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Abstract 

Structural health monitoring (SHM) system aims to monitor the in-service condition of civil infrastructures, incorpo-
rate proactive maintenance, and avoid potential safety risks. An SHM system involves the collection of large amounts 
of data and data transmission. However, due to the normal aging of sensors, exposure to outdoor weather conditions, 
accidental incidences, and various operational factors, sensors installed on civil infrastructures can get malfunctioned. 
A malfunctioned sensor induces significant multiclass anomalies in measured SHM data, requiring robust anomaly 
detection techniques as an essential data cleaning process. Moreover, civil infrastructure often has imbalanced 
anomaly data where most of the SHM data remain biased to a certain type of anomalies. This imbalanced time-series 
data causes significant challenges to the existing anomaly detection methods. Without proper data cleaning pro-
cesses, the SHM technology does not provide useful insights even if advanced damage diagnostic techniques are 
applied. This paper proposes a hyperparameter-tuned convolutional neural network (CNN) for multiclass imbalanced 
anomaly detection (CNN-MIAD) modelling. The hyperparameters of the proposed model are tuned through a random 
search algorithm to optimize the performance. The effect of balancing the database is considered by augmenting 
the dataset. The proposed CNN-MIAD model is demonstrated with a multiclass time-series of anomaly data obtained 
from a real-life cable-stayed bridge under various cases of data imbalances. The study concludes that balancing the 
database with a time shift window to increase the database has generated the optimum results, with an overall accu-
racy of 97.74%.
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Introduction
Civil infrastructure is rapidly aging worldwide due to 
increasing natural calamities, population, and opera-
tional loads. Structural health monitoring (SHM) sys-
tem [7, 13] is a valuable data-driven technology that 
involves the integration of sensors, data transmission, 
data analysis, and decision-making to protect these 
structures. With the advent of next-generation sensors, 

SHM has been an emergent and powerful diagnostic tool 
for damage detection and disaster mitigation of large-
scale structures [24, 34, 45]. In the past several decades, 
SHM systems have been widely applied to different civil 
infrastructures, including bridges, tunnels, railways, 
and buildings. Without an accurate and timely SHM, it 
may result in a substantial and costly repair of the infra-
structure when there is significant damage identified in 
the structure [5, 30, 41]. Therefore, it is critical to detect 
any damages at the earliest possible stage to avoid sub-
stantial service interruption or potential safety risks. The 
lifespan of a civil infrastructure could also be lengthened 
with proactive detection and proper maintenance [42]. 
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However, being exposed to outdoor environments, SHM 
systems of civil infrastructure face significant implemen-
tation challenges from environmental and measurement 
noises, sensor faults, data acquisition malfunctions, and 
operational conditions during the data collection stage 
[1]. Sensors are also affected by poor installation, inad-
equate maintenance, lack of protective coverings, and 
delayed replacement [23]. This often leads to the col-
lection of anomalous data, requiring anomaly detection 
(AD) techniques such that only good quality data is used 
for structural diagnostics and decision-making.

AD is an essential step for data cleaning and prepara-
tion purposes of SHM before any diagnostic algorithms 
are implemented. The lifetime of SHM sensors is typically 
much shorter than that of the infrastructure [25], result-
ing in the normal aging and the need for the replacement 
of sensors. Installed sensors are often exposed to various 
weather conditions [10] and accidental incidences, which 
cause the sensors to lose connectivity, resulting in a hin-
drance to the measurement for key feature extraction. 
Sensor malfunctioning and faulty signals may potentially 
cause destabilization of the entire system and provide 
misleading information about the current condition of 
the structures [48, 50]. Without proper data cleaning pro-
cesses, the SHM technology is unable to provide valuable 
insights even if advanced damage diagnostic techniques 
have been applied. With the rapid growth of computa-
tional power, algorithm improvements, and data collec-
tion, various machine learning (ML) and deep learning 
(DL) methods [44] have been applied to the realm of 
SHM and AD.

AD techniques and algorithms are often proposed 
for binary classification and studied on in-lab or simu-
lated data, aiming to separate anomalies from normal 
data. Steiner et al. [46] focused on detecting anomalous 
data due to sensor faults in wireless sensor networks. 
They proposed support vector regression for preserv-
ing the constrained resources of wireless sensor nodes. 
The proposed method was tested on a prototype wire-
less SHM system on a four-story shear frame structure 
for automated and decentralized sensor fault detection 
and isolation. Zhu et  al. [56] explored a temperature-
driven moving principal component analysis method 
for AD. The proposed method calculated the covariance 
matrix within a pre-selected window size instead of the 
whole time series. Using the simulated case studies, it 
was concluded that the proposed method was more sen-
sitive than the traditional moving principal component 
analysis, and it was able to detect anomalies during the 
expected period without any delay. Yang et al. [53] pro-
posed a model to test a dataset obtained from a three-
story laboratory structure. The proposed model was an 
end-to-end-trainable deep scenario based on a deep 

support vector data description. The proposed model 
was to map most of the data network representation into 
a hypersphere and define an anomaly score based on the 
distance of the point to the center of the hypersphere. 
Data that lie far away from the center or outside the 
hypersphere was identified as anomaly data.

Maes et  al. [27] studied the effect of linear regression 
and linear principal component analysis models for AD 
in tunnel monitoring. The techniques were applied to a 
dataset obtained from an in-situ monitoring campaign in 
a tunnel. It was concluded that linear regression analysis 
was not suited as an AD tool for the tunnel-soil system 
due to a strong temporal dependence. The simulated 
numerical analysis showed the need for a sufficiently long 
training period, as well as the need for visual inspections 
and analysis coupled with linear principal component 
analysis. Wedel and Marx [52] studied the transient rela-
tionship between the air temperature and the bridge tem-
perature with regression methods. The regression model 
was tested with long-term monitoring data of bridges in 
Germany. The research concluded that the ML methods 
could be used to detect sensor faults by comparing real 
measured values and predicted behavior. Sensor com-
pensation via predicted sensor measurement was possi-
ble, assuming isolated and local sensor fault.

AD can be viewed as a data cleaning process for data 
compression and data reconstruction. Ni et  al. [31] 
focused on finding an efficient unsupervised method for 
SHM data compression. They proposed a one-dimen-
sional convolutional neural network (1D-CNN) with 
Adam Algorithm and mini-batch gradient descent for 
AD. Data were defined as abnormal when the measure-
ments showed unacceptable deviations from the true val-
ues of the measured variables in either time or frequency 
domain. However, the proposed model was only useful 
for binary classification, namely the normal and anoma-
lous categories. Jeong et al. [21] proposed a bidirectional 
recurrent neural network for sensor data reconstruction 
based on spatiotemporal correlation. For a system with 
N sensors, one was treated as the targeted output data, 
while sensors with high spatial correlations with the out-
put sensor were treated as input sensors, resulting in an 
N combination. The reconstruction error was used as an 
indicator to detect potential anomalies of the output sen-
sor. The faulty sensor was isolated based on the idea that 
the faulty sensor only causes local effects, and the pro-
posed algorithm resulted in a higher computational cost 
for binary classification. Recently, Mao et al. [28] argued 
that supervised learning methods of AD had two unre-
solved challenges: imbalanced dataset and incomplete-
ness of anomalous patterns for the training dataset. They 
proposed to use deep convolutional generative adver-
sarial networks with autoencoders. The input for the 
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network was transformed Gramian Angular Field images 
from time-series data, while the output was classified 
as either normal or anomalous data. Sarmadi and Kara-
modin [37] also explored unsupervised learning since it 
only required information on a single known structural 
state. They introduced an adaptive Mahalanobis-squared 
distance and one-class kNN rule to formulate a new mul-
tivariate distance. The proposed method improved the 
conventional Mahalanobis-squared distance technique 
for non-Gaussian or heavy-tailed distribution. The algo-
rithm was tested in a lab truss structure.

Similar to machine learning techniques, researchers 
also explored various deep learning techniques for AD. 
Bao et  al. [4] explored data visualization by converting 
the time-series signals into images. This was achieved 
by splitting the data into sections and plotting it in gray-
scale images. They trained a deep neural network with 
greedy layer-wise pre-training and a fine-tuning stage. 
The proposed model was tested on acceleration data that 
were divided into six patterns: missing, minor, outliers, 
squares, trends, and drifts. It resulted in a total accuracy 
of 87% for one-year test data using a real-life cable-stayed 
bridge. Tang et  al. [47] presented a two-dimensional 
CNN (2D CNN) with a combination of time-domain 
response and frequency-domain response as input 
images. The frequency-domain response was obtained 
through Fast Fourier Transform. Using a balanced data-
set, the proposed model was verified on a long-span 
cable-stayed bridge, which achieved an overall accuracy 
of 93%. Arul and Kareem [2] presented to use a relatively 
new time-series representation named “Shapelet Trans-
form” in combination with a Random Forest classifier to 
autonomously identify anomalies in SHM data. Jana et al. 
[20] proposed CNN for detecting the presence of a sen-
sor fault and convolutional autoencoder to reconstruct 
sensor data based on its identified type. The proposed 
model was tested using simulated and experimental data-
sets to demonstrate its performance. However, the model 
was designed to train data with single fault types using 
a simulated balanced dataset. Liu et al. [26] proposed to 
use a generative adversarial network and CNN-based AD 
technique. The model contains a three-channel input by 
combining time-series data with its fast Fourier trans-
form and Gramian angular field output. The proposed 
model used a generative adversarial network for address-
ing class-imbalance issues, followed by CNN for classifi-
cation tasks.

Despite a large amount of work on AD using ML and 
DL, SHM data still has several implementation chal-
lenges associated with the availability of balanced 
training data. Success in implementing DL depends pre-
dominately on access to large amounts of data [12]. If the 
dataset is too small, the lack of sufficient image samples 

makes it difficult to converge in end-to-end learning [33]. 
Recently, AD techniques were also explored to imbal-
ance datasets in different disciplines [8, 19, 51]. However, 
these studies were mostly focused on a single type of 
anomaly, which often results in poor accuracy for multi-
ple anomalies [3]. To the authors’ knowledge, there exist 
limited studies on multiclass AD of SHM data using lim-
ited imbalanced time-series datasets. Besides the size and 
imbalance issues of the sensor data, each ML algorithm 
has a hyperparameter setting. The optimal hyperparam-
eter helps in building a better ML model [32], while the 
tuning process to find the optimal combination of hyper-
parameters in the DL models improves the overall accu-
racy and minimizes the loss function effectively. This 
paper proposes a hyperparameter-tuned CNN for multi-
class imbalanced anomaly detection (CNN-MIAD) mod-
elling of time-series SHM data.

The proposed CNN-MIAD model is a novel approach 
to solving multiclass AD with a limited imbalanced time-
series dataset. In the real world, it is impractical to label 
a large amount of SHM data. Thus, there may exist a 
limited input sample where the proposed CNN-MIAD 
model aims to include an overlapping sliding window to 
increase the size of the dataset. The performance of this 
model is compared and examined using the acceleration 
data from a real-life cable-stayed bridge in three cases 
with both balanced and imbalanced datasets of varying 
input sizes. The inclusion of the random search hyperpa-
rameter tuning strategy has further optimized the model 
performance.

The paper is structured as follows: Section  2 presents 
the proposed CNN-MIAD model with an overview of 
the CNN methodology and hyperparameter tuning pro-
cesses; Section  3 illustrates the proposed CNN-MIAD 
model on imbalanced anomaly data of a real-life cable-
stayed bridge using data augmentation; Section  4 dis-
cusses the analysis and results of the proposed study. 
Section 5 presents the key conclusions and outcomes of 
this research.

Background
Convolutional neural network
Deep learning (DL) can automatically learn abstract 
features of the original data and classify them effec-
tively, avoiding the shortcoming of requiring hand-
crafted features designed by engineers [55]. CNN is 
a type of DL method that has seen rapid progress in 
recent decades due to the developments in computing 
power, the advent of large amounts of labelled data, and 
supplemented by improved algorithms in many disci-
plines [35, 44]. It is suited for structured data such as 
images and mainly comprises the convolutional layers, 
pooling layers and fully connected layers. CNNs have 



Page 4 of 15Zhao et al. J Infrastruct Preserv Resil            (2022) 3:10 

been highlighted in computer vision, image recogni-
tion, and classification tasks, which are inspired by the 
visual cortex of animals [9].

During the training of a convolutional model, the 
model learns the spatial relationships between features 
within the target dataset, which may then be applied to 
test data for classification or recognition tasks. The 2D 
convolution function is used for the input image in each 
convolutional layer to produce a tensor of outputs. The 
convolution is the sum of the products between each 
image pixel and kernel pixel. Each convolutional layer is 
followed by a pooling layer to reduce the spatial size of an 
input array as a form of down-sampling. Adding a pooling 
layer to the model does not only save the spatial informa-
tion of pixels but also reduces computational costs [36]. 
Scherer et  al. [38] empirically proved that max-pooling 
operation was vastly superior for capturing invariance in 
the data and could lead to improved generalization and 
faster convergence when compared to a subsampling 
operation. The last few layers in a CNN model are the 
fully-connected layers, which require a flattened pooling 
layer or convolutional layer as the input. The neurons in 
the fully-connected layers provide a global connection 
to every neuron in the preceding layer, whereas the neu-
rons in the convolutional layer are only connected to the 
neighbouring neurons based on the kernel size. The fully 
connected layers are used to get the probabilities of the 
input being in a particular class for classification tasks.

Hyperparameter tuning
Every machine learning (ML) system has hyperparam-
eters, and it is critical to set these hyperparameters to 
optimize performance [17]. Examples of hyperparame-
ters include the learning rate, batch size, and the number 
of neurons for the hidden layers. The learning rate of the 
model has a strong impact on the stability and efficiency 
of training. Choosing a learning rate that is too large 
results in the instability and divergence of the objective 
function, whereas choosing a learning rate that is too 
small results in slow learning and inefficiency [54]. Batch 
size defines the number of inputs that will be propagated 
through the network each time. Batch normalization, 
as one of the common regularization strategies, aims 
to deal with noise data, the limited size of the training 
data, and the complexity of classifiers to avoid overfitting 
[49]. Using a smaller batch size requires less memory 
and results in faster training; however, setting the batch 
size too small will result in less accuracy for the estimate 
of the gradient. Deciding the number of neurons in the 
hidden layers is important as too few neurons will result 
in the underfitting of the model, whereas too many neu-
rons may result in overfitting and increase the time for 
training [16].

However, these hyperparameters cannot be directly 
estimated from data, and there exist no analytical formu-
las to calculate their appropriate values [22]. This leads 
to the need for hyperparameter optimization. To tune 
the hyperparameters, grid search is the most popular 
method, which allows the user to specify a finite set of 
hyperparameter combinations. As the number of tun-
ing hyperparameters increases, the required number of 
function evaluations grows exponentially due to the full 
factorial design [29]. This results in wasted computa-
tional resources and inefficiencies as every combination 
of hyperparameter values has to be examined. An alter-
native to grid search is the random search algorithm, 
where a user only specifies the search space as a bound-
ary of hyperparameter values. As the name suggests, the 
combinations of hyperparameters are randomly sampled 
within the domain. Bergstra and Bengio [6] proved that 
randomly chosen trials are more efficient for hyperpa-
rameter optimization than grid search. There also exists 
Bayesian optimization algorithm, which contains two key 
components: the probabilistic surrogate model consisting 
of a prior distribution that models the unknown objec-
tive function and an acquisition function that is opti-
mized for deciding where to sample next [39]. This global 
optimization strategy requires a time-consuming proce-
dure and results in a high computational cost to perform 
more computation on the next iterations. It is also usually 
unclear for a given practical problem what an appropri-
ate choice is for the covariance function and its associ-
ated hyperparameters [43]. Therefore, due to the proven 
efficiency of the random search algorithm, the proposed 
method incorporates random search as the hyperparam-
eter tuning method.

Proposed approach
Data imbalance and augmentation
2D CNN models use images or image-like matrix input. 
To convert time-series data into image representation, 
the sensor readings are plotted against time. This conver-
sion of time-series data into image representation serves 
the purpose of changing dimensions for data preproc-
essing. The time frame for each image should be kept 
constant to maintain the consistency of the input. Each 
image in the whole database is converted to grayscale 
with a matching dimension to the required CNN model 
input. The dataset is randomly split into a training set, 
validation set, and testing set based on a 70–20-10 ratio. 
Both the training set and the validation set are used to 
train the CNN model with hyperparameter tuning pro-
cesses. The best combination of hyperparameters of a 
model is determined by the highest training accuracy and 
lowest validation loss. After generating the best-trained 
model with the appropriate hyperparameters, the testing 
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set is used to evaluate the accuracy of the fully trained 
CNN model.

However, a dataset is described as imbalanced when at 
least one category has relatively fewer samples than the 
other categories in classification problems. For classifica-
tion tasks, the DL algorithm favours a balanced dataset 
as it provides equal information for each class, otherwise, 
the minority observations are likely treated as noise and 
ignored in the process. In some cases, most test data 
samples are classified into the majority group, resulting in 
the classification accuracy of the minority class tending 
to be much lower than that of the majority class [18]. This 
causes the imbalanced dataset to have higher false nega-
tives on minor classes. The predictive output of classifiers 
trained with an imbalanced dataset is also biased because 
classifiers are less sensitive to the minority classes [14]. 
Furthermore, the class with the lowest number of sam-
ples is usually the class of interest from a learning task 
perspective [15]. Augmentation techniques can be used 
to address the imbalanced data issue, especially when the 
original dataset is too small [11, 40]. In time-series data, 
one way to address the data imbalance issue is through 
data augmentation using a sliding window. As illustrated 
in Fig. 1, time-series data with a non-overlapping sliding 
window requires more raw data points to generate the 
same amount of input samples. The number of raw data 
points required would further decrease with a shortened 
interval between each time shift. Using this shortened 
time shift strategy, the number of input samples for the 

minor classes will increase with the same amount of data 
points in time series data.

Proposed anomaly detection model
Figure  2 shows the architecture and parameters of the 
proposed CNN-MIAD model. The required input for 
the proposed model is grayscale images with an input 
size of 100 × 100 pixels obtained from the time-series 
of anomaly data. This is the first layer feeding into the 
CNN-MIAD model. The input then passes through three 
sets of convolution and max-pooling layers. The channel 
size increases with each convolution layer, whereas the 
dimension decreases due to the kernel size of 5 × 5. The 
kernel size for the max-pooling layers is 2 × 2, which fur-
ther reduces the size of the convolved feature map. The 
default for the convolutional layer is a stride of one with 
no padding, whereas for the max-pooling layer is a stride 
of 2 with no padding. The tensor is then fed into a fully 
connected layer with a rectified linear unit (ReLU), where 
the number of neurons is one of the tuning hyperparam-
eters. The output is then fed into the final layer, which 
uses a softmax classifier to generate the final output. The 
tuned hyperparameters in this model include the number 
of neurons in the second fully connected layer, the batch 
size, and the learning rate.

Performance metrics
Confusion matrices are a way of visualizing the perfor-
mance of a classification model, where the predicted 

Fig. 1  Comparison between the number of data points needed between (a) non-overlapping hourly time shift and (b) shortened interval
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labels are plotted against the actual labels of a dataset. 
By doing this, it can be seen how accurately a model is 
able to classify a particular class, especially for a multi-
class classification problem. For this study, the confusion 
matrix with detailed analysis on the accuracy, precision, 
recall and F1 score is used to analyze the performance of 
the model for various input datasets. The definitions of 
these metrics are defined in Eq. 1.

Where, true positive (TP) means a sample is cor-
rectly classified into its own category; true negative 
(TN) means a sample does not belong to a particular 
class and has been correctly identified in the other cat-
egory; false positive (FP) means a sample has been mis-
classified from one of the other categories to the target 
category; false negative (FN) means a sample has been 
misclassified to one of the other categories from the 
target category. Accuracy is a basic metric representing 
the ratio of correct predictions and the total number of 
predictions. Precision returns the ratio between the TP 
and all the predicted positives, measuring a classifier’s 
exactness. On the other hand, recall returns the ratio 

(1)

Accuracy =
TP+TN

TP+TN+FP+FN

Precision =
TP

TP+FP
,

Recall = TP
TP+FN

F1 = 2×
precision×recall
precision+recall

× 100%

between the TP and all the labelled positives, providing 
a measure of how accurately the model is able to iden-
tify the relevant data. F1 score is a harmonic mean of 
the precision and recall scores. These metrics are used 
to report the performance of the proposed CNN-MIAD 
model as the last step. Figure 3 provides a summary of 
the workflow of the proposed CNN-MIAD method to 
perform multiclass AD using imbalanced data.

Description of the dataset
The proposed CNN-MIAD model is analyzed with a 
dataset that consists of one month of acceleration data 
for a long-span cable-stayed bridge in China (IPC-SHM 
2020). The dataset contains 38 acceleration sensors, and 
their locations are illustrated in Fig.  4. Each sensor col-
lects data at a sampling frequency of 20 Hz. The data 
collected by the sensors are labelled into seven different 
classes: normal, missing, minor, outlier, square, trend, 
and drift. A detailed description of each of the seven 
classes is listed in Table 1. As part of the data preprocess-
ing, the time series data is converted into images. Figure 5 
shows an example of the input image for each class, the 
x-axis for each image represents the time, and the y-axis 
represents the acceleration. Each image has a one-hour 
time duration in the original database. The dimension for 
each of the original images is 875 × 656 pixels.

Fig. 2  The proposed CNN-MIAD model
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Fig. 3  The flowchart of the proposed CNN-MIAD method

Fig. 4  The bridge and placement of the accelerometers on the deck and towers (IPC-SHM 2020)

Table 1  Description of each data class
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Fig. 5  Typical multiclass anomaly data

Table 2  Quantity and percentage for each data class of the selected benchmark data

Fig. 6  Illustration of the time shift for C3
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Data preparation and augmentation
The original dataset is imbalanced, with nearly 50% of 
the data in the Normal class and only ~ 2% data belong-
ing to the Outlier class. Although this is always the 
case in practice, data augmentation techniques can be 

implemented as a preprocessing step before feeding the 
input to the proposed CNN-MIAD model. As part of the 
data preparation process after the collection of raw data, 
three cases have been created, as shown in Table  2, to 
verify the effects of data imbalance. Case 1 (C1) uses the 

Fig. 7  Image samples for each class after preprocessing

Table 3  Ratio and quantity for the training, validation, and testing sets

Table 4  Domain for the hyperparameters
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Fig. 8  Results of the proposed training using the optimally-tuned model: a C1, b C2 and c C3



Page 11 of 15Zhao et al. J Infrastruct Preserv Resil            (2022) 3:10 	

original unbalanced full dataset as the model input. Since 
the least number of images for an input class is 526 (i.e., 
class Outlier), Case 2 (C2) uses a balanced dataset with 
randomly-selected 526 images in each class as the input 
dataset. However, this modification of balancing the 
dataset has significantly decreased the number of input 
images from 28,234 to 3682. To analyze the effect of the 
number of samples in the input dataset, Case 3 (C3) uses 
an augmented dataset with 3000 images in each class, 
resulting in a number of 21,000 input images. An illustra-
tion of the augmentation is included in Fig.  6, in which 
the accelerometer response for a single sensor is plotted 
against time. The hourly timeframe can only be joined 
together if it is consecutive, and the pattern label remains 
the same. The augmentation for C3 uses a sliding win-
dow of five minutes instead of one hour for the classes 
with less than 3000 images originally. Random selection 
is implemented to choose 3000 images from each class in 
the newly generated database, aiming to reduce the pos-
sibility of correlation and selection bias.

Before the original images are processed into the CNN-
MIAD model, each image is resized from 875 × 656 pixels 
to 100 × 100 pixels and converted from RGB to greyscale, 
as shown in Fig. 7. This resizing of the image maintains 
the consistency of the entire database. Each database is 
split into training, validation, and testing sets based on 

a 70–20-10 split ratio, respectively. The ratio and quan-
tity of images for each of the subsets in the database have 
been included in Table 3. In summary, the data prepara-
tion and augmentation steps include the conversion of 
time-series data into image representations, generating 
three cases using overlapping sliding windows and a ran-
dom selection, changing dimensions, and splitting into 
training, validation, and testing sets.

Results
Hyperparameter tuning
The proposed CNN-MIAD model is trained with the 
aforementioned dataset in three cases, respectively. The 
random search algorithm is applied for the hyperparam-
eter tuning process. The tuning parameters include the 
number of neurons in the second fully connected layer, 
the batch size, and the learning rate. The domain for each 
of the hyperparameters is included in Table  4. For each 
of the three cases, ten different hyperparameters are 
randomly generated. The trial with the highest training 
accuracy and lowest validation loss is defined as the best 
hyperparameter combination. The training process of the 
proposed CNN-MIAD model with the best hyperparam-
eter combination for each of the three cases is shown in 
Fig. 8. The detailed results of the tuning process for C1, 
C2, and C3 are included in Tables 5, 6, and 7, respectively.

Table 5  Hyperparameter tuning for C1

Table 6  Hyperparameter tuning for C2
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Performance evaluation
To evaluate the performance of the proposed CNN-MIAD 
model, five repetitions are generated using the best-tuned 
parameters for each of the three cases. As shown in Table 8, 
the overall accuracies and losses are calculated using the 
mean value for all five trials in each case. The training and 
testing accuracies are greater than 90% in all fifteen trials, 
meaning that the proposed model is free of underfitting. On 
the other hand, the testing accuracies and losses are close to 
the training results for each of the respective trials, meaning 
that the proposed model is not overfitting the training set. 
To further understand the effects of balancing the database 
and the number of input image samples on the model out-
put, the confusion matrix against the fifth trial of the testing 
set of each case has been included in Fig. 9. Using the confu-
sion matrix for each case, the precision, recall and F1 score 
for C1, C2, and C3 are included in Table 9.

All three cases are trained on a Linux server with 24 
Intel(R) Xeon(R) E5–2630 v2 processor. The training time 
for each random search model is around 130 minutes, 
65 minutes, and 110 minutes for C1, C2, and C3, respec-
tively. As observed by comparing C1 and C2 results, a 
database with more data points will generate a higher 
accuracy. The number of data samples in C1 and C2 are 
28,234 and 3682, respectively. The accuracy of the model 
decreased from 97.70% to 93.59% as the number of image 
samples decreased. The F1 score for classes Normal and 
Minor has decreased drastically due to the smaller sam-
ple size for the training set. Although both C2 and C3 
are balanced databases, the overall accuracy for C3 has 
increased from 93.59% in C2 to 97.74% due to the larger 
sample size. As seen through C1 and C3 results, although 
the overall accuracy is similar, the F1 scores for the Out-
lier and Drift classes have been remarkably improved 

Table 7  Hyperparameter tuning for C3

Table 8  Overall accuracy and loss of three cases with the optimally-tuned hyperparameter
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from 82.24% and 91.72% to 96.48% and 98.33%, respec-
tively. Since the number of image samples in both cases is 
similar, this improvement proves that balancing the data-
base could improve the performance of the classes with 
fewer image samples originally.

Conclusions
This paper proposes a deep learning algorithm for the 
AD tasks within the realm of SHM. The proposed CNN-
MIAD model requires the conversion of time series 
data into greyscale images, which then pass through 
several layers with hyperparameter tuning techniques 

to generate the best-performing model. The proposed 
CNN-MIAD model is tested with three cases using a 
database generated by a long-span cable-stayed bridge in 
China. The three cases are the original unbalanced data-
base, balancing the database using the smallest number 
of images in a class, and balancing the database with 
augmented samples. The results reveal that balancing 
the database allows to improve the F1 score of the classes 
with fewer image samples originally, and a database with 
more image samples will increase the overall accuracy 
of the model performance. It concludes that augment-
ing the balanced database leads to the best results, with a 

Fig. 9  Confusion matrix against the fifth trial testing set: a C1, b C2, and c C3

Table 9  Precision, Recall and F1 score for each case
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mean overall accuracy of 97.74% across five trials on the 
testing set.

The application for the proposed CNN-MIAD model 
is not restricted to the realm of SHM but could be 
applied to classification problems containing time-
series data as raw data points. The complete flow of 
the model requires standardizing the input into a gray-
scale image database before passing it into the CNN-
MIAD model. With sufficient raw data preprocessing, 
the CNN-MIAD model does not need modifications as 
the images are passing through. Incorporating a hyper-
parameter tuning process to categorize different classes 
satisfies the needs of a deep learning algorithm to 
achieve optimal results. Using the random search algo-
rithm to tune the hyperparameters is more efficient by 
setting up the domain for each tuning parameter. The 
proven success of the CNN-MIAD model in SHM dem-
onstrates the potential to expand its use in other imbal-
ance dataset classification applications.
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