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building with different energy dissipation 
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Abstract 

The 2020 National Building Code of Canada (NBCC) seismic hazard model (SHM) marks a comprehensive update 
over its predecessor (NBCC 2015). For different regions in Canada, this will have an impact on the design of new 
buildings and performance assessment of existing ones. In the present study, a recently developed hybrid building 
system with reinforced concrete (RC) moment-resisting frames and cross-laminated timber (CLT) infills is assessed 
for its seismic performance against the latest SHM. The six-story RC-CLT hybrid system, designed using the direct 
displacement-based method, is located in Vancouver, Canada. Along with very high seismicity, southwestern British 
Columbia is characterized by complex seismotectonics, consisting of subduction, shallow crustal, and in-slab fault-
ing mechanisms. A hazard-consistent set of 40 ground motion pairs is selected from the PEER and KiK-net databases, 
and used to estimate the building’s seismic performance. The effects of using steel slit dampers (associated with large 
hysteresis loops) and flag-shaped energy dissipators (associated with the recentering capability) are investigated. The 
results indicate that the hybrid system has good seismic performance with a probability of collapse of 2–3% at the 
2475-year return period shaking intensity. The hybrid building with steel slit dampers exhibits a collapse margin ratio 
of 2.8, which increases to 3.5–3.6 when flag-shaped dissipators are used. The flag-shaped dissipators are found to sig-
nificantly reduce the residual drift of the hybrid building. Additionally, the seismic performance of the hybrid building 
equipped with flag-shaped dissipators is found to improve marginally when the recentering ratio is increased.

Keywords:  Hybrid system, Seismic hazard update, Cross-laminated timber wall, Energy dissipation connections, 
National Building Code of Canada (NBCC)

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Introduction
Buildings have become a key point of focus in estab-
lishing sustainable development goals meant to address 
the growing challenge of climate change [1]. With rapid 
population growth in urban areas, non-traditional build-
ings such as those with hybrid structural systems are 
central to the development of sustainable infrastructure. 
Over the past couple of decades, concrete and steel have 
become the materials of choice for the construction of 

civil infrastructure. With a robust design methodology, 
traditional concrete and steel structures have dominated 
the construction market. However, with the focus shift-
ing to environmentally friendly and lightweight struc-
tures, timber is fast becoming a viable construction 
material [2]. One of the benefits of timber construction 
in seismic zones is its light weight, which attracts smaller 
inertial forces when compared to concrete or steel struc-
tures with the same size and complexity. Aside from 
being used as a stand-alone material for building struc-
tural systems as permitted by the various design codes, 
several hybrid-structural systems using timber have been 
investigated, e.g. [3–9].
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Prescriptive design standards, based on a force-based 
methodology, utilize reduction factors to account for inher-
ent non-linearity in the structural systems [10]. Several 
researchers have worked to develop the reduction factors 
for different hybrid-structural systems [11, 12]. However, 
existing design codes do not provide the reduction fac-
tors for emerging hybrid-structural systems, consequently, 
force-based design cannot readily be implemented. In an 
attempt to provide a more robust, accurate, and reliable 
design approach, the performance-based design method-
ology was developed [13–15]. One variation of that meth-
odology is direct displacement-based design (DDBD) [16]. 
Starting with the design of simple concrete multi-span 
bridges and building frames [17], the DDBD has been 
extensively applied to traditional and novel systems. Exam-
ples include structures with passive energy dissipating 
devices [18], steel-timber hybrid buildings [6], frame-wall 
structures [19, 20], frame-wall structures with dissipators 
[21], structures with seismic isolation systems [22], steel 
and RC moment-resisting frames [23–25], traditional 
light-frame timber structures [26], structures with flexible 
bases [27], tall hybrid timber buildings [26], self-centering 
buckling-restrained braced frame structures [25, 28], base-
isolated building structures [29], dual systems [30], and 
structures with visco-elastic dampers [31]. Recent devel-
opments have paved the way for high-rise building design 
using the DDBD by addressing issues of the displacement 
profile [32], higher modes, and P-Delta effects [24, 25].

An integral part of the DDBD method is estimating the 
equivalent viscous damping (EVD) for different structural 
systems [33, 34]. Over the years, different researchers have 
sought to establish expressions for determining the EVD of 
different structural systems, e.g., Table 1. This was gener-
ally achieved by using results from a physical experiment 
to calibrate a numerical model, and then EVD-ductility 

relationships are developed for a large number of numeri-
cal models using an area-based approach. The ductility, 
µ , is defined as the ratio of the maximum displacement to 
the yield displacement. In recent years, EVD expressions 
for hybrid buildings using timber and different dissipation 
mechanisms have been developed [6, 35–40]. These stud-
ies will facilitate the design and widespread acceptance of 
hybrid timber buildings. The present study adopts an RC-
timber hybrid building designed using the DDBD approach 
[8]. A maximum story drift ratio ( IDRmax ) of 2.5% that cor-
responds to the collapse prevention limit state is targeted. 
The EVD for the RC-timber hybrid system was developed 
by Nielsen and Imbeault [41]. The hybrid building system 
utilizes the high strength and stiffness characteristics of the 
CLT to reduce the induced displacement of the structure 
and the energy dissipating characteristics of the hysteretic 
connectors [8, 42].

While it is important that sustainable alternatives to 
traditional structural systems be developed, attention 
must be paid to their seismic collapse risk to ensure 
adequate life safety performance. As such, seismic col-
lapse risk assessment of buildings has gained attention 
[48]. In the present study, the collapse capacity of the 
RC-CLT building reported in [8] is assessed using non-
linear time-history analysis. The effects of the energy 
dissipation devices have been studied by considering 
an alternative flag-shaped dissipator which has gained 
widespread interest in the last two decades [49–54]. 
The hybrid building reported in Tesfamariam et  al. [8] 
was designed with the NBCC 2015 [55] seismic hazard. 
With the newly released updated NBCC 2020 [56] haz-
ard model, it is postulated that substantial changes in the 
seismic hazard will have an impact on the design of new 
buildings and assessment of existing ones, especially in 
regions with very high seismicity, such as southwestern 

Table 1  Equivalent viscous damping (ξeq) (%) and ductility (µ) relationships for different structural systems

Description EVD Expression (ξeq) Parameter definitions

Precast concrete walls and frames [43] 5+ 25
π

1− 1√
µ

RC frame [44] max(4.7,−0.4µ2 + 7.1µ− 2)

RC frame [34] ξ0 + 8
π

(

5− 6

µ1.8 + 0.2µ1.8
)

ξ0 : Initial elastic damping

BRB-RC frame [45] 5+
(

150(µ−1)(1−0.14)

(µ−0.14µ+0.14µ2)π

)

Steel-braced RC frame [34] ξ0 + 70
π

(

1− 43

µ4 − 4.7

105
µ4

)

;µ ≥ 3 ξ0 : Initial elastic damping

Infilled-RC frame [46] ξ0 + 80.4

(

µ+0.83

µπ

)

 ; ξ0 + 80.4

(

µ+0.05

µπ

)

ξ0 : Initial elastic damping

Steel members [47] ξ0 + a
(

1− 1

µb

)

T c ξ0 : Initial elastic 
damping, a, b, and c: 
constants, T: Period

Hybrid-timber [40] 5+ 62×�
0.4

π

(

1− 1√
µ

)

� = H/B : slenderness 
ratio, H: height of frame, 
B: width of the frame

Steel frame with CLT infill [33] ξ0 + C
(

µ−1

µπ

)

C: constant
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British Columbia. The seismic hazard of the selected 
Vancouver, British Columbia site, is affected by the inter-
action of three tectonic regimes, viz., Subduction, Shal-
low Crustal, and In-slab. A hazard-consistent 40-paired 
ground motion records, representing the complex seis-
micity of Vancouver, is selected for nonlinear response 
history analysis of the hybrid building system.

The present study has three primary contributions—
(i) a rigorous ground motion record selection consist-
ent with the complex seismicity of Southwestern British 
Columbia is performed. The record selection follows the 
latest seismic hazard model per NBCC 2020 [56]. (ii) The 
seismic collapse assessment of an innovative RC-CLT 
building system designed using DDBD is assessed, and 
(iii) the effects of alternative energy dissipators on col-
lapse capacity and residual deformation are investigated.

Design details of the RC‑CLT hybrid building 
with steel slit dampers
A regular 6-story, 3-bay RC moment resisting frame 
with CLT infill designed by Tesfamariam et  al. [8] 
has been considered for the seismic performance 

assessment. The building is 24 m × 42 m in plan with 
the longer direction having 7 bays each with a length of 
6 m. Figure 2 shows the elevation along the shorter and 
more critical direction. The CLT infill is a three-ply 
panel that is 99 mm thick, comprised of three 33 mm 
thick laminae that are fused together. The CLT infill 
was designed with some clearance to the RC frame 
to avoid shear (brittle) failure in the RC columns due 
to their interaction [57]. Slit dampers [42] at the top 
of the CLT infill were provided as an additional energy 
dissipation mechanism. The steel slit dampers are asso-
ciated with large hysteretic loops leading to high energy-
dissipation capacity. Given the novel structural system, 
the RC-CLT building was designed using the DDBD. The 
target was set to a maximum inter-story drift IDRmax of 
2.5% corresponding to 2% probability of exceedance in 
50 years, for the NBCC 2015 hazard level [55].

Figure 1 summarizes the DDBD procedure as follows: 

1	 Develop the design displacement profile.
2	 Determine the characteristics of the equivalent single 

degree of freedom system.

Fig. 1  DDBD procedure: a Structure description b Equivalent SDOF system and its displaced shape c Bi-linear force-displacement relationship of 
the SDOF system d EVD-µ relationship for the different structural types e Displacement response spectra f Distribution of the seismic design load 
along the building height
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3	 Determine the design ductility.
4	 Estimate the Equivalent Viscous Damping
5	 Determine the effective period, stiffness and base 

shear.
6	 Perform structural analysis and member design.
7	 Calculate the stiffness of each story.
8	 Calculate the equivalent stiffness of the CLT and 

dampers.
9	 Calculate the number of dampers required for each 

story.
10	Design and validate the structure.

A more detailed DDBD procedure for the RC-tim-
ber hybrid building is described in Tesfamariam et  al. 
[8]. The elevation of the hybrid building is shown in 
Fig. 2. It is noted that the length of the CLT infill and 
the number of slit dissipators are optimized during the 

design. A summary of the results from the design is 
given in Table  2. All beams are 450 mm × 350 mm in 
size. The design is governed by the connection with the 
slit damper and gravity loads on each floor.

Nonlinear structural modeling of the RC‑CLT hybrid 
building
A two-dimensional nonlinear model was considered to 
be appropriate due to the regularity of the hybrid build-
ing. Figure 3 provides a schematic representation of the 
key elements of the analytical model. A concentrated 
plasticity model is used to capture the non-linearity in 
the RC frame. Marker  1 shows the modeling details of 
the RC frame whereas Marker  2 describes the details 
of the RC-CLT dissipator connections. Different struc-
tural components are provided in the following subsec-
tions. The P-Delta effects are captured using a leaning 

Fig. 2  Details of the six-story RC-CLT hybrid building [8]

Table 2  Design summary for 6-story RC-CLT hybrid building

ρb,top , ρb,bot: longitudinal reinforcement at top and bottom of beams; ρC1, ρC2: longitudinal reinforcement in column C1 and C2, respectively; LCLT : length of CLT infill 
wall

Story Column size (mm2) ρb,top ρb,bot ρC1 ρC2 No. of dampers LCLT  (m)

6 300×300 2-20M 2-20M 4-25M 4-20M 2 1

5 300×300 2-20M 2-20M 4-25M 4-20M 2 1

4 300×300 2-20M 2-20M 6-25M 6-20M 2 1

3 350×350 2-20M 3-20M 6-25M 6-20M 2 2

2 350×350 2-20M 3-20M 8-25M 6-25M 2 2

1 350×350 2-20M 3-20M 8-25M 6-25M 3 3
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column [58]. 5% Rayleigh damping has been considered 
in the first and the third fundamental mode for all lin-
ear elastic elements. Damping in the nonlinear elements 
has not been modeled as recommended in the literature 
[59–61]. The eigenvalue analysis of the frame resulted in 
first, second, and third mode periods of 1.17, 0.40, and 
0.25 seconds, respectively.

CLT modeling
The three-ply 99 mm thick CLT infill panel is modeled 
using quad elements with a bilinear isoparametric finite 
element formulation. The CLT infill is formulated assum-
ing a plane stress condition due to the minimal out-of-
the-plane stresses. Because of the connection detail and 
design of the hybrid building, the assigned nDMaterial 
for the CLT elements are elastic with a modulus E, of 9.5 
kN/mm2, and a Poisson’s ratio of 0.16. The CLT and RC 
frame are connected using steel-slit dampers. The stiff-
ness of the CLT, KCLT , is approximated as follows [62]:

where h, E, A, L, G, d, and f represent the CLT height, 
elastic modulus, cross-sectional area, wall length, shear 

(1)KCLT =
1

2h3

3EAL + h
1000G + hd

Lf

,

modulus, thickness, and bearing capacity factor per CSA 
O86 [63], respectively.

RC frame modeling
The modeling details of a typical RC beam-column joint 
are shown with Marker 1 in Fig. 3. The RC beam-column 
joints are designed and detailed to conform with the highest 
ductility class specified in the Canadian standard [55]. Thus, 
flexural yielding is expected to precede shear failure. The 
RC members are modeled using the hysteretic rules defined 
by the Ibarra-Medina-Krawinkler (IMK) model [64], which 
captures strength and stiffness degradation. The key points 
on the backbone curve and cyclic deterioration constants 
are based on the semi-empirical expressions developed in 
the literature [65, 66]. The multi-point constraints for the 
RC joints are modeled using the joint2D element that 
incorporates a diagonal compression strut mechanism [67] 
and a shear panel is used for the joint deformation.

RC‑CLT‑Damper modeling
The modeling details of the RC-CLT joint including the 
slit dampers on top of the CLT infill are shown with 
Marker 2 in Fig. 3. The beam-column elements have 3 
degrees of freedom ( ux , uy , rz ) and the quad element has 
two ( ux , uy ). The two elements with different numbers 

Fig. 3  Schematic sub-assembly of the nonlinear structural model for RC-CLT hybrid building system
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of degrees of freedom are linked using connector nodes 
which are constrained using the equalDOF command. 
A twoNodeLink element is used between the connec-
tor and RC beam nodes. The bottom of the CLT infill is 
anchored to the RC beam by constraining the quad ele-
ments at the base of each floor. Due to the dominance of 
flexural behavior ( rz ), the chord rotation is used as the 
deformation measure for the RC members, whereas the 
displacement is used as the deformation measure for the 
energy dissipators due to their point action along the 
translational direction ( ux).

Figure 4a shows an example calibration of the hysteretic 
response of the slit damper using OpenSees [68], which 
is modeled using the RambergOsgoodSteel uniaxial 
material. The experimental data are taken from Lee et  al. 
[42]. The calibrated parameters for the RambergOs-
goodSteel material are: the yield strength Fy = 140 
kN, initial elastic modulus E0 = 70 kN/mm, yield offset 
a = 0.002 , and the parameter to control the transition 
from elastic to plastic response n = 13 . Similarly, Fig. 4b–c 
show the numerical response of the flag-shaped damp-
ers. Two recentering ratio values, βF = 0.8 and βF = 0.6 , 
have been considered. These values are based on relevant 
experimental studies [39]. The flag-shaped dampers are 
modeled using the SelfCentering uniaxial material 
in OpenSees. In the absence of experimental results for 
the flag-shaped dampers of equivalent strength, their key 
parameters are selected such that the peak strength and 
deformation capacity closely resemble that of the steel slit 
dampers. Nonlinear static analyses of these systems are 
used to confirm this design choice. The adopted param-
eters for flag-shaped dissipators are: the forward activa-
tion strength Fa = 130 kN, initial stiffness k1 = 61.9 kN/
mm (corresponding to 2.1 mm of deformation at activation 
strength), and post-activation stiffness k2 = 0.03k1.

Seismic hazard and GM selection per NBCC 2020
Seismic hazard
The 6th generation seismic hazard model (SHM6) described 
in the NBCC 2020 [56] represents a comprehensive change 
over the NBCC 2015 [55]. Figure  5a shows the change in 
short period seismic hazard for several locations in Can-
ada, from East to West. Such an increment of 25–50% is 
expected to impact the design and performance assessment 
of Canadian buildings, especially in regions with very high 
seismicity such as southwestern British Columbia. Figure 5b 
shows the response spectrum for Vancouver correspond-
ing to the 2% in 50 year return period. However, it is noted 
that for the period of interest in the present study (first nat-
ural period of the CLT-RC hybrid building, T1 = 1.17 s ), 
the two hazard models incidentally have approximately 
the same spectral acceleration value. Figure  6a shows the 
hazard hazard curve for the Vancouver site ( 49◦15′00′′ N, 
123◦7′12′′ W) with an average shear wave velocity to 30 m 
depth, Vs30 = 450 m/s. The hazard curve is shown for the 
intensity measure, Sa(1.17 s) i.e., the spectral acceleration 
corresponding to the first mode. The deaggregation results 
for Sa(1.17 s) corresponding to a 2475 year return period 
is shown in Fig. 6b. Three contributing tectonic regimes are 
considered for southwestern British Columbia [69, 70]. For 
the present hazard, their contributions are 41% for Active 
Shallow Crust, 32% for Subduction Interface, and 27% for 
In-Slab (source id- IntraSlab55).

Hazard‑consistent ground motion selection
The ground motion selection is conducted to represent the 
complex tectonic feature of southwestern British Colum-
bia. A series of site- and structure-specific conditional 
spectra (CS) is considered. Specific to a tectonic regime, 
the CS includes the mean (known as, conditional mean 
spectrum, CMS) and covariance between different spectral 

Fig. 4  Cyclic responses of the a steel slit damper and b,c flag-shaped dampers with b βF = 0.8 and c βF = 0.6 obtained using OpenSees. For steel 
slit dampers, the comparison of experimental hysteretic response is also presented
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ordinates [71]. The CMS accounts for the conditionality of 
spectral ordinates by defining the parameter ε , as follows:

where Sa(·) is the spectral acceleration; T ∗ is the condi-
tioning period; and µln Sa(·) and σln Sa(·) are obtained from 
a suitable ground motion model for deaggaregted mag-
nitude-distance (M,R) . Further, the CMS is expressed as:

where ρε(T ),ε(T∗) is the correlation coefficient between 
Sa(T) and Sa(T ∗).

(2)ε(T ∗) =
ln Sa(T ∗)− µln Sa(T∗)

σln Sa(T∗)

,

(3)ln[Sa(T )|Sa(T ∗)] = �ln Sa(T ) + �
�(T ),�(T ∗)�ln Sa(T )�(T

∗),

Table 3 shows the modal earthquake tuples (M,R) with 
the highest contribution for each tectonic regime using 
SHM6. The corresponding deaggregation was shown 
earlier in Fig.  6b. The table also lists the spectral shape 
at 1.17 s for each tectonic regime. The ground motion 
models for each tectonic regime is selected from the cor-
responding logic tree of the tectonic regime used during 
Probabilistic Seismic Hazard Analysis (PSHA).

Figure  7 shows the results of the ground motion 
selection based on the target CS. The number of 
records from each tectonic regime is proportional to its 
contribution to the site hazard. Thus, there are 16 Shal-
low Crustal, 13 Subduction Interface, and 11 In-Slab 

Fig. 5  a Change in seismic hazard from NBCC 2015 to NBCC 2020 for selected locations in Canada, from east to west. Intensity measure- Sa(0.2) 
; Return Period- 2475 year; Site Class- C ( Vs30 = 450 m/s). b Response spectrum for Vancouver based on the NBCC 2015 and NBCC 2020 seismic 
hazard models

Fig. 6  PSHA results based on the NBCC 2020 seismic hazard model. a Seismic hazard curve and b deaggregation based on Sa(1.17 s) for the 
Vancouver site
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records. The NGA West-2 database [75] has been used 
for crustal and in-slab records, whereas the KiK-net 
database [76] has been used for the subduction records. 
Site classification and flat-files for each database are 
available in the literature [77, 78]. The period range of 
interest is based on the NBCC guidelines [69, 79]. The 
upper bound of the period range, Tmax is defined as 
max(2T1, 1.5 s) , where T1 is the period of vibration in 
the first mode. The lower bound of the period range, 
Tmin is defined as min(0.15T1,T90%) , where T90% is the 
lowest period of vibration that achieves a cumula-
tive mass participation of 90%. For the RC-CLT build-
ing, the 0.25 second period corresponds to the third 
mode. Thus, the period range of interest is [0.18, 2.34]. 
A computationally-efficient algorithm is employed to 
select the ground motion suite [80]. The scaling factor 
is limited to 5 [69]. Further, a restriction of RJB > 20 km 
is imposed to exclude near-field records. A maximum 
magnitude difference of 1.5 from the modal magnitude 
is allowed. The Vs30 values are between 300 and 600 
m/s. Figure  7b–c show the target and achieved mean 
and dispersion of the three conditional spectra. An 
excellent match reflects the versatility of the considered 
database and selection algorithm.

Results
Pushover analysis
Figures  8b–c show the pushover curves for the RC-CLT 
hybrid frame with slit and flag-shaped dampers, 

respectively. The pushover curves for the latter with 
βF = 0.8 and βF = 0.6 are identical due to the com-
mon backbone curve of both flag-shaped dissipa-
tors. The effect of the recentering ratio is captured 
in the dynamic analysis, which is presented in the 
subsequent sections. The pushover curves of hybrid 
frames are compared with the bare RC frame (Fig. 8a) 
to observe the effects of the CLT infill and energy  
dissipators on the nonlinear static response. For 
both types of dissipators, a significant increase of 
≈ 70% is observed in the maximum base shear. While 
the yield displacements of the hybrid buildings are 
smaller than that for the bare frame, the maximum 
deformation capacity (corresponding to a base shear 
reduction to 80% of the maximum) increases. Thus, 
a combination of CLT infill with energy dissipators 
enhances the strength as well as the drift capacity of 
the building. The reduction in yield drift is attributed 
to the presence of the stiffer CLT infills, whereas the 
higher ultimate deformation is attributed to the high 
deformability of steel slit and flag-shaped dampers. 
The nonlinear static capacity of the hybrid frame with 
flag-shaped dissipators is similar to the frame with slit 
dampers. Since the design of frames is based on static 
analysis, this similarity confirms the equivalence of 
the design using both types of dissipators. The mar-
ginal difference in the inelastic capacity of the two 
dissipators is attributed to the discrete nature of the 
design process.

Table 3  Spectral value and deaggregation tuples for contributing tectonic regime for Vancouver site and Sa(1.17s) corresponding to a 
return period of 2475 years

Tectonic Regime Contribution to Hazard M R (km) ε(1.17 s) Ground Motion Model

Active Shallow Crustal 41% 7.35 15 0.777 CB14 [72]

Subduction Interface 32% 8.85 145 1.797 BCH16 [73]

Intra-Slab 27% 7.15 55 1.047 AB03-Sub [74]

Fig. 7  Scaled selected records targeted at the hazard and deaggregation corresponding to the Vancouver site. a Pseudo response spectra of 
individual records. Thick broken lines mark the 97.5%ile and 2.5%ile values, b target conditional mean for the three tectonic regimes and c target 
log-standard deviation for the conditional spectra. The conditioning period is 1.17 s
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Incremental dynamic analysis
The seismic performance of the RC-CLT hybrid system 
with different energy dissipators is assessed using incre-
mental dynamic analysis (IDA) [81]. Under IDA, increas-
ingly scaled ground motion records are applied to the 
building until its collapse. The statistical distribution of 
the intensity measure values for each ground motion 
record in the suite is used to derive the seismic fragility 
function. Due to the unique seismicity of Southwestern 
British Columbia, a rigorous ground motion selection 
method is adopted. As discussed earlier, a suite of 40 
pairs of ground motion records is selected to represent 
the three tectonic regimes that affect Vancouver, British 
Columbia. Figure  9 shows the IDA curves for RC-CLT 
buildings with three design configurations of energy dis-
sipators, viz., one slit damper and two flag-shaped dis-
sipators with recentering ratio, βF = 0.8 and βF = 0.6 . 
The figure also shows the 84th and 16th percentile IDA 
curves. The median collapse capacity of buildings with 
flag-shaped dissipators is observed to be the highest. 
This may be attributed to the recentering capacity of 

flag-shaped dissipators, which result in relatively smaller 
nonlinear deformations. It is noted that the scaling of the 
ground motion records for IDA maintains the same spec-
tral shape at different intensities, which may not be a 
true representation of the hazard. Multiple stripe analy-
sis targeting conditional spectra at different intensities can 
alleviate this issue [82, 83].

Fragility assessment
Using the empirical data from the IDA curves, a lognor-
mal distribution is fitted to produce a collapse fragility 
for each building. Figure  10 shows the collapse fragility 
of three RC-CLT hybrid building designs. The spectral 
acceleration corresponding to the first mode Sa(1.17 s) 
is chosen as the intensity measure. Table 4 presents the 
fragility parameters. The fragility functions reaffirm the 
better seismic performance of buildings with flag-shaped 
dissipators, whose median collapse capacity is 25–30% 
more than those with slit dampers. Accordingly, the col-
lapse margin ratio (CMR) defined as the ratio of median 
collapse capacity to the MCE level spectral acceleration 

Fig. 8  Pushover curves for the a 6-story bare RC frame, b RC-CLT hybrid building with steel slit dampers, and c RC-CLT hybrid building with 
flag-shaped dissipators

Fig. 9  IDA curves for the 6-story RC-CLT hybrid building with a steel slit dampers, and with RC-CLT hybrid building with flag-shaped dissipators 
having b βF = 0.8 , and (c) βF = 0.6 obtained using 40 pairs of NBCC 2020-compliant site-specific ground motion records. IDRmax represents the 
maximum interstory drift ratio
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is found to be 2.8 in the case of slit dampers, whereas it 
increases to 3.6 and 3.5 for buildings with flag-shaped 
dissipators. It is noted that an increase in the recenter-
ing ratio βF results in higher collapse capacity. This can 
be attributed to the larger hysteresis loops for βF = 0.8 
compared to that for βF = 0.6 , as shown earlier in Fig. 4. 
Thus, the flag-shaped dissipator with a higher recenter-
ing ratio provides higher energy dissipation and thus less 
deformation.

Residual deformation
While the maximum interstory drift ratio ( IDRmax ) is 
a useful measure for the collapse assessment of struc-
tures, the post-earthquake safety of a structure is largely 
determined based on the residual drift ratio ( IDRres ). 
The literature is rich with studies on IDRres for single- 
and multi-degree-of-freedom systems (e.g., [7, 84–86]). 
Figure  11 shows a plot of the residual drift ratio versus 

maximum drift ratio for all three energy dissipators. It is 
observed that flag-shaped dissipators significantly reduce 
the residual drift. Thus, the recentering capacity of flag-
shaped dissipators improves the building performance by 
reducing residual drift.

Collapse risk assessment
The fragility functions developed in the previous section 
capture record-to-record uncertainty ( βRTR ) in the build-
ings’ seismic performance. Additional sources of uncer-
tainty were approximated based on the literature [87]. 
These include (a) uncertainty in design requirements, 
βDR = 0.10 : Superior rating on account of capacity-based 
RC frame obtained using DDBD, (b) uncertainty in test 
data, βTD = 0.20 : Good rating due to well-calibrated 
material and damper properties, and (c) modeling uncer-
tainty, βMDL = 0.35 : Fair rating due to modest confidence 
in the representation of the collapse characteristics. Dif-
ferent uncertainty components are combined using the 
square root of the sum of their squares. Table  4 sum-
marizes different measures of collapse for the RC-CLT 
hybrid building with energy dissipators. The probability 
of collapse at MCE, P(coll|MCE), for the building with 
slit dampers is found to be 2.7%. As anticipated from 
the fragility, the value of P(coll|MCE) for buildings with 
flag-shaped dissipators is smaller and equals to 1.7% and 
1.9% for βF = 0.8 and βF = 0.6 , respectively. These val-
ues are favorably compared to the target of 10% in code-
compliant ordinary buildings based on ASCE 7 [88]. The 
collapse rate, �coll is estimated using the total probabil-
ity theorem considering all possible intensity levels. The 
value of �coll is assessed as 0.65× 10−4 for the hybrid 
building with slit dampers, whereas �coll for buildings 
with flag-shaped dissipators is found to be 0.42× 10−4 
and 0.46× 10−4 . These values again compare favora-
bly to the collapse risk target of 2× 10−4 in ASCE 7 
[88]. Assuming a Poisson’s distribution for collapse, the 

Fig. 10  Collapse fragility curves for the 6-story RC-CLT hybrid building with a steel slit dampers, and b,c flag-shaped dissipators having b βF = 0.8 , 
and c βF = 0.6

Fig. 11  Maximum interstory drift ratio ( IDRmax ) versus the residual 
interstory drift ratio ( IDRres ) for the RC-CLT hybrid building with 
different energy dissipators. The broken line represents the 45◦ case 
for equal maximum and residual values
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probability of collapse in 50 years P(coll)50y is deter-
mined as 0.32% for the slit damper case; P(coll)50y takes 
the value of 0.21% and 0.23% for the cases with flag-
shaped dissipators. These values again comfortably meet 
the conventional target of 1% for ordinary buildings [88].

Conclusions
A global call for environmentally-sustainable construc-
tion is making timber an attractive material for building 
structural systems. The seismic performance of a hybrid 
timber building located in Vancouver, Canada is stud-
ied in this paper. The latest 6th generation seismic haz-
ard model described in the NBCC 2020 coupled with the 
complex seismotectonic features of southwestern British 
Columbia make a compelling case for the present inves-
tigation. The six-story RC-CLT hybrid building contains 
steel slit dampers that enhance its energy dissipation 
mechanism. A hazard-consistent suite of 40 ground 
motion records representing three tectonic regimes 
(Subduction, Shallow Crustal, and In-slab) is selected for 
nonlinear response history analysis. The effectiveness of 
the energy dissipation mechanism using slit dampers is 
compared to a modern flag-shaped dissipator. Two flag-
shaped dissipators are considered to observe the effect 
of different recentering ratios. The seismic performance 
of three building configurations is compared in terms of 
residual drift ratio. Flag-shaped dissipators are shown to 
outperform the slit dampers. The following conclusions 
are drawn from the study:

•	 The CLT infill and steel slit dampers in the build-
ing enhance its maximum base shear capacity by 
≈ 70% compared to the bare RC frame. While the 
yield displacement of the hybrid building is margin-
ally smaller due to the stiffer CLT infills, the maxi-
mum deformation capacity is enhanced by steel 
slit dampers. Thus, a combination of CLT infills 
and steel slit dampers increased both the lateral 
strength and drift capacity of the building.

•	 Comparable nonlinear static performance is 
obtained for the hybrid buildings with flag-shaped 
dissipators and steel slit dampers. However, when 
the nonlinear response history is compared, the 
buildings with flag-shaped dissipators outperform 
the ones with slit dampers.

•	 The median collapse capacity of the buildings with 
flag-shaped dissipators is 25–30% more than those 
with slit dampers. Correspondingly, the collapse 
margin ratio (CMR) is found to be 2.8 in the case 
of slit dampers, whereas it increases to 3.5–3.6 for 
buildings with flag-shaped dissipators.

•	 With an increase in the βF  value, the flag-shaped 
hysteresis provides a better energy dissipation 
mechanism.

•	 Compared to the steel slit damper, the flag-shaped 
dissipators significantly reduce the residual drift 
under seismic excitation.

•	 The probability of collapse at the MCE for the 
hybrid building with slit and flag-shaped dissipators 
( βF = 0.8 and βF = 0.6 ) was found to be 2.7%, 1.7%, 
and 1.9%, respectively. These values are deemed 
favorable when compared to the 10% target for 
code-compliant ordinary buildings in ASCE 7 [88]. 
Further, the probability of collapse of the hybrid 
building in 50 years was computed as 0.32%, 0.21%, 
and 0.23%. These values again outperform the con-
ventional target of 1% for ordinary buildings.
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