
ented surface (i.e. part through-wall) crack due to inter-
nal pressure, the remaining ligament at the crack is 
severed, and the surface crack becomes a through-wall 
crack [2, 40]. Two failure modes of the crack are com-
monly recognized, namely leak and rupture [40, 61]. A 
failure is classified as a leak, also commonly referred to 
as a large leak in practice [52], if the longitudinal exten-
sion of the through-wall crack resulting from the failure 
of the surface crack is arrested or stabilized; it is defined 
as a rupture if unstable extension of the through-wall 
crack in the longitudinal direction takes place [69]. Rup-
tures of pipelines have much more severe consequences 
in terms of human safety and environmental impact than 

Open Access

Journal of Infrastructure
Preservation and Resilience

*Correspondence:
Wenxing Zhou
wzhou@eng.uwo.ca
Department of Civil and Environmental Engineering, The University 
of Western Ontario, London, Ontario N6A 5B9, Canada

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s43065-022-00062-5&domain=pdf


Page 2 of 25Sun and Zhou  J Infrastruct Preserv Resil             (2023) 4:5 

leaks [42, 52]. Based on incidents data corresponding 
to the onshore natural gas transmission pipelines in the 
United States between 2002 and 2013, Lam and Zhou 
[43] reported that the likelihoods of ignition were around 
3% and 30% in leak and rupture incidents, respectively. 
They also found that 75% of fatalities and 83% of injuries 
were due to ruptures. Bubbico [11] performed a similar 
analysis using data collected by PHMSA between 2010 
and 2015 and concluded that for underground natural 
gas pipelines, the likelihoods of ignition were 7.6% and 
30.8% for leak and rupture incidents, respectively. There-
fore, the accurate prediction of the potential failure mode 
at a surface crack has significant implications for quanti-
fying the failure consequences.

Several full-scale burst tests were conducted by dif-
ferent researchers [2, 40, 59, 63] to investigate the fail-
ure modes of pipes containing surface cracks. Shannon 
[61] proposed that the leak and rupture failure modes be 
separated by comparing the nominal hoop stress remote 
from the surface crack at failure, σhb, and the remote 
nominal hoop stress to cause unstable longitudinal prop-
agation of the through-wall crack, σhr. A rupture will 
occur if σhb ≥ σhr; otherwise, a leak will occur. Note that 
the lengths of the surface crack and its resulting through-
wall crack are assumed to be the same in this approach. 
However, equations for σhb and σhr proposed by Shannon 
[61] only take into account the flow stress but not frac-
ture toughness of the pipe steel, and therefore may not be 
adequate for pipelines containing surface cracks.

Many models have been developed to evaluate the fail-
ure stress of pipelines containing surface and through-
wall cracks, for example, the well-known Battelle (i.e. 
Ln-Sec) model [40] and modified Battelle model [38, 
39], CorLAS model [34, 55], PAFFC [45], PRCI MAT-8 
[4, 5], and failure assessment diagram-based approaches 
recommended in API 579 [3], BS 7910 [10] and R6 [24]. 
However, the employment of these models in Shan-
non’s approach to separate failure modes has, to our 
best knowledge, not been reported in the literature. 
The most relevant work is perhaps reported by Kiefner 
et  al. [40], which is the basis of Shannon’s approach. 
Kiefner et al. conducted 140 experiments using full-scale 
pipe specimens, of which 92 and 48 specimens con-
tain through-wall and surface cracks, respectively. For 
the 48 specimens with surface cracks, in addition to the 
actual failure stresses (i.e. σhb), their failure modes were 
also reported. The actual failure stresses were then com-
pared with the predicted σhr for the 48 specimens, such 
that the predicted failure modes are compared with the 
actual failure modes of these specimens. Although a 
good agreement between the predicted and actual fail-
ure modes is reported in [40], this approach is inadequate 
for in-service pipelines because σhb and σhr cannot be 

measured and must be evaluated to predict the failure 
mode.

As an alternative to Shannon’s mechanics-based 
approach, machine learning (ML) models are suitable 
tools to deal with the leak-rupture separation, which is a 
typical binary classification problem. ML algorithms have 
been widely applied to the classification tasks in the pipe-
line integrity management practice [56]. Zhou et al. [69] 
employed the logistic regression to predict the probabil-
ity of rupture for corroded pipelines as a function of the 
depth and length of the corrosion defect. Carvalho et al. 
[13] applied the multi-layer perceptron neural network to 
signals from inspection tools based on the magnetic flux 
leakage technology to predict the presence of defects on 
pipelines and categorize the types of defect; Cruz et  al. 
[21] employed the neural network model to signals from 
the ultrasonic inspection tools to perform the same pre-
diction and classification, and Liu et al. [47] used the par-
ticle swarm optimization support vector machine (SVM) 
on eddy-current signals to classify the defects on pipe-
lines. Zadkarami et  al. [67, 68] applied the neural net-
work model to the pipeline inlet pressure and outlet flow 
signals to categorize the leakage size and position into 
ten classes.

The objective of the present study is to apply both the 
mechanics-based approach and ML models to classify 
the failure modes of pipelines containing longitudinal 
surface cracks by considering the pipe geometric and 
material properties and dimensions of the crack. The 
main novelty of the study is two-fold. First, while many 
models to predict burst capacities of pipelines containing 
surface-breaking and through-wall cracks, respectively, 
have been developed as described in the previous para-
graphs, the incorporation of these models in a mechan-
ics-based framework to predict the failure mode of 
pipelines containing surface cracks has not been reported 
in the literature. The present study sheds light on the ade-
quacy of the mechanics-based approach in terms of the 
failure mode determination. Second, we develop machine 
learning models to predict the failure mode of pipelines 
containing surface cracks and compare the accuracy of 
the mechanics-based approach and machine learning 
models. To the best of our knowledge, similar investi-
gations are unavailable in the literature. A database of 
full-scale burst tests involving pipe specimens contain-
ing surface cracks is collected from the open literature as 
the basis for training the ML models and also comparing 
the predictive accuracy of the mechanics-based approach 
and ML models. For the mechanics-based approach, the 
well-known CorLAS model ([55,  64, 66]) is selected to 
evaluate σhb, whereas the Battelle model and an extension 
of the CorLAS model for through-wall cracks [55] are 
used to evaluate σhr. Five ML models are considered for 
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comparison with the mechanics-based approach, namely 
the naïve Bayes (NB) model, SVM, decision tree (DT), 
random forest (RF) and gradient boosting (GB).

The rest of the paper is organized as follows. Section 
"Mechanics-based models for failure mode classifica-
tion" describes the two main components of the mechan-
ics-based approach for classifying the failure mode, i.e. 
the models for calculating σhb and σhr, and illustrates 
the application of the mechanics-based approach on a 
hypothetical example; Section "Machine learning clas-
sification algorithms" describes the five ML models that 
are employed to classify the failure mode; Section "Full-
scale burst tests of pipes containing longitudinal surface 
cracks" presents the details of the full-scale burst test 
data collected from the open literature and employed in 
the present study; Section "Classification results using 
mechanics-based models" introduces the metrics for 
evaluating the predictive performance of a classifier and 
presents the predictive performance of the mechanics-
based approach applied to the full-scale test dataset 
described in Section "Full-scale burst tests of pipes con-
taining longitudinal surface cracks"; the training and 
optimization of the five ML models and their predictive 
performances based on the full-scale test dataset are dis-
cussed in Section "Machine learning models for failure 
mode classification", followed by conclusions in Section 
"Conclusion".

Mechanics‑based models for failure mode 
classification
Burst capacity model for surface cracks
Various burst capacity models have been proposed and 
employed in the industry for pipelines containing lon-
gitudinally oriented surface cracks over the past several 
decades, as described in the previous section. These 
models can generally be grouped into two categories, 
namely the pipeline-specific and generic crack assess-
ment methods that are based on the failure assessment 
diagram concept [19]. Performances of some of the burst 
capacity models mentioned in Introduction have been 
evaluated and compared in the literature, e.g. Rothwell 
and Coote [60], Yan et  al. [65], Yan et  al. [64] and Guo 
et  al. [28]. It has been consistently shown that the Cor-
LAS model, the model built in the  CorLASTM software 
[22] that is well known in the pipeline industry [3, 54], 
is one of the most accurate burst capacity models for 
pipelines with longitudinal surface cracks. Therefore, 
the CorLAS model is employed in the present study to 
evaluate σhb. For clarity, this model is referred to as the 
CorLAS-S model (i.e. CorLAS model for surface cracks) 
to be distinguished from the CorLAS-based model for 
through-wall cracks as described in Section "Burst capac-
ity models for through-wall cracks".

The CorLAS-S model was originally proposed by Jaske 
and Beavers [33] to predict burst capacities of pipelines 
containing longitudinal crack-like surface breaking flaws 
based on elastic-plastic fracture mechanics principles. 
The model has been continuously updated since then and 
is now in Version 3 [34, 55] with main formulations given 
by,

where A is the area of the longitudinal profile of the sur-
face crack with a length 2c and a maximum depth a, as 
illustrated in Fig.  1; A0 is the reference area that equals 
2cwt with wt denoting the pipe wall thickness; M is the 
Folias factor that accounts for the defect bulging induced 
stresses due to pipe internal pressure [26], and D is the 
pipe outside diameter. It is emphasized that the CorLAS-
S model assumes the crack profile to be semi-elliptical if 
a detailed crack profile is unavailable. Therefore, cracks 
with other profiles (e.g. rectangular) need to be con-
verted into equivalent semi-elliptical profiles. Such a con-
version is typically carried out by maintaining the same 
area and depth of the crack profile while obtaining an 
equivalent crack length [28, 35, 40]. For example, a rec-
tangular crack with a length 2crec will have an equivalent 
semi-elliptical crack length 2c = (2crec)(4/π) based on the 
above criterion.

As shown in Eq. (2), cracks are evaluated using the 
flow strength- (i.e. σff) and fracture toughness-based 
(i.e. σft) criteria in the CorLAS-S model. The criterion 
that leads to the lower failure stress is used to evalu-
ate σhb. As such, σff is defined as (σy + σu)/2, where σy 
and σu denote the yield strength and tensile strength of 
the pipe steel, respectively. The quantity σft is directly 
related to the local failure stress, σl (Eq. (3)). If the 
crack is on the pipe external surface, σft = σl, whereas 
an adjustment is needed for cracks on the pipe inter-
nal surface to account for the effect of internal pres-
sure on the crack surface. The value of σl is obtained by 
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solving for the stress satisfying Jt = Jc, where Jt and Jc are 
the total applied J-integral at the crack tip and fracture 
toughness of the pipe steel, respectively. If direct meas-
urements of the fracture toughness of the pipe steel 
are unavailable, the following empirical equation can 
be used to estimate Jc from the Charpy V-notch (CVN) 
impact test result [35]:

where Cv and Ac denote the CVN impact energy and 
net cross-sectional area of the Charpy impact specimen, 
respectively. Detailed equations for calculating Jt are 
given in Appendix A.

Burst capacity models for through‑wall cracks
Kiefner et al. [40] proposed the following semi-empiri-
cal model, also known as the Ln-Sec or Battelle model, 
to compute σhr based on the plastic-zone correction 
solution for cracks in flat plates with an infinite width 
[23]:

where Kc denotes the fracture toughness of the pipe steel 
in terms of the stress intensity factor; σf represents the 
flow stress of the pipe steel, and all other variables have 
been defined previously. Note that σf = σy + 68.95 MPa, 
which is different from σff in the CorLAS-S model. Since 
Kc may not be available in practice, it can be evaluated by 
the following empirical equation that is equivalent to Eq. 
(5) [50]:

(5)Jc =
Cv

Ac

(6)
�K 2

c

8c�2
f

= ln

{
sec

(
�

2

M�hr

�f

)}

where E denotes the modulus of elasticity of the pipe 
steel. Kawaguchi et al. [36] pointed out that Eq. (7) tends 
to be non-conservative for pipe steels with Cv greater 
than 130 J and grades higher than X65 and introduced a 
static Charpy test to improve the accuracy [37]. However, 
it is unclear if the static Charpy test has been adopted in 
practice.

Polasik et al. [55] modified the CorLAS model to apply 
it to through-wall cracks. This is referred to as the Cor-
LAS-T model in the present study. According to this 
model, σhr can be evaluated by solving for the stress sat-
isfying JtT = Jc, where JtT is the total applied J-integral at 
the tip of the through-wall crack (see Appendix A). Both 
the Battelle and CorLAS-T models are employed in the 
present study to calculate σhr.

Illustration of mechanics‑based approach for failure mode 
classification
The application of the mechanics-based approach to 
predict the failure mode is illustrated using a hypo-
thetical example. Consider a pipeline with D = 610 mm, 
wt = 7.2 mm, σy = 414 MPa and σu = 517 MPa (i.e. X60 
steel grade) that contains a single semi-elliptical crack. 
Figure  2 depicts the failure mode predicted by the 
mechanics-based approach for various crack lengths 
and depths, and three representative full-size CVN val-
ues (Cv = 25, 50 and 100 J). The solid lines in Fig. 2 cor-
respond to σhb predicted by the CorLAS-S model for 
surface cracks with different depths and lengths, and 
the two dashed lines correspond to σhr predicted by 
the Battelle and CorLAS-T models, respectively, for 

(7)Kc =

√
CvE

Ac

Fig. 1 Longitudinal profile of a semi-elliptical surface crack
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Fig. 2 Relationship between σhb and σhr with varying crack lengths and depths for a hypothetic pipeline example. a Cv = 25 J. b Cv = 50 J. c Cv = 
100 J
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through-wall cracks with different lengths. The figure 
indicates that the CorLAS-T model predicts consistently 
lower σhr values than the Battelle model. Suppose that the 
Battelle model is used to predict σhr. For surface cracks 
with a given depth, a rupture is predicted if the solid line 
corresponding to the crack depth is above the dashed 
line associated with the Battelle model; otherwise, a leak 
is predicted. The interception point between the solid 
and dashed lines defines the critical crack length; that is, 
rupture (leak) occurs if the crack length is greater than 
or equal to (less than) the critical length. Since the criti-
cal crack length decreases as the crack depth decreases, 
it follows that rupture (leak) is the more likely failure 
mode for shallow (deep) cracks. If the CorLAS-T model 
is used to predict σhr, Fig.  2 indicates that almost all of 
the considered surface cracks will be predicted to fail by 
rupture as the solid lines are all above the dashed line 
corresponding to CorLAS-T except for cases with very 
short cracks and Cv = 100 J. For this particular example, 
increasing Cv from 25 to 100 J has no impact on σhb cor-
responding to a/wt = 0.2, 0.3 and 0.4 as the flow stress-
based criterion governs the prediction of the CorLAS-S 
model. The increase in Cv leads to increased values of σhb 
corresponding to a/wt = 0.5, 0.6 and 0.7 as the toughness-
based criterion governs the prediction of the CorLAS-S 
model for these cases.

Machine learning classification algorithms
General
There are a great number of machine learning (ML) tools 
for classification tasks such as neural network and sup-
port vector machine (SVM). The ensemble methods, 
which utilize multiple learning algorithms in one ML 
model to achieve better predictive performance than 
using a single learning algorithm, have attracted much 
attention in the application of machine learning mod-
els [56]. Representative ensemble learning algorithms 
include the adaptive boosting, gradient boosting (GB), 
random forest (RF) and extremely randomized trees [25, 
49, 56]. In the present study, three commonly used sin-
gle ML algorithms for classification, namely naïve Bayes 
(NB), SVM and decision tree (DT), and two ensem-
ble classification algorithms, namely RF and GB, are 
employed to predict the failure modes of the full-scale 
test data. The three single algorithms are selected because 
their underlying mechanisms for classification are com-
pletely different. RF and GB are selected as they are clas-
sic DT-based ensemble ML algorithms and respectively 
involve bagging and boosting so that the performances 
of the ensemble methods and conventional DT can be 
compared. The five selected ML algorithms are described 
briefly in the following sections.

Naïve Bayes
NB is a simple ML algorithm that utilizes Bayes’ theorem 
for classification. The term “naïve” indicates the assump-
tion that the input features associated with the data are 
mutually independent conditional on the class variable. 
For a given sample with a class variable y and m input 
features (x1, x2, …, xm), NB is applied as follows:

where P(y) is the prior probability of class y; P(xi| y) is the 
likelihood of input feature xi (i = 1, 2, …, m) given class y; 
“∝” denotes proportionality, and ŷ is the prediction given 
by NB. P(y) is usually set to be the frequency of the cor-
responding class variable in the training dataset. For con-
tinuous input features, P(xi| y) is typically evaluated based 
on the Gaussian assumption [51].

Support vector machine
SVM was originally developed for the binary classifica-
tion [18] and subsequently extrapolated to the multiclass 
classification and regression. Consider that a training 
dataset consists of n samples, each with m input fea-
tures and one of the two class variables, such that any 
sample can be represented as {xj, yj} (j = 1, 2, …, n), 
where xj ∈ ℝm is an m-dimensional vector representing 
the input features of the sample, and yj ∈ {−1, +1} is the 
class label of the sample. The basic idea of the binary 
classification SVM is to nonlinearly map input vectors 
into a higher dimensional feature space, where a linear 
decision hyperplane can be constructed to separate the 
two classes, simultaneously maximizing the distance 
between them [18]. However, a rigorous linear separa-
tion of read-world data is usually infeasible, resulting 
in unavoidable misclassifications. Therefore, a strictly 
positive regularization parameter (C) that determines a 
trade-off between the number of misclassifications in the 
training dataset and the distance between two classes is 
an important hyper-parameter of SVM. Another sig-
nificant hyper-parameter is the kernel function K, which 
defines the nonlinear mapping of the input vector into 
the high dimensional feature space. The commonly used 
Gaussian (i.e. radial basis function or RBF) kernel is 
given by Eq. (10),
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where γG is the parameter of the Gaussian kernel. SVM 
has two advantages compared with other classification 
algorithms: it is not data-greedy and can well resist the 
effects of outliers [12].

Decision tree
DT can be used to deal with both classification and 
regression tasks. Therefore, DT is also referred to as 
the classification and regression tree (CART) [9]. A DT 
is built by splitting nodes of the tree structure into two 
child nodes recursively. The nodes that are split in a DT 
are decision nodes while those cannot be further split are 
called leaf nodes or leaves. The decision node located at 
the top of the (inverted) tree is the root node. From the 
root node, a DT grows as follows. First, given the train-
ing dataset with different input features, select the best 
split of each feature that optimizes the splitting criterion. 
Second, select the best split of the decision node among 
the best splits of features that optimizes the splitting cri-
terion. Finally, split the decision node using the best split 
and repeat the process until a pre-determined stopping 
criterion is satisfied. A commonly used splitting crite-
rion for classification trees is the Gini impurity index 
(GI), which is a measure of the total variance across all 
classes [32] and minimized to find the best split of a deci-
sion node. A natural stopping criterion for classification 
trees is that all leaves are pure, namely, each leaf node 
consisting of samples of the same class. Other stopping 
criteria such as limits on the levels of the tree or on the 
number of decision nodes could also be used. Compared 
with other ML algorithms, DT is simple, understandable 
and interpretable [32]. Furthermore, DT is a white box 
model [48] since its prediction is highly explainable as the 
movement of the sample through the tree can be directly 
visualized. However, DT is susceptible to overfitting [7], 
which may lead to a lack of robustness in the prediction 
and a more tedious hyper-parameter tuning process.

Random forest
RF [8] is a DT-based ensemble ML algorithm that involves 
bootstrap aggregating (known as bagging). An RF consists 
of a large number of DTs, and the split of every decision 
node in each DT is based on a randomly selected subset 
of the input features, unlike conventional DT, which con-
siders all input features. To train an RF, numerous sub-
sets of data are first randomly sampled with replacement 
(i.e. bootstrap sampling) from the training dataset. Each 
bootstrapped subset of data is then used to generate a DT. 
When this RF is applied to a new sample, each DT in the 
forest provides a prediction of the class of the sample. The 
class predicted by the majority of the trees in the RF is the 
final prediction, i.e. aggregating. Compared with DT, RF is 
capable of handling numerous input features, more robust 

to deal with outliers, and less susceptible to overfitting. 
However, the interpretability of the algorithm is simulta-
neously sacrificed due to numerous DTs in the forest. RF 
also inherently evaluates the importance of each input 
feature, which will be described in Section "Machine 
learning models for failure mode classification".

Gradient boosting
GB was first proposed for regression and subsequently 
extrapolated for classification [27]. It establishes a for-
ward stepwise additive structure that amalgamates the 
predictions given by several sequential weak learners, 
which are typically DTs [29]. Unlike RF, the weak learners 
in GB are regression trees even if GB is used for classifi-
cation. Given the training dataset, the goal is to develop a 
model that maps the input features to the corresponding 
class variable for each sample in the dataset by minimiz-
ing a loss function, which is typically the log-likelihood 
(also known as deviance) in GB for classification. The 
procedure is iterative in that the model is continuously 
and sequentially revised by adding regression trees to fit 
the residual of the model prediction at the previous step 
of iteration so that the value of the loss function con-
tinuously decreases. A critical hyper-parameter of GB is 
the learning rate. It scales the step length in search for 
the minimum value of the loss function and also limits 
the contribution of each regression tree. The numeri-
cal prediction given by the additive regression trees is 
transferred to a probability measure through the logistic 
function, which quantifies the probability of the sample 
belonging to the positive class to achieve classification. 
More details of GB can be found in [29].

Full‑scale burst tests of pipes containing 
longitudinal surface cracks
A total of 250 full-scale tests of pipe specimens contain-
ing single longitudinal surface cracks are collected from 
the literature [2, 20, 31, 36, 40, 57–59, 63]. The test data 
include 135 leaks and 115 ruptures. All 250 data points 
have D/wt values greater than or equal to 20 except the 
eight test specimens reported in [63], the D/wt of which 
equal 19.50 and 19.95. Therefore, all specimens are con-
sidered thin-walled. The yield and tensile strengths as 
well as Cv of each pipe specimen are provided in the 
corresponding source documents. The crack profiles 
in the dataset are either rectangular or semi-elliptical. 
Five specimens in [63] have cracks on the internal pipe 
surface; nineteen specimens, also reported in [63], have 
no information as to whether the cracks are internal or 
external. All the other specimens have external cracks. In 
the subsequent analyses, cracks with unknown positions 
(internal or external) are assumed to be external cracks as 
such information is required for the evaluation of σhb (see 
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Eqs. (1) to (3)). However, it is noted that the crack posi-
tion has a marginal impact on σhb. A brief summary of the 
geometric and material properties of the pipe specimens 
in the test database collected is given in Table 1. Details 
of the test data are provided in Appendix B.

 Classification results using mechanics‑based models
Evaluation metrics of classifier performance
For binary classification problems, one can define any 
of the two classes to be positive and the other negative. 
Depending on whether a classifier correctly or incor-
rectly identifies the positive and negative classes, there 
are four possible outcomes of the prediction by the clas-
sifier, namely true positive (TP), true negative (TN), 
false positive (FP) and false negative (FN). FP and FN are 
also known as type-I and type-II errors, respectively [1]. 
Given these four possible outcomes, some commonly 
used evaluation metrics of the performance of a classifier 
are described as follows. Let nTP, nTN, nFP, nFN respec-
tively denote the numbers of TP, TN, FP and FN after a 
classifier has been applied to a dataset. The true positive 
rate (TPR), i.e. sensitivity, and true negative rate (TNR), 
i.e. specificity, are defined as follows [1]:

Another commonly used metric is the accuracy (ACU), 
which represents the total percentage of correctly pre-
dicted classes:

where ntot = nTP + nFN + nTN + nFP is the total number of 
samples in the dataset. More sophisticated evaluation 
metrics such as the F-score and Matthews correlation 
coefficient have been proposed [17] but are not employed 
in the present study as the above-described simple evalu-
ation metrics are considered sufficient to quantify the 
performances of the binary classifiers.

(11)TPR =
nTP

nTP + nFN

(12)TNR =
nTN

nTN + nFP

(13)ACU =
nTP + nTN

ntot

Predictions of the mechanics‑based approach based 
on test data
The three models described in Section "Mechanics-based 
models for failure mode classification", i.e. CorLAS-S, 
CorLAS-T and Battelle models, are applied to the full-
scale test dataset described in Section "Full-scale burst 
tests of pipes containing longitudinal surface cracks" to 
predict the failure mode of each test specimen. Two sce-
narios are considered in the analysis: scenario #1 involv-
ing using the CorLAS-S and Battelle models to predict 
σhb and σhr, respectively, and scenario #2 involving using 
the CorLAS-S and CorLAS-T models to predict σhb and 
σhr, respectively. Prior to the calculation of the CorLAS-
S model, cracks having rectangular profiles are converted 
to equivalent semi-elliptical profiles by maintaining the 
same profile area and maximum depth but evaluating the 
equivalent crack length. On the other hand, actual crack 
lengths are employed in the CorLAS-T and Battelle mod-
els, regardless of the crack profile. The failure modes of 
228 tests (126 leaks and 102 ruptures) out of a total 250 
tests are predicted. The prediction is not obtained for 
22 tests for the following reasons. The CorLAS-S model 
is inapplicable to three tests in [40] because the ultimate 
tensile strengths of the specimens are not provided. Solu-
tions of σhb were not obtained due to numerical difficul-
ties when the CorLAS-S model was applied to the six tests 
reported in  [57] and thirteen tests reported in  [58]. The 
predictive performance of the mechanics-based approach 
corresponding to the two scenarios is presented in Fig. 3 
and Table  2. Figure  3 includes the evaluation metrics 
described in Eqs. (11) to (13), and Table  2 displays the 
confusion matrix, which is constituted by the four possi-
ble types of outcomes of a classifier. Rupture and leak are 
designated as the positive and negative classes, respec-
tively, in the present study. The bracketed number in the 
confusion matrices represents the total number of a par-
ticular failure mode based on the actual full-scale test data 
or model predictions.

As indicated in Fig.  3, under both scenarios, the 
mechanics-based approach results in sensitivity values 
of over 96% and specificity values of between 20 and 
30%. This indicates that the mechanics-based approach 
is highly accurate in identifying ruptures but has a poor 

Table 1 Ranges of geometric and material properties of 250 burst tests data

a Full-sized CVN test specimen
b Coefficient of variation

D (mm) wt (mm) a (mm) 2c (mm) D/wt a/wt σy (MPa) σu (MPa) Cv (J)a

Min. 76.40 3.20 0.80 17.00 19.50 0.19 246.00 454.00 19.20

Max. 1422.40 21.70 17.80 609.60 103.96 0.99 1096.27 1179.00 261.00

Mean 368.08 8.24 5.77 122.27 40.93 0.71 654.45 794.87 77.36

COV (%)b 82.2 54.6 57.7 91.2 53.2 21.4 37.5 26.7 69.4
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accuracy in identifying leaks. The overall accuracy of 
the mechanics-based approach is about 55%. Scenario 
#1 corresponds to a slightly better predictive perfor-
mance than scenario #2 as the former achieves a higher 
accuracy and greater balance between the sensitiv-
ity and specificity. A possible explanation for the poor 
accuracy of the mechanics-based approach in identify-
ing leaks is that the CorLAS-S model is relatively accu-
rate in evaluating σhb but the Battelle and CorLAS-T 
models both markedly underestimate σhr. It follows 
from the above results that the ML approach is needed 
to classify ruptures and leaks more accurately.

Machine learning models for failure mode 
classification
Selection of input features
Based on the results presented in Section "Illustration of 
mechanics-based approach for failure mode classifica-
tion", the normalized crack depth and length, a/wt and 
2c/(Dwt)0.5, are selected as the input features for the ML 

models. It must be emphasized that a and 2c are assumed 
to be the depth and length of a semi-elliptical crack pro-
file; therefore, a non-semi-elliptical crack profile should 
be converted to an equivalent semi-elliptical profile (see 
Section "Burst capacity model for surface cracks"). In 
addition to a/wt and 2c/(Dwt)0.5, two pipe material prop-
erties, i.e. σy and Cv, are compounded into a non-dimen-
sional input feature that quantifies the relative resistance 
to two competing failure mechanisms, i.e. plastic collapse 
and fracture, of the remaining ligament at the crack, i.e. 
Ac (wt-a)σy/Cv [30]. Note that (wt-a) σy and Cv/Ac in this 
compound parameter respectively quantify the resistance 
of the remaining ligament to plastic collapse and frac-
ture. Figure  4 depicts the failure modes versus any two 
of the three input features for the 250 test data described 
in Section "Full-scale burst tests of pipes containing lon-
gitudinal surface cracks". Figure 4(a) indicates that leaks 
tend to occur at deep cracks, which is consistent with the 
predictions by the mechanics-based approach. However, 
the correlation between the normalized crack length and 

Fig. 3 Classification performance of the physics-based approach on 228 data points

Table 2 Confusion matrix of the physics-based approach on 228 data points

(a) Scenario #1

Total number of samples = 228 Predicted failure mode

Rupture (190) Leak (38)

Actual failure mode Rupture (102) nTP = 98 nFN = 4

Leak (126) nFP = 92 nTN = 34

(b) Scenario #2

Total number of samples = 228 Predicted failure mode

Rupture (202) Leak (26)

Actual failure mode Rupture (102) nTP = 101 nFN = 1

Leak (126) nFP = 101 nTN = 25
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failure mode is unclear. Figures 4(b) and (c) suggest that 
leaks are more likely for pipe specimens with low values 
of Ac (wt-a)σy/Cv. This confirms the relevance of the input 
feature Ac (wt-a)σy/Cv.

Model development
The full dataset is randomly divided into 80% and 20% 
portions, i.e. 200 and 50 data points, as the training and 
test datasets, respectively. The stratified sampling is 
employed to generate the training and test datasets; that 
is, the 80%–20% separation is applied to ruptures and 
leaks to avoid bias in the two subsets. As such, the train-
ing dataset consists of 108 leaks and 92 ruptures, while 
the test dataset consists of 27 leaks and 23 ruptures.

The five ML algorithms as described in Section 
"Machine learning classification algorithms" are then 
respectively applied to the training dataset to establish 
classifiers. The ten-fold cross validation combined with 
randomized search [6, 29] is employed to conduct the 
hyper-parameter tuning for the five algorithms. The value 
of each hyper-parameter is first randomly selected from 
a pre-defined range such that a set of values of the hyper-
parameters is used to conduct the ten-fold cross valida-
tion. We then equally divide the training dataset into ten 
subsets, employ any nine subsets to train a model with 
the given set of hyper-parameters and apply the model to 
the remaining subset to evaluate the model performance. 
Such a process is repeated ten times such that each subset 
has been used exactly once for the validation. Model per-
formances on all ten subsets can then be averaged as the 
final performance of the model corresponding to the given 
set of hyper-parameters. The set of hyper-parameters that 
results in the best model performance in the cross valida-
tion is then selected as the tuned hyper-parameters. Note 
that the stratified sampling is also applied to generate each 
of the ten subsets of the training dataset for the ten-fold 
cross validation. The predictive performance criterion 
employed in the cross validation is the accuracy (ACU) as 
defined in Eq. (13). With a relatively balanced dataset in 
which the negative class (i.e. leak) accounts for 54%, ACU 
provides an adequate measure of the predictive accuracy 
associate with rupture and leak. It is also the most com-
monly used evaluation metric for classification analysis in 
pipeline integrity management as indicated in [56].

The ML models in the present study are developed uti-
lizing specialized packages pandas and scikit-learn [53] in 
the open-source platform Python. The values of the tuned 
hyper-parameters of the five algorithms are summarized 
in Table 3. Other hyper-parameters take the default val-
ues embedded in scikit-learn. The prior probabilities of 
both classes (“priors”) in NB are tuned, as the propor-
tions of ruptures and leaks in the training dataset do not 
necessarily represent those in reality. The Gaussian NB 

is employed since all three input features are continuous 
variables. The Gaussian kernel is employed in SVM, and 
the regularization parameter (C) and kernel coefficient 
(γG) as described in Section "Support vector machine" 
are tuned. The tuned hyper-parameters of DT include 
the maximum number of levels in the tree (max_depth), 
minimum number of samples required to split a decision 
node (min_samples_split) and minimum number of sam-
ples required in each leaf node (min_samples_leaf ). The 
three tuned hyper-parameters for DT are also employed 
in RF. In addition, two other hyper-parameters of RF are 
tuned: the number of trees in the forest (n_estimators) 
and number of input features to consider for the best 
split (max_features). The tuned hyper-parameters in GB 
are the same as those in RF except that max_features is 
replaced by the learning rate (learning_rate) since all 
input features are considered at every split of the regres-
sion trees in each iteration in GB. The search spaces of all 
hyper-parameters included in Table 3 that are employed 
during the hyper-parameter tuning process are provided 
in Appendix C.

aThe prior probabilities of leak and rupture, respectively.

Model performance evaluation
The five ML models developed based on the entire train-
ing dataset and tuned hyper-parameters are applied 
to the test dataset to predict the corresponding failure 
modes. The sensitivity, specificity and accuracy (see Sec-
tion "Evaluation metrics of classifier performance") of the 
predictions given by each ML model on both the train-
ing and test datasets are summarized in Fig. 5. The confu-
sion matrices of model predictions for the test dataset are 
shown in Table 4.

Figure 5 and Table 4 indicate that the five ML models 
lead to moderately accurate to highly accurate predic-
tions of the failure modes. The predictions by the ML 
models are more balanced than those by the mechanics-
based approach as predictions by the latter have a very 
low specificity. Among the three single ML algorithms, 
the Naïve Bayes (NB) performs markedly poorer than 
the support vector machine (SVM) and the decision tree 
(DT): NB has an accuracy of around 80% while the other 
two more than 90%. This could be attributed to that the 
Gaussian likelihood in NB may not be adequate for the 
input features. The predictive accuracy of DT is slightly 
better than SVM. The accuracies of the two ensemble 
algorithms, i.e. the random forest (RF) and the gradi-
ent boosting (GB), are above 95% and somewhat higher 
than that of DT. The results suggest that the SVM, DT, RF 
and GB models are highly effective in identifying the fail-
ure modes for pipelines containing longitudinal surface 
cracks. Furthermore, the ensemble ML algorithms are 
more advantageous than the single ML algorithms.
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Fig. 4 Failure mode of all test data as a function of input features. a Failure mode vs. a/wt and 2c/(Dwt)
0.5. b Failure mode vs. Ac (wt-a)σy/Cv and a/wt. 

c Failure mode vs. 2c/(Dwt)
0.5 and Ac (wt-a)σy/Cv
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Feature importance
The feature importance quantifies the impact of a given 
input feature on the predictive performance of the 
classifier. DT and DT-based ensemble algorithms can 
inherently evaluate the importance of each input fea-
ture based on GI or mean squared error (MSE), which 
is employed as the splitting criterion for the construc-
tion of trees and forests in DT, RF and GB. The feature 
importance for a single DT is calculated as the total 
decrease of GI or MSE caused by the input feature. 
For DT-based ensembles, the feature importance is 
the average value of all trees. As such, the importance 
of the three input features in DT, RF and GB is quanti-
fied and shown in Table 5, where the mean and stand-
ard deviation of the importance of each feature are 
obtained by using 100 random states to develop each 
ML model. A greater mean value in the table indicates 
a higher importance for the corresponding feature. The 
random state is a parameter embedded in scikit-learn 
that guarantees the repeatability of a ML model. This 
is because DT and DT-based ensemble models could 
be developed slightly differently across different runs, 
even with the same hyper-parameters, as the best-found 
splits of decision nodes may vary across different runs. 
Therefore, it is valuable to investigate the feature impor-
tance of the three ML models under different random 
states to understand the inherent variability of these 
models. Results in Table  5 indicate that Ac (wt-a)σy/Cv 
is the most important input feature in the DT, RF and 
GB models, followed by a/wt and then 2c/(Dwt)0.5. 
Such observations are consistent with the discussions 
based on Fig.  4 (Section "Selection of input features"). 
The standard deviation of the importance of each input 
feature for the RF model is larger than that of the same 
input feature for DT and GB models, but still negligi-
bly small compared with the mean feature importance. 
This observation implies that when developed at differ-
ent random states, more variability exists in RF than in 
DT and GB models. However, such variability of feature 
importance can still be considered negligible.

Discussions
The results presented in the previous sections demon-
strate the advantages of the ML models to predict the 
failure modes of pipelines containing surface cracks in 
comparison with the mechanics-based approach. The 
developed ML models can be readily employed in the 
fitness-for-service assessment of pipelines containing 
surface cracks to facilitate the decision making concern-
ing the rehabilitation of in-service pipelines. A few limita-
tions of the investigations should be pointed out. First, the 
applicability of the five ML models developed in this study 
is limited by the ranges of the pipe geometric and mate-
rial properties of the 250 full-scale test data collected. 
The robustness and applicability of these ML models can 
be improved by expanding the full-scale test database 
(depending on the availability of more recent test data in 
the public domain), in particular those corresponding to 
high-strength high-toughness pipe specimens. Second, 
the ML models developed in this study result in a deter-
ministic classification of the failure mode. More sophis-
ticated models can be developed to classify the failure 
mode probabilistically, which will facilitate the reliability- 
and risk-based assessment of pipelines containing surface 
cracks. Finally, the ML models developed in this study are 
completely data driven and therefore “black-box” models. 
Engineers may prefer a hybrid between the mechanics-
based and machine learning models (i.e. the grey-box 
model) for improved transparency and interpretability. 
This is worth exploring in the future.

Conclusions
This study applies the mechanics-based approach and 
five ML algorithms, including NB, SVM, DT, RF and GB, 
to predict the failure mode, i.e. leak or rupture, of steel 
oil and gas pipelines that contain longitudinally oriented 
surface cracks. The mechanics-based approach classi-
fies the failure mode by comparing the nominal hoop 
stress remote from the surface crack at failure, σhb, and 
the remote nominal hoop stress to cause unstable longi-
tudinal propagation of the through-wall crack, σhr. The 
CorLAS-S model is selected to compute σhb, and the Bat-
telle and CorLAS-T models are selected to compute σhr. 
Among the five ML algorithms, NB, SVM and DT are sin-
gle ML algorithms, and the other two are ensemble ML 
algorithms. Three input features, namely a/wt, 2c/(Dwt)0.5 
and Ac (wt-a)σy/Cv, are employed in the ML models.

A total of 250 full-scale burst tests of pipe specimens con-
taining longitudinal surface cracks are collected from the 
open literature and used to evaluate the predictive perfor-
mance of these ML algorithms. The analysis results indicate 
that while the mechanics-based approach is accurate in 
identifying ruptures, it misclassifies many leaks as ruptures 
and has an overall accuracy of about 55%. In contrast, all five 

Table 3 Values of tuned hyper-parameters of five ML algorithms 
using ten-fold cross validation

Algorithm Tuned hyper‑parameters

NB priors = [0.357, 0.643]a

SVM C = 230; γG = 1.3

DT min_samples_split = 7; min_samples_leaf = 1; max_
depth = 21

RF n_estimators = 106; min_samples_split = 2; min_sam-
ples_leaf = 1; max_features = 2; max_depth = 25

GB n_estimators = 167; min_samples_split = 7; min_sam-
ples_leaf = 4; max_depth = 5; learning_rate = 0.5
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Fig. 5 Performance of five ML models on training and test datasets. a Training dataset. b Test dataset
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ML models are markedly more effective than the mechan-
ics-based approach in identifying the failure mode. Among 
the five models, the predictive accuracy of the two ensem-
ble algorithms, i.e. RF and GB, is the highest with the overall 
accuracy of over 95% for both the training and test datasets. 
The accuracy of DT and SVM is only slightly less than that 
of RF and GB, whereas NB has the lowest accuracy at about 
80%. It is observed that Ac (wt-a)σy/Cv is the most important 
input feature, followed by a/wt and then 2c/(Dwt)0.5, in DT, 
RF and GB models. This study demonstrates the value of 
machine learning models for improving the pipeline integ-
rity management practice with respect to cracks.

Appendix A
Equations for calculating Jt and JtT in the CorLAS‑S 
and CorLAS‑T models
The equation for calculating Jt in the CorLAS-S model is:

where Je and Jp are the elastic and plastic component of Jt, 
respectively. The equation for calculating JtT in the Cor-
LAS-T model is:

where JeT and JpT are the elastic and plastic component of 
JtT, respectively. JeT and JpT are based on the stress inten-
sity factor solution for through-wall cracks and Kumar 
et al. [41]. In Eqs. (A.1) and (A.2), Qsf is the flaw shape fac-
tor given by:

Fsf is the free surface factor given by:

f3(n) is the Shih and Hutchinson [62] factor given by:

n is the strain hardening exponent [44, 46] that can be 
calculated by:

and εp is the plastic strain corresponding to σl for API 
steel given by:

Note that 2c in Eqs. (A.3) and (A.4) represents the 
(equivalent) semi-elliptical crack length.
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Table 4 Confusion matrices of five ML models applied to the 
test dataset

(a) NB

Total number of samples = 50 Predicted failure mode

Rupture (22) Leak (28)

Actual failure mode Rupture (23) nTP = 19 nFN = 4

Leak (27) nFP = 3 nTN = 24

(b) SVM

Total number of samples = 50 Predicted failure mode

Rupture (21) Leak (29)

Actual failure mode Rupture (23) nTP = 21 nFN = 2

Leak (27) nFP = 0 nTN = 27

(c) DT

Total number of samples = 50 Predicted failure mode

Rupture (23) Leak (27)

Actual failure mode Rupture (23) nTP = 22 nFN = 1

Leak (27) nFP = 1 nTN = 26

(d) RF

Total number of samples = 50 Predicted failure mode

Rupture (23) Leak (27)

Actual failure mode Rupture (23) nTP = 22 nFN = 1

Leak (27) nFP = 1 nTN = 26

(e) GB

Total number of samples = 50 Predicted failure mode

Rupture (23) Leak (27)

Actual failure mode Rupture (23) nTP = 22 nFN = 1

Leak (27) nFP = 1 nTN = 26

Table 5 Mean and standard deviation of the feature importance 
of three ML models obtained by using 100 random states

Model a/wt 2c/(Dwt)
0.5 Ac (wt-a)σy/Cv

DT Mean 0.2496 0.1238 0.6266

Std. Dev. 0.0083 0.0059 0.0045

RF Mean 0.3682 0.1819 0.4499

Std. Dev. 0.0127 0.0062 0.0134

GB Mean 0.2905 0.1539 0.5556

Std. Dev. 0.0026 0.0026 0.0001
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