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Abstract 

Rainfall-induced slope failures disrupt the traffic and warrant urgent slope repair works. The impact of roadside slope 
failures can be minimized if slopes are proactively rehabilitated. Nonetheless, transportation agencies are constrained 
in their budget to rehabilitate a limited number of slope segments due to competing maintenance needs among 
different transportation assets. Therefore, the transportation agencies should identify the critical slope combination 
that should be proactively rehabilitated under constraint budgets to lessen the impact on the transportation net-
work during extreme rainfall events. The decision-making approach for slope rehabilitation should also ensure low 
risk associated with the selected rehabilitation strategy. Current slope-rehabilitation decision models do not consider 
the risk associated with the rehabilitation strategies in the decision-making process. The objective of this study is to 
develop a risk-averse stochastic combinatorial optimization to facilitate the selection of slope rehabilitation strategies, 
which leads to the least expected cost and conditional value at risk (CVaR) for extreme rainfall events. The simulated 
annealing approach is used to solve the risk-averse combinatorial optimization rehabilitation problem with the objec-
tive function that measures the total cost of traffic disruption and slope restoration post-failures. The approach is 
demonstrated using a transportation network in Lamar County, Texas. Unlike a genetic algorithm-based approach in 
the literature that yields a single slope rehabilitation strategy, the proposed risk-averse simulated annealing approach 
identifies rehabilitation strategies along the Pareto efficient frontier facilitating the rehabilitation decisions based on 
the tradeoff between expected cost and CVaR. For the network in Lamar County, the proposed risk-averse simulated 
annealing provided a solution in the Pareto front that reduced CVaR by 2.0% compared to the solution obtained from 
the genetic algorithm-based approach while only increasing the expected cost by 0.8%. The risk-averse optimization 
approach will aid transportation agencies in determining slope rehabilitation strategies for minimizing the impact of 
rainfall-induced failures at appropriate risk aversion levels.
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Introduction
Frequent and intense rainfall events, which are 
becoming increasingly common with climate change, 
have threatened the stability of roadside slopes that 
are crucial for the effective functioning of the road 

transportation system [37]. Failure of roadside slopes 
reduces the transportation system efficiency by 
detours, traffic backups, delays, and additional costs 
in fuel [2, 3]. The transportation agencies must further 
deal with the financial burden of slope restorations. 
Each year, highway agencies spend millions of dollars 
on restoring failed slopes [7]. The impact of rainfall-
induced slope failures can be minimized if slopes in 
threat of rainfall-induced failures are proactively reha-
bilitated. However, due to competing rehabilitation 
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needs among the infrastructure assets (e.g., bridges, 
pavement, retaining walls), transportation agencies lack 
sufficient resources to maintain all the critical road-
side slopes in a transportation network [23]. Hence, 
it is necessary to identify, prioritize, and proactively 
rehabilitate the slope segments with limited resources 
available for slope maintenance. The proactive reha-
bilitation should result in the least disruption of traf-
fic and minimize agency costs (i.e., slope restoration 
costs) after extreme events triggering rainfall-induced 
failures. To support the proactive rehabilitation deci-
sions, state transportation agencies such as the Minne-
sota Department of Transportation (MnDOT) and the 
Texas Department of Transportation (TxDOT) have 
performed slope stability analyses to determine the 
slope failure susceptibility level along the highway cor-
ridors [13, 31]. However, due to the limited availability 
of budget, the state’s agencies find themselves in a dif-
ficult position to determine the suitable combination 
of slopes that should be proactively rehabilitated for 
enhancing the resilience of the transportation system. 
Let us consider a transportation network (Fig. 1) where 
three slope segments are susceptible to rainfall-induced 
failures and transportation agencies cannot rehabilitate 
slope length more than Lrehab due to budget constraints. 
Each slope segment, i, in the network has length, Li, 
and failure probability, Pfi. The transportation agen-
cies should rehabilitate a combination of slopes (e.g., 
[L1, L2], [L1, L3]) that should sum to Lrehab and lead to 

the least failure cost during extreme rainfall events. As 
rainfall-induced slope failures are probabilistic due to 
the uncertainty associated with soil mechanical param-
eters (cohesion and internal angle of frictions) and 
rainfall intensities [27], the distribution of failure costs 
under any rehabilitation combination is also probabil-
istic. Hence, in selecting a rehabilitation strategy, it is 
essential to ensure the expected cost during extreme 
events is minimized while also limiting the conditional 
value at risk associated with the rehabilitation strategy.

Past studies attempted to identify the slope seg-
ments with high failure susceptibility along the high-
way corridors but remain largely silent on how slope 
rehabilitation should be prioritized under constrained 
rehabilitation budgets. Hunt [14] prepared a slope fail-
ure risk map along transportation corridors based on 
the assessment of slope geometry, geologic conditions, 
weather, and surface conditions. The risk maps are 
solely based on expert judgment, field survey, and inter-
pretation of stereo-pairs of aerial photography. Achour 
et al. [1] used the Analytic hierarchy process (AHP) and 
information value (IV) methods to identify the slopes 
with high failure risk along the highway corridor; the 
relationship between landslide events and landslide-
related factors such as lithology, slope gradient, slope 
aspect, geotechnical parameter, and distance from fault 
was carried out in GIS (Geographic Information Sys-
tem) environment. Ramanathan et  al. [28] considered 
six factors (geological formation, slope angle, elevation, 
slope history, land cover, and precipitation) in the quali-
tative index overlay method to determine the failure 
susceptibility of slopes along highway corridors. Pantha 
et al. [25] used a bivariate statistical model to determine 
the slope susceptibility indices of roadside slopes and 
used these indices to prioritize the slope rehabilitation 
works along the highway corridors. Similarly, Holmstadt 
et al. [13] used a logistic regression model to assess the 
failure probability of slopes along the highway corridors 
in three counties of Minnesota. In addition to the statis-
tical and index-based models, the physics-based mod-
els have also been extensively used in assessing roadside 
slope stability. Mohseni et al. [22] used the infinite slope 
stability and pore pressure models to determine the 
rainfall-return periods capable of triggering slope fail-
ures along highway corridors. Similarly, Baral et  al. [5] 
used a combination of the hydrological and geotechni-
cal models to identify the rainfall-induced slope failure 
susceptibility of roadside slopes along highway corridors 
of Texas. More recently, proactive slope rehabilitation 
decisions have been determined such that the impact of 
extreme rainfall events triggering rainfall-induced fail-
ures is minimized for both road users and transporta-
tion agencies. Baral and Shahandashti [31] developed 

Fig. 1  An example network showing critical slope segments at three 
locations
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a metaheuristic-based optimization approach to iden-
tify the most suitable slope rehabilitation strategies 
for roadside slopes under a constrained rehabilitation 
budget. The probabilistic slope failure analysis was per-
formed along the highway corridors, and the expected 
cost of failure was determined for rainfall-induced slope 
failure scenarios under various rehabilitation strategies. 
Baral and Shahandashti [31] picked a slope rehabilita-
tion strategy leading to the least cost during extreme 
rainfall events; however, this study ignores the risk asso-
ciated with the rehabilitation strategy in the proactive 
rehabilitation decision-making process. As the slope 
failures during extreme rainfall events are probabilistic, 
the cost of failure during extreme rainfall events is also 
probabilistic. Therefore, the slope rehabilitation strat-
egy should not only minimize the expected cost during 
catastrophic events but also minimize the conditional 
value at risk associated with the rehabilitation strategy.

The objective of this research is to identify a com-
bination of roadside slopes that must be proactively 
rehabilitated with a limited budget to minimize the 
expected generalized cost E(V) while also limiting the 
conditional value at risk (CVaR) associated with the 
rehabilitation strategy. The expected generalized cost 
E(V) is the average of possible generalized cost (i.e., 
combined failure cost for user and agency) of different 
slope failure scenarios under a rehabilitation strategy. 
The risk of rehabilitation decision is measured as the 
conditional value at risk (CVaR) associated with a reha-
bilitation strategy. The CVaR approximates the average 
of the worst-case generalized costs of the rehabilita-
tion strategy [29, 30]. The rehabilitation strategy with 
the least CVaR ensures that the risk associated with the 
rehabilitation decision is low.

Methodology
This section outlines the methodology used for risk-
averse simulated annealing to determine the critical 
slope combination that should be proactively rehabili-
tated under a constrained budget. The proposed risk-
averse simulated annealing approach for the first time 
incorporates the Conditional Value at Risk (CVaR) bor-
rowed from quantitative finance into a slope rehabili-
tation decision framework to facilitate the selection of 
slope segments that should be proactively rehabilitated 
to minimize expected failure cost and CVaR during 
extreme rainfall events. Determining the critical road-
side slopes combination for proactive rehabilitation 
involves (1) formulating a risk-averse stochastic combi-
natorial optimization problem and (2) using a simulated 
annealing-based approach to solve the stochastic com-
binatorial optimization problem.

Problem formulation
The optimization problem of minimizing expected gen-
eralized cost (V) in a transportation network is defined 
as:

Subjected to

Where RS represents possible combinatorial space of 
rehabilitation strategy (r) for proactive maintenance of 
roadside slopes. Two possible outcomes can be defined 
for a slope in the generation of a rehabilitation strat-
egy, i.e., either slope can be rehabilitated or left unreha-
bilitated. For example, consider three slope segments in 
a road network susceptible to rainfall-induced failure 
(Fig. 1). The strategy for rehabilitation can be represented 
as {rh1, rh2, rh3}, where rhi = 0 represents no rehabilita-
tion, and rhi = 1 represents the rehabilitation of the ith 
slope segment. Based on this, the possible rehabilitation 
strategies for network in Fig.  1 are RS = {{1,1,1}, {1,0,1}, 
{0,1,1}, {0,0,1}, {1,1,0}, {1,0,0}, {0,1,0}, {0,0,0}}. In the 
absence of constraints, the combinatorial decision space 
for a transportation network with N number of slope seg-
ments requiring repair would be RS ∈ X2N×N . However, 
the combinatorial decision space is reduced by the opti-
mization constraint that no rehabilitation strategy (r∈RS) 
can result in a rehabilitation cost that exceeds the avail-
able rehabilitation budget (C𝑟𝑒ℎ𝑎𝑏). The feasible rehabili-
tation strategy should also have the conditional value at 
risk less than a specified tolerance cost (Tcost).

For the generalized cost (V), which can be represented 
as a continuous distribution function  (FX(v)), CVaRα(V) 
is the conditional expectation of V subjected 
to V ≥ VaRα(V). Figure 2 shows the distribution of gen-
eralized costs for a rehabilitation strategy of roadside 
slopes.
VaRα(V) represents the value at α-percentile of the 

random variable V. CVaRα(V) can be determined using 
Eq. 2.

Where

(1)minr∈RS E V r

Ns
∑

k=1

nkCk ≤ Crehab

CVaRα ≤ Tcost

(2)CVaRα(V ) =
∫ ∞

−∞
v dFα

X (v)

(3)Fα
x (v) =

{

0, when v < VaRα(V )
FX (v)−α
1−α

,when v > VaRα(V )
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The distribution parameter N (μv, σv) of generalized 
cost (V) for a rehabilitation strategy (r) is determined 
using the Monte Carlo simulations.

Solving optimization problem
Figure  3 outlines the process used for solving the risk-
averse optimization problem. Solving the optimization 
problem starts with determining slope failure probabili-
ties of roadside slopes. The failure probability of roadside 
slope is assessed using a combination of physics-based 
hydrological and geotechnical models incorporating 
the uncertainty associated with soil cohesion, internal 
angle of friction, and rainfall intensity [4, 42]. First, the 
increase in soil water pressure due to rainfall infiltration 
is determined using the pore pressure response model 
[16]. Then, the decrease in factor of safety (FOS) due to 
increased soil water pressure is determined using the 
infinite slope stability model [34]. The FOS is obtained 
using Eq. 4.

where z is the failure depth, α is the slope angle, φ is 
drained fully softened internal angle of friction c is the 
cohesion, γs is the unit weight of soil, γw is the unit weight 
of water, and Ψ is the soil water pressure at failure depth.

In calculating FOS for different landscape pixels, the 
uncertainty associated with the soil parameters leads 
to an uncertain forecast of slope stability for roadside 
slopes. The uncertainty of soil mechanical parameters 
like internal angle of friction and cohesion is described 
using the probability density functions [27]. Uniform 
distribution is desirable to define soil properties in an 
area where an appropriate range can be specified for 
soil mechanical properties [42]. The uniform probabil-
ity distributions for the internal angle of friction and soil 
cohesion are defined in the range of U (φmin, φmax) and 
U (cmin, cmax). The FOS is determined using Monte Carlo 

(4)FOS =
tanφ

tanα
+

C

γs z sinα.cosα
−

Ψ (γw)tanφ

γs z sinα.cosα

runs for 1000 different generations of frictional angle and 
cohesion. The probability of slope failure is defined as the 
ratio of times the FOS is less than 1 to the total number 
of Monte Carlo runs [27].

Following the determination of slope failure probabili-
ties of roadside slopes, an initial rehabilitation strategy 
satisfying the cost constraint is generated. For the initial 
rehabilitation strategy, expected cost and conditional 
value at risk are determined using the process outlined in 
Fig. 4.

First, a random number is generated (Rn ∈ [0,1]) and 
compared with the slope failure probability in a trans-
portation network. If the slope is not repaired based 
on the current rehabilitation strategy (r) and the failure 
probability is less than the randomly generated number, 
disruption is created in the network by blocking the adja-
cent link. Then, a traffic simulation is performed for the 
disrupted network, and an increase in user cost due to 
rerouting is calculated. The user cost includes both the 
cost associated with delays and additional costs for the 
operation of vehicles. The agency cost for restoring the 
failed slopes is also calculated. The generalized cost (i.e., 
combined user and agency cost) for a rehabilitation strat-
egy r ∈ RS, is obtained using Eq. 5.

where V represents combined user and agency cost for a 
single run of Monte Carlo simulation when slopes are 
rehabilitated using a strategy r, dtij is the travel demand 
from node i to node j for the duration of disruption (t), 
�Tr

ij is the increase in time traveling from node i to node j 
and �Lrij is the increase in travel distance from node i to 
node j, Cd is the cost due to delay and Cop is the per mile-
age cost of maintaining and operating a motor vehicle, 
and Cr

sr is the cost of restoring failed slopes after an 
extreme rainfall event. The delay cost (Cd) due to traffic 
disruption is assumed at 30.12 dollars per hour [40], and 

(5)V =
∑

i

∑

j

dtij

[

�Tr
ijCd +�LrijCop

]

+ Cr
sr

)

Fig. 2  Generalized cost distribution under a rehabilitation strategy
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the cost of operating (Cop) a passenger vehicle per mile-
age is assumed at 67 cents [6]. The traffic disruption is 
considered one-quarter of a day as this duration was 
assumed to be adequate to remove the debris caused by 
shallow slides triggered by rainfalls. The slope restoration 
cost ( Cr

sr

)

 is estimated based on the rebuilding and com-
paction method [31].

After completing N Monte Carlo runs for a rehabilita-
tion strategy r, the list of generalized costs is obtained: 
Vi = [V1, V2, V3,………..VN]. The Vi represents N differ-
ent possible values of generalized cost under a rehabilita-
tion strategy. This distribution of Vi is used to determine 
the expected value of generalized cost (E(Vr)) and the 

conditional value of risk CVaRα(Vr) for the rehabilitation 
strategy r.

The approach outlined in Fig.  4 for calculating 
expected generalized cost and conditional value at risk 
is integrated into a risk-averse simulated annealing algo-
rithm to determine the rehabilitation strategy that would 
lead to the least expected cost while also reducing the 
conditional value at risk. Due to the probabilistic nature 
of slope failures, the generalized cost (V) associated with 
rehabilitation strategies is also stochastic, i.e., general-
ized cost (V) associated with the rehabilitation strategy 
follows a probability distribution and can only be ana-
lyzed statistically. The inclusion of risk-aversion in the 

Fig. 3  Steps in the risk-averse simulated annealing process
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optimization process enables the selection of rehabilita-
tion strategy considering the tradeoff between expected 
generalized cost and Conditional Value at Risk (CVaR). 
Further due to the combinatorial nature of selection of 
slope segments and the stochastic nature of general-
ized cost (V), the optimization problem represented by 
Eq.  1 is a stochastic combinatorial optimization prob-
lem. Since Eq.  1 lacks a closed-form representation, a 
risk-averse simulated annealing approach has been used 
to determine the rehabilitation strategy that would lead 
to minimum expected cost at acceptable risk levels. 
The simulated annealing mimics a solid annealing pro-
cess, where the state of the solid resembles the possible 
solutions, energy resembles the objective function of an 
optimization problem, and the cooling rate of the solid 
is analogous to a finite sequence of temperature in simu-
lated annealing [19]. The metropolis criterion is used to 
determine the acceptance or rejection of a new solution 
at different temperatures during the progression of sim-
ulated annealing [21]. At each temperature, mutation of 
the existing rehabilitation strategy is performed to gen-
erate new solutions. At the initial stage of the simulated 
annealing process, the temperature is set high, thereby 
increasing the probability of accepting the inferior solu-
tions. With the decrease in temperature, the probability 
of accepting an inferior solution is decreased and fine-
tuning of the optimal solution takes place in the most 
promising decision space. The time required for con-
verging to an optimal solution is dependent upon the 
cooling rate and initial temperature. Typically, the initial 

temperature, cooling rate, and stopping criteria is deter-
mined using sensitivity analysis [33].

Following the determination of expected cost (E(Vr)) 
and conditional value of risk  (CVaRα(Vr)) of a randomly 
generated initial rehabilitation strategy (Fig.  3), a new 
rehabilitation strategy is generated by randomly mutat-
ing the 25 % of the binary strings of the old rehabilitation 
strategy. The initial temperature is set to the general-
ized cost of failure when no rehabilitation is performed 
in a network. The fitness of the new rehabilitation strat-
egy is evaluated based on E(Vr) and CVaRα(Vr)   of new 
and existing rehabilitation strategies in each generation 
of simulated annealing, until the final temperature is 
reached. The decision of adopting a new rehabilitation 
strategy compared to the existing rehabilitation strategy 
(i.e., the old strategy) is based on the following conditions:

Case 1: E(V)new ≤ E(V)old

Subcase 1a: If the CVaR of the new strategy is less 
than the old strategy, and the CVaR of the new 
strategy is also less than the tolerance cost, then 
the new strategy replaces the old strategy in the 
next generation of simulated annealing.
Subcase 1b: If the CVaR of the new strategy is 
more than the previous strategy, then the metrop-
olis function is used to select the rehabilitation 
strategy for the next generation. A random num-
ber (λ ∈ [0,1]) is generated and compared with the 
state of energy Δ given by Eq. 6.

Fig. 4  Calculation of expected cost and conditional value at risk
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Where ‘Temp’ is the temperature at the current simu-
lated annealing run. The old strategy is replaced by the 
new when λ < Δ. Otherwise, the old rehabilitation strat-
egy is carried to the next generation.

Case 2: E(V)new > E(V)old

Subcase 2a: If the generalized cost of the new strat-
egy is greater than the old strategy, but the CVaR of 
the new strategy is less than the tolerance cost, the 
state of energy (D) given by Eq.  7 is checked with 
the randomly generated number (β ∈ [0,1]).

Where ‘Temp’ is the temperature at the current simu-
lated annealing run. The old strategy is replaced by new 
when β < D, otherwise old strategy is carried to the 
next generation.

Subcase 2b: If the generalized cost of the new strat-
egy is greater than the old strategy and the CVaR of 
the new strategy is also greater than the previous 
strategy, the state of energy Δ and D are determined 
as per Eqs.  6 and 7. The old strategy is replaced by 
new when λ < Δ and β < D, otherwise the old strategy 
is carried to the next generation.

(6)Δ = exp

(

−
(

CvaR95(old)
)

−
(

CvaR95(new)
)

Temp

)

(7)D = exp

(

−(E(Vold))− (E(Vnew))

Temp

)

Application
The proposed risk-averse optimization approach is used 
to identify the most suitable slope combination for pro-
active repair in Loop 286 in Lamar County, Texas. The 
Loop 286 selected to demonstrate the proposed risk-
averse optimization approach is shown in Fig. 5.

First, the slope failure probabilities of slopes along the 
highway corridors were determined using a combination 
of the infinite slope stability model [34] and the rainfall 
infiltration model [16]. This study considered a rainfall 
of 3-day and a 10-year return period to assess the fail-
ure probability of the roadside slopes along the highway 
corridors [12]. The data on rainfall for the study area is 
obtained from the Precipitation Frequency Data Server 
(PDFS), which is operated and maintained National 
Weather Service (NWS) [24]. A rainfall distribution func-
tion for a 3-day duration and 10-year return period in the 
study region is given by Eq. 8, where g(r) represents the 
probability of rainfall intensity r. The mean rainfall inten-
sity in the study area is 7.21 in.

The infinite slope stability and rainfall infiltration 
models require slope angles and soil properties to deter-
mine the slope failure probabilities along the highway 
corridors. The LiDAR (Light Detection and Ranging) 

(8)g(r) =
1

0.125x
√
2π

exp



−

�

ln
�

r/7.21
��

2

0.03125





Fig. 5  Loop 286 in the TxDOT Paris district
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data was used to determine the slope angles of the land-
scape. The LiDAR dataset is publicly available by Texas 
Natural Resource Information System [38]. The LiDAR 
data was processed in GIS to obtain a slope angle raster 
with a cell size of 3 m. The soil properties for slopes were 
obtained from the Soil Survey Geographic (SSURGO) 
database [35]. The SSURGO database is publicly avail-
able by Natural Resource Conservation System (NRCS). 
Slopes in Lamar County are primarily clayey soils with 
high shrinkage and swelling potential [32], and slope 
failures usually occur at fully softened strength [18]. At 
fully softened strength, the shear strength of soil is con-
siderably reduced, and the cohesion of soil is negligible 
[17]. Hence, based on past slope failure literature, the 
cohesion of 50 psf was assumed for calculating slope 
failure probability [18, 36, 41]. The mean frictional angle 
for each landscape cell was obtained using the empiri-
cal correlation that establishes the relation of frictional 
angle with Liquid Limit (LL) for different clay fractions 
and effective stress [11]. After defining the mean cohe-
sion and fully softened frictional angle for each land-
scape cell, the lower and upper limit of cohesion and 
friction angle were assumed to lie within 50% of the 
mean value for developing a probabilistic slope failure 
map [4, 27]. The cohesion for each pixel was assumed to 
be in the range of [0.5 × cmean,1.5 × cmean], and the inter-
nal angle of friction was assumed to be in the range of 
[0.5 × φmean,1.5 × φmean]. After determining the range of 

values for frictional angle and cohesion, the slope failure 
probability was determined using a combination of the 
infinite slope stability model and hydrological model [4]. 
From the probabilistic slope failure analysis, twenty-one 
slope segments along the highway corridors were found 
to have a failure probability greater than 0.2. Park et  al. 
[26] and Ko Ko et al. [20] considered slope failure prob-
ability greater than 0.1 and 0.2, respectively, susceptible 
to slope failures. This study used a failure probability of 
0.2 as a cut-off value for narrowing the number of slope 
segments to be incorporated into the rehabilitation deci-
sion framework. Figure  6 shows the twenty-one slope 
segments considered in the proactive slope rehabilitation 
framework to demonstrate the risk-averse optimization 
approach proposed in this study.

For all the 21 slope segments identified to have high 
failure susceptibility, the slope rehabilitation cost was 
estimated using the rebuilding and compaction method 
[31]. For this study, the cost of restoring the slope after 
failure is assumed to be the same as the cost of proac-
tively rehabilitating the slope segments. The cost of pro-
actively rehabilitating the slope segments is shown in 
Table 1.

The traffic count data in 98 different locations of the 
network was obtained from the traffic count database 
[39]. The open-source simulation package SUMO (Simu-
lation of Urban Mobility) was used to develop the traffic 
simulation in the network. The OpenStreetMap (OSM) 

Fig. 6  Slopes with high failure susceptibility in Loop 286 of Paris district, Texas
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was used to extract the map of the study area, and a 
network compatible for running traffic simulation was 
obtained using the NETCONVERT tool in SUMO [8]. A 
NETEDIT tool in SUMO was used to manually modify 
the network [10]. The NETEDIT enables the addition of 
missing edges, links, connections, and traffic lights in the 
SUMO network. After the generation of the network, 
the ‘routeSampler’ tool was used to heuristically sample 
routes that matched the traffic count data obtained from 
the detectors at different locations of the network [9].

After determining all critical slope segments and gen-
eration of network traffic, a convergence study was con-
ducted to determine the average number of runs required 
for convergence of expected cost in each rehabilitation 
strategy. Figure 7 shows the average generalized cost for 
different Monte Carlo runs when no slopes in the net-
work are rehabilitated. The convergence study considered 
no rehabilitation because the uncertainty is highest in 
the unrehabilitated network compared to a rehabilitated 
network.

After determining the required number of Monte Carlo 
runs from the convergence study, a risk-averse simulated 
annealing approach was used to determine the best slope 

rehabilitation strategy such that no rehabilitation strategy 
exceeds 25% of the total rehabilitation budget obtained in 
Table 1. Also, no rehabilitation strategy can have a condi-
tional value at risk greater than 0.5 million USD. Param-
eters for risk-averse simulated annealing are shown in 
Table 2.

The initial temperature in the first run of simulated 
annealing was set to the expected cost of slope failure 
considering no rehabilitation of roadside slopes (Fig. 7). 
Ten iterations were conducted on each temperature. The 
cooling factor (Table  2) was used to lower the existing 
temperature after ten iterations of risk-averse simulated 
annealing. The expected cost and conditional value at 
risk obtained for different rehabilitation strategies dur-
ing the progression of risk-averse simulated annealing are 
shown in Fig. 8. Five rehabilitation strategies (RS1, RS2, 
RS3, RS4, and RS5) shown in Fig. 8 represent the set of 
non-dominated solutions. A non-dominated solution 
set in a multi-objective optimization problem is the list 
of solutions in which one objective cannot be improved 
without compromising the other objective [15]. The five 
rehabilitation strategies RS1, RS2, RS3, RS4, and RS5 
shown in Fig.  8 had either expected cost or conditional 

Table 1  Cost for rehabilitation/restoration of different slope 
segments

No. Segment Failure 
Probability 
(Pf)

Longitude Latitude Cost of Slope 
Rehabilitation 
(USD)

1 S1 0.20 −95.58627 33.640225 26,890

2 S2 0.42 −95.55988 33.631041 75,574

3 S3 0.33 −95.5598 33.631421 50,542

4 S4 0.20 −95.54185 33.631145 150,104

5 S5 0.28 −95.50286 33.646242 53,022

6 S6 0.31 −95.50248 33.646162 74,904

7 S7 0.33 −95.50187 33.646415 32,054

8 S8 0.41 −95.50176 33.646768 26,132

9 S9 0.32 −95.50324 33.647626 88,389

10 S10 0.34 −95.50331 33.648061 32,889

11 S11 0.33 −95.50568 33.649207 103,890

12 S12 0.47 −95.50482 33.649117 83,582

13 S13 0.35 −95.50401 33.648972 96,023

14 S14 0.27 −95.50611 33.650401 26,142

15 S15 0.24 −95.50581 33.650558 58,700

16 S16 0.21 −95.50708 33.65027 19,023

17 S17 0.21 −95.51022 33.662315 25,721

18 S18 0.79 −95.51106 33.665119 18,953

19 S19 0.68 −95.51082 33.665211 21,151

20 S20 0.81 −95.51173 33.667181 23,787

21 S21 0.84 −95.51146 33.667214 23,517

Total Budget Required for Proactive Rehabilitation 1,110,989

Fig. 7  Convergence study to determine Monte Carlo runs

Table 2  Parameters for risk-averse simulated annealing

Parameter Value

Initial Temperature Expected cost when no 
slope is rehabilitated

Cooling factor 1.5−1

Final Temperature Initial Tempera-
ture×1.5−30

Iteration per temperature 10

Monte Carlo runs for Convergence 250

Total iteration for Simulated Annealing 300
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value at risk lower than the other policies. The rehabili-
tation strategies represented by RS1, RS2, RS3, RS4, and 
RS5 are shown in Table  3. The rehabilitation strategies 
RS1, RS2, RS3, RS4, and RS5 recommended the strategies 
for which the rehabilitation cost was 23.40, 24.24, 24.71, 

23.26, and 23.86% of the rehabilitation budget obtained 
in Table 1. The non-dominated solutions obtained from 
the proposed risk-averse simulated annealing help trans-
portation agencies select the optimum rehabilitation 
strategies with different risk-aversion levels.

Fig. 8  Expected cost and Conditional Value at Risk for different rehabilitation policies obtained during the progression of simulated annealing

Table 3  Slopes rehabilitated under strategies RS1, RS2, RS3, RS4, and RS5

Note: 1 represents rehabilitation and 0 represents no rehabilitation of the slope segment

S.N. Segment Rehabilitation Strategy

RS1 RS2 RS3 RS4 RS5

1 S1 0 0 0 0 0

2 S2 0 0 0 0 1

3 S3 0 0 0 0 0

4 S4 0 0 0 0 0

5 S5 0 0 0 1 0

6 S6 1 0 0 0 0

7 S7 0 0 1 1 0

8 S8 1 1 1 1 0

9 S9 0 0 0 0 0

10 S10 1 0 1 0 0

11 S11 0 0 0 0 0

12 S12 1 1 0 1 1

13 S13 0 1 1 0 0

14 S14 0 0 0 0 0

15 S15 0 0 0 0 1

16 S16 0 0 0 0 0

17 S17 0 0 0 0 0

18 S18 1 1 1 1 0

19 S19 0 1 1 1 0

20 S20 0 0 1 0 1

21 S21 1 1 1 1 1
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Validation
The proposed risk-averse optimization approach was 
compared with the approach proposed by Baral and 
Shahandashti [31], who used a genetic algorithm-based 
optimization approach to identify the critical combina-
tion of roadside slopes for proactive rehabilitation. This 
genetic algorithm-based approach for identifying the 
slope rehabilitation strategy was shown to outperform 
the existing index-based approach for prioritizing slope 
rehabilitation works [5]. As the genetic algorithm-based 
optimization approach ignored the conditional value at 
risk (CVaR) associated with rehabilitation strategy, the 
importance of considering the risk-aversion in the opti-
mization framework could be easily illustrated when the 
genetic algorithm-based approach was compared with the 
risk-averse simulated annealing approach proposed in this 
study. Initially, five random policies were generated such 
that no rehabilitation strategy exceeded 25% of the total 
rehabilitation budget obtained in Table  1. The expected 
costs of the randomly generated five policies were deter-
mined and a two-point cross-over was performed on the 
rehabilitation policies with the least expected cost during 
each progression of genetic algorithms. The genetic algo-
rithm was performed for 100 generations. The mutation 
was performed for 20% of the bits in the rehabilitation 
strategy. The initial mutation rate was 90% and was gradu-
ally decreased by 5% in each generation of the genetic 
algorithm.

Figure 9 shows the expected cost and CVaR of rehabili-
tation strategies obtained from the risk-averse simulated 
annealing and the genetic algorithm-based rehabilitation 

optimization approach that neglects the consideration 
of risk aversion in the optimization process. The genetic 
algorithm-based approach recommended the rehabili-
tation of slope segments S2, S3, S12, S18, S19, and S21. 
The genetic algorithm-based approach provides a single 
solution in the Pareto efficient frontier (Fig.  9) limiting 
the choice of slope rehabilitation for the decision-makers. 
On the other hand, the proposed risk-averse simulated 
annealing approach provide decision-makers a range of 
solution in the risk-return space with different expected 
cost and CVaR. Compared to the CVaR of rehabilitation 
strategy GA-RS obtained from the genetic algorithm-
based approach (Fig.  9), the CVaR of the rehabilitation 
strategy RS4 identified by the proposed risk-averse sim-
ulated annealing approach is lower by 2%. On the other 
hand, the expected cost of rehabilitation strategy RS4 is 
only higher by 0.8% compared to the expected cost of 
rehabilitation strategy GA-RS (Fig.  9). Hence, the pro-
posed risk-averse simulated annealing approach helps 
in the selection of rehabilitation strategy of slope con-
sidering the suitable tradeoff between expected cost and 
CVaR.

Discussion
The approach to slope management in transportation 
agencies has so far been reactive. i.e., the slopes are 
only repaired after rainfall-induced failures disrupt the 
transportation network. This study provides transporta-
tion agencies with a tool to facilitate proactive decision-
making. The risk-averse slope rehabilitation decision 
approach proposed in this study enables the identification 

Fig. 9  Comparison of rehabilitation optimization results with and without the risk-averse condition



Page 12 of 13Baral and Shahandashti ﻿J Infrastruct Preserv Resil            (2022) 3:12 

of the most promising combination of slopes that should 
be proactively rehabilitated with a limited budget to 
minimize the impacts of rainfall-induced geohazard on 
highway networks. While allocating all the resources to 
respond to rainfall-induced failure in wet seasons can be 
an effective way to act in response to slope failure, reac-
tive maintenance does not improve the resilience of road-
side slopes. Hence, slope management supported by a 
proactive slope maintenance decision framework is vital 
to improve the resilience of slopes that are increasingly 
threatened by extreme rainfall events.

At present, the proposed risk-averse simulated anneal-
ing approach considers the impact of rainfall-induced 
failures on road users and agencies for facilitating proac-
tive rehabilitation decision-making under a constrained 
rehabilitation budget. The proposed approach does not 
consider planning time horizon or resilience of repair 
methods in determining the rehabilitation strategies. 
However, the approach presented in this research can fit 
inside the slope management program considering the 
time horizon. For example, in a 10-year planning hori-
zon, the approach presented in this study helps to iden-
tify the most suitable combination of slopes that should 
be proactively rehabilitated each year with the limited 
annual maintenance budget. The number of slope seg-
ments to be considered each year in the decision frame-
work will depend on the failure probability of the slopes. 
While determining the failure probability of slopes can 
be straightforward, the determination of the failure prob-
ability of rehabilitated slopes is dependent on the resil-
ience offered by the slope stabilization technique, the 
quantification of which exceeds the scope of this study. 
Future studies are required to determine the resilience 
offered by different repair techniques to support the 
slope management planning over the time horizon.

Conclusion
A risk-averse combinatorial optimization problem was 
devised to identify the critical combination of slopes 
that must be rehabilitated to minimize the impact of 
rainfall-induced slope failures on the highway networks. 
The combinatorial optimization problem was solved 
using a simulated annealing approach. The objective of 
the combinatorial optimization problem was to mini-
mize the user and agency costs during the extreme rain-
fall events triggering slope failure. The rehabilitation was 
constrained by the agency’s limitation to rehabilitate 
only a limited length of slope segment due to budget 
constraints and with the risk aversion level such that the 
conditional value at risk does not exceed the tolerance 
cost. The application of the proposed risk-averse optimi-
zation approach was demonstrated using a highway net-
work in the Paris district, Texas. The rehabilitation was 

constrained so that no strategy can recommend reha-
bilitation exceeding 25% of the total budget required for 
proactive maintenance. A set of non-dominated solutions 
(i.e., rehabilitation strategies) on the Pareto front were 
obtained at the end of the simulated annealing process. 
The results were compared with the latest methodology 
in literature for determining the proactive rehabilitation 
strategy for roadside slopes. The comparison showed that 
the proposed risk-averse simulated annealing was able to 
identify the list of solutions with different risk-aversion 
levels, thereby diversifying the selection of rehabilitation 
strategies for the roadside slopes. The proposed approach 
will help transportation agencies to identify the most 
suitable combination of slopes for rehabilitation within 
acceptable risk tolerance levels under a constrained reha-
bilitation budget.
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