Lu and Zhong J Infrastruct Preserv Resil (2022) 3:2
https://doi.org/10.1186/543065-021-00045-y

Journal of Infrastructure
Preservation and Resilience

REVIEW Open Access

Carbon-based nanomaterials engineered

=

Check for
updates

cement composites: a review

Dong Lu'? and Jing Zhong'#

Abstract

discussed.

properties, Reinforcing mechanisms

Carbon-based nanomaterials (CNMs) have been extensively used to modify cement matrix thanks to their extraordi-
nary specific surface area, high aspect ratio, and high strength and modulus. This review focuses on the current status
of research on CNMs modified cement composites, especially the progress made in the past decade (from 2011 to
2021). At first, the primary properties of typical CNMs used for manufacturing cement composites, the treatments
used to effectively disperse CNMs in water and cement matrix, and the corresponding characterization methods

are reviewed. And then, the effects of introducing CNMs on the properties of cement composites (both fresh and
hardened) are also discussed in this work. Finally, the knowledge gaps and remaining challenges for future work are
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Introduction

Cement concrete is the most widely used man-made
material in modern civil engineering because of the low
cost and long service time [1-3]. Typically, it is regarded
as a type of material with high compressive strength and
durability [4, 5], however, the inherently quasi-brittle
behavior (e.g., poor tensile strength and crack propaga-
tion) has limited its structural applications [6-9]. Fur-
thermore, the cement or concrete industry is high energy
consumption and has a substantial environmental foot-
print [3, 10]. It has been reported that the global cement
production was around 4.5 billion tons and the CO,
emission was reached be approximately 1.45 Gt in 2019
[3, 11]. In 2020, the energy consumption of the cement
industry in China was estimated at approximately 349.4
tons [10, 12]. These years, attempts have been adopted
to develop high-performance concrete or low-carbon
cementitious materials [12—14], such as partially replac-
ing cement with supplementary cementitious materials
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(SCMs) [13, 15], the application of some new cementi-
tious binders [9, 16], and using nanomaterials to modify
cement matrix [5, 17], etc. Among them, the ultra-fine
particles-nanomaterials, show great potential to increase
the density of microstructure and finally improve the
mechanical and durability properties of cementitious
composites.

Advancement in nanotechnology and nanomateri-
als over the past decade has provided invaluable oppor-
tunities to improve the microstructure of cementitious
composites at the nanoscale [5, 18]. Typically, the intro-
duction of nanomaterials at a very small dosage can result
in a significant improvement in the performance (e.g.,
mechanical, chemical resistance, and transport proper-
ties, etc.) of cement-based materials [12, 19, 20], with
mechanisms of nano-filling [21, 22], nucleation effect [23,
24], and pozzolanic reactivity (nano-SiO,) [25, 26], etc.
Carbon-based nanomaterials (CNMs), including carbon
nanotubes (CNTs) [27, 28], carbon nanofibers (CNFs)
[29, 30], graphene [31], and graphene oxide (GO) [32],
are very promising candidates as additives in the cement
matrix [24, 31, 33—-35], which are abundant in nature and
have already achieved industrialized mass production.
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For instance, the annual production of typical CNTs in
China is approximately 500,000 tons. Currently, the price
of CNTs is in the range of 80-120 RMB/kg, depending
on the quality and number of walls, while the prices of
graphene and GO are expected to be in the range of 400-
450 RMB/kg and 350-400 RMB/kg in near future, respec-
tively (http://www.nanotubes.com.cn.). Generally, the
addition amount of CNTs, graphene, and GO (by weight
of cement) are 0.01-0.15 wt% [30], 0.01-2.5 wt% [36],
0.01-1.0 wt% [37], respectively. As such, it can be esti-
mated that the addition of 0.01 wt% CNTs, graphene, and
GO could increase the cost per ton of cement in concrete
production by approximately 8-12 RMB, 40-45 RMB,
and 35-40 RMB, respectively. According to the published
literature, the addition of 0.01 wt% GO can increase the
28-d compressive strength of cement composites by
about 20-30% [37], thus, it can be estimated that the cost
of cement reduces by approximately 130 RMB/ton for
equivalent strength (the strength of GO/cement-42.5 has
roughly the same strength with cement-52.5), more than
enough to cover the expense for GO addition. This could
trigger a substantial economic benefit and alleviate the
undesirable impacts of CO, emission on the ecological
environment.

Unfortunately, although the application of CNMs
showed great potential in cement modification, their
broad application is still limited due to the poor disper-
sion quality, as well as the controversial understanding
of the effects of CNMs on cement hydration [20, 24, 27].
Additionally, basic mechanisms for cement reinforce-
ment of these CNMs are still under debate [20, 22, 24, 38,
39]. To this end, it is urgent to review the current knowl-
edge related to the use of CNMs in cement composites
and accelerate their practical applications. It is believed
that these gaps fundamentally stem from the failure to
thoroughly address the following questions: (i) how to
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quantitatively assess the dispersion quality of CNMs in a
cement matrix; And (ii) what types of CNMs have nucle-
ation effect and significantly affect cement hydration.
In this context, the properties of CNMs used in cement
materials are introduced at first. Then the different dis-
persion methods employed to manufacture cement
composites and the current evaluation methods are sum-
marized. Next, we discuss the hydration and rheological
properties of a fresh mixture for a better understanding
of the influence of admixed CNMs in a cement hydration
system. Finally, the influences of CNMs on the mechani-
cal and durability properties of hardened cement com-
posites are reviewed.

Properties of CNMs and their morphology

In this review work, we only discussed one-dimensional
(1D) nanofibers (CNTs and CNFs) and two-dimensional
(2D) nanosheets (graphene and GO), the properties of
which are presented in Table 1 and Fig. 1, because they
are the most studied CNMs in enhancing cement materi-
als during the last decade [19, 20, 50—54].

CNT (or CNTs) has a 1D concentric tubular structure
with a hexagonal arrangement of carbon atoms and they
were firstly reported by Iijima in 1991 [55]. The qual-
ity, property, and production of CNTs were continu-
ously improving since then. The diameter and length of
CNTs are typically in the range of 1-100 nm and 1-100
pum, respectively, resulting in a very high aspect ratio
and thus severe entanglement with each other [56-58].
These physical crosslinking, together with Van der Waal’s
interaction between CN'Ts, making their dispersion very
challenging in water or cement matrix [28, 59]. It is well
known in the CNTs community that, for a given disper-
sion method, the dispersion quality is highly dependent
on the CNTs tortuosity and aspect ratio, both of which
largely determine the entanglement degrees [59, 60].

Table 1 The primary properties of CNMs used for preparing cement composites

Component CNTs CNFs Graphene GO

Diameter/thickness (nm) 0.4-2.0 (SWCNTs)? 0.5-100 ~1 ~067
1.0-100 (MWCNTs)?

Aspect ratio 1000-10,000 100-1000 600-600,000 1500-45,000

SSA® (mz/g) 20-1315 100-1000 700-1500 2000-2600

Elastic modulus (GPa) >1000 6-200 >1100 >300

Tensile strength (GPa) 50-200 400-600 ~125 >112

Resistivity (QQ-cm) ~1072 0.1 - -

Thermal conductivity W/(m-K) ~6600 20-1950 - -

Special applications

For structural health monitoring [28, 40-43].

Electromagnetic protection
(31,44, 45].

Accelerating cement
hydration [20, 24, 39,
46].

2 SWCNTs and MWCNTS are single-wall CNTs and multi-walled CNTs, respectively. SSA is a specific surface area
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Fig. 1 The roles of the typical 1D nanofibers (CNTs and CNFs) and 2D nanosheets (graphene and GO) in cement composites [19, 22, 28, 34, 39, 45,

CNFs are cylindrical nanostructures with graphene lay-
ers arranged as stacked cones, which can be viewed as
fiber-shaped nanomaterial with a length ranging from
50 nm to 200 nm [45, 61]. CNFs have similar geomet-
rics and physical properties with CNTs, yet with much
lower price (generally one-fifth of the price of CNTs), and
thus also extensively employed as an additive for cement
matrix modification [30, 62]. Owing to the potential
micro (and nano) improvement of the interfacial tran-
sitional zone (ITZ), CNFs demonstrate a great potential
to improve the mechanical strengths of cement materi-
als [34]. Additionally, CNMs (especially graphene, CNTs,
and CNFs) demonstrate great potential to develop smart
cement composites in the future.

Strictly speaking, graphene is a one-atom-thick flat
nanosheet of sp? bonded carbon atoms, it is arranged in
a honeycomb-like lattice [63—-65], which is the mother
of all graphitic materials, such as fullerenes, CNTs, and
graphite [64, 66]. Note that, most of the excellent phys-
icochemical characteristics of graphene, such as excellent

strength, high modulus, and outstanding electrical con-
ductivity, are in-plane properties, essentially resulted
from the in-plane sp? carbon-carbon bonds [63, 67].
Interestingly, because of the extremely small thickness
of graphene, it can also be considered to be soft mat-
ter. According to the previous reports, GO has a simi-
lar bending stiffness with graphene (assuming a similar
thickness), is in the order of 2 kT [63, 68, 69], meaning
that these single-layer 2D materials can be easily buck-
led and a considerable amount of wrinkles will be natu-
rally formed [63, 64, 66]. Such features could affect the
interaction between graphene (and its derivatives) with
matrix materials [36, 59, 70, 71]. Because single-layer gra-
phene with atom thickness and perfect crystal structure,
which cannot be yielded at a large scale currently, the
commercially available materials claimed as “graphene”
are actually multi-layers thin graphite [63, 64, 68]. They
are mostly synthesized by exfoliation of graphite either
by intercalation followed by mechanical shearing [63,
64, 72]. According to classical plate theory, the bending
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stiffness of plates is inversely proportional to the cubic
thickness [63—65]. Implying that the bending stiffness of
multi-layer graphene with ~30 nm (corresponding to 100
layers), which is six orders of magnitude higher than that
of the single-layer graphene [63, 64, 68, 72]. Such huge
different bending stiffness could significantly change gra-
phene-cement interactions.

Another strategy to synthesize graphene is to chemi-
cally reduce GO [64, 73, 74], which can be readily
obtained by oxidation of graphite in strong acid, as firstly
reported more than a century ago [64, 68, 72, 74]. Fig. 2
illustrates the GO synthesis process. In short, the gap
between adjacent layers in graphite greatly increased due
to the functionalization of graphene, mainly by carboxy-
late and epoxy groups, thus effectively decreased Van
der Waal’s interaction between graphene layers, allowing
easy exfoliation into single layers in water [64, 65]. There-
fore, single-layer GO dispersion with high quality was
easy to prepare. More importantly, its oxygen-contain-
ing functional groups fancy involving chemical/physical
interactions [20, 24, 75], and then enhancing the bond
strength [73, 76]. Based on these characteristics, it has
been generally accepted that GO can accelerate cement
hydration [20, 53, 75, 77, 78], improve the polymerization
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degree of cement hydrates [20, 24], and regulate the
formation of hydration crystals [46, 79, 80]. With these
advantages, GO has been the most studied CNMs for the
modification of cement materials during the past decade
(as depicted in Fig. 3).

Dispersion and characterization of CNMs in water
and cement matrix

Challenges for CNMs dispersing

As mentioned above, the possible agglomeration of
CNMs in the cement matrix are defects and negatively
affect the properties of cement composites [19, 28, 53,
81-83]. That is, a high dispersion quality of CNMs is a
prerequisite for the effective reinforcement of cement-
based materials [8, 44]. However, it is still very challeng-
ing to realize an excellent dispersion of CNMs in the
cement matrix, since the strong Van der Waal’s attraction
between CNMs, as well as the complex electrolytic envi-
ronment provided by cement pore solution (in the pres-
ence of divalent ions) [29, 82, 84, 85].

Table 2 summarizes the dispersion methods of CNMs
in the water and cement matrix. According to the pub-
lished literature, acid treatment and surfactant wrap-
ping are generally the most used strategies to overcome

7 8 M HCIO4

Graphite

KMnO4

conc.H2S04 |

H2S04-GIC

Fig. 2 Schematic illustration of electrochemically gathered graphite oxide (OEGO) synthesis. EGO and GIC are the electrochemically gathered GO
and graphite intercalation compounds, respectively [68]. (Copyright 2017 ACS)
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Fig. 3 The relative number of published articles of various CNMs used for manufacturing cement composites, rGO is reduced GO. (Data collected
from Google Scholar from 2011 to 2021, total of 14206 published literature)

Table 2 Dispersion methods of CNMs in water and cement matrix

Dispersion methods System Description Ref.

Ultrasonic dispersion Water Ultrasonic waves/energy can cavitate and exfoliate the CNMs.  [28, 86, 87]

Acid treatment Water The strong steric hindrance effects can separate CNMs from [38, 65]

Surface modification Water/cement charged ions. [82, 84, 85, 88]

pore solution

Mechanical dispersion Mechanical agitation Cement matrix Applying shearing force created by mechanical friction, colli- ~ [19, 51, 89-91]
Ball milling sion, and crush on CNMs. [52,92, 93]

Integrated dispersion method Cement matrix The combined usage of the aforementioned methods. [21, 22]

Silica fume or nano-silica Cement matrix Using spherical particles to prevent agglomeration of CNMs. [84, 85,94-97]

attractions between CNMs [52, 82, 85, 88, 92]. Specifi-
cally, acid can endow charges on the surface of CNMs
at the cost of some detrimental effects on their struc-
ture [65], while surfactant wrapping can make CNMs
more compatible with water, with the mechanism of
either charge repulsion or steric repulsion depending
on the molecular structure of surfactant [29, 82, 85, 88].
However, the high ionic concentration of cement pore
solution (high alkalinity and di-covalent Ca ions), could
severely screen charge repulsion interaction [84, 98].
Therefore, considering the highly complex electrolyte
environment of pore solution in cement hydration, the
achievement of uniform dispersion of CNMs in cement
matrix is still very challenging. Since CNMs are typi-
cally dispersed in water before mixing with cement, this
review work summarized CNMs dispersion in water,
cement pore solution, and cement matrix, separately,
to clarify the main mechanism and related colloidal
behavior in each step.

Dispersion of CNMs in water

At present, admixtures are indispensable constituents in
modern cement concrete applications [5, 12, 36, 37, 44,
99]. Surface active chemicals, including superplasticiz-
ers, shrinkage reducing admixtures, and air-entraining
surfactants, etc., are prepared in the form of an aqueous
solution before mixing with cement powder [82, 84, 85,
100]. Along with this idea, the preparation of uniform
aqueous dispersion of CNMs can facilitate their practical
applications [9, 101].

Currently, the dispersion methods of CNMs in water
mainly include mechanical shearing and ultrasonica-
tion, and surface physiochemical modification [19, 91],
as presented in Table 2. For a given material, the disper-
sion capability of shearing is mainly dependent on the
shearing stress, which in turn, are determined by the
shearing rate and viscosity of the dispersion [51, 52, 89].
Since the viscosity of CNMs dispersion is typically in
the same range of water [102], the maximum shearing
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stress and dispersion quality that can be realized is very
limited. Ultra-sonication is a process based on cavita-
tion (about 200 W and the frequency of 30 kHz), with
high local energy, and has been extensively employed
for CNMs dispersion [21, 22, 28]. The effectiveness of
ultra-sonication can be optimized by a proper combi-
nation of sonication power and sonication time [19, 21,
22]. Note that, because of the high cavitation energy,
the crystal structure and aspect ratio of CNMs may be
destroyed and reduced, both of which will decrease the
reinforcement efficiency of CNMs [22, 99]. Besides, for
a given material and sonication power, the dispersion
quality will be saturated with time, as reported by Cole-
man et al. [103]. Therefore, proper optimization of son-
ication conditions is required to further promote the
dispersion quality of CNMs.

To further promote the dispersion quality, CNMs can
be grafted with hydrophilic functional groups, both
physically and chemically [81, 82]. GO, which has been
extensively used to modify cement matrix past the last
decade [20, 24, 77, 82, 104, 105], can be considered as
graphene that is chemically grafted with a significant
amount of oxygen-containing groups [64]. CNTs treat-
ment by strong acid is also commonly used to facilitate
its dispersion in water [38, 65]. As explained above,
such a dispersion method relies on the surface charge
repulsion, which can be easily screened out by ions if
there is any [20]. This means that even CNMs can be
well dispersed in water after chemical modification,
they might still agglomerate when mixed with cement,
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because of the high ionic strength resulted from cement
dissolution.

Another surface modification method is to wrap CNMs
with surfactants [37, 82, 84, 85, 88, 100]. Broadly, the sur-
factants can be divided into categories of anionic [82],
cation [106], and neutral type [82], all of them have been
studied for CNMs dispersion. As matter of fact, organic
admixtures, including water-reducing admixtures,
air-entraining admixtures, superplasticizers, shrink-
age reducing admixtures, are all surfactants that can be
potentially employed to disperse CNMs [82, 88, 107].
Polycarboxylate superplasticizer (SP), which is currently
the most used surfactant, has been extensively inves-
tigated to disperse CNMs and enhance the stability of
the resulted dispersion upon increasing ionic strength
[82, 85, 88, 100, 107, 108]. As illustrated in Fig. 4, using
SP in a GO-cement system can disperse GO nanosheets
and cement grains at the same time (Fig. 4a). Similarly, a
good dispersion quality of graphene in an aqueous solu-
tion can be achieved with the help of SP (Fig. 4b). How-
ever, it should be noted that the absorbed surfactant itself
could also be stripped off when the ionic strength is high
enough [82, 110]. For instance, Zhao et al. [100] reported
that the GO could aggregate again when the Ca ions con-
centration was reached 1 M (NaOH solution) or higher
[82].

Interestingly, the stability of surfactants that are
wrapped around CNMs in the various electrolyte has
been systematically investigated since more than two
decades ago in environmental science [80-82, 85, 111],

Cement flocculated structure GO aggregates with water

Free water
Free water

dispersion of graphene by SP [109]. (Copyright 2018 Elsevier)
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Fig. 4 Schematic diagram of (a) SP dispersing GO nanosheets and cement grains at the same time [100]. (Copyright 2018 Elsevier). And (b) the
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in which, the agglomeration of particles is one of the
key research topics. However, the exact chemical struc-
tures of most SP are generally confidential, blurring the
optimization of the CNMs dispersion. Because SP is
synthesized for cement property modification through
SP-cement grain interaction, a new surfactant should be
designed and prepared specifically for the CNMs dis-
persion. Moreover, the stability of surfactants for CNMs
dispersion still needs to be studied and clarified [85]. As
reported by Birenboim et al. [22], the introduction of
surfactants can retard the cement hydration and entrap
substantial air in cement paste. It has been pointed that
caution should be exercised when using surfactants
in the aqueous matrix, as it can lead to foaming [12,
22]. Therefore, there might be a trade-off between the
positive effects of CNMs and the negative influences of
surfactants.

Dispersion of CNMs in the cement matrix

CNMs can also be considered to be an admixture in the
form of dry powders, and directly mixed with cement,
similar to silica fume, fly ash, and slags [19, 28, 29, 51, 89].
Typically, CNMs are mechanically mixed with cement
particles for several minutes to obtain a homogeneous
mixture and then mixed with water and other raw mate-
rials to manufacture cement composites [16, 20, 24].
For example, as indicated by Mohammed et al. [112],
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0.01 wt% GO and cement were mechanically stirred for
about 5 min to obtain a uniform mixture, while they
failed to achieve good dispersion when the GO amount
was 0.06 wt% GO, due to the physical cross-linking and
Van der Waal’s forces between GO nanosheets. It is
almost impossible to dis-entanglement CNMs agglom-
erations just by normal shear mixing apparatus. Recently,
silica fume/nano-SiO, with extremely small particle size
and spherical particles, have been employed to disperse
CNMs in the cement matrix by a pre-mixing process [84,
85, 97, 105, 107, 113], as illustrated in Fig. 5. Because of
the high SSA of CNMs, the effectiveness of using silica
fume as carriers to disperse CNMs, mainly depends on
the available surface area of the carriers. For instance,
Kim et al. [115] investigated the effect of silica fume con-
tent (0-30%, mass by cement) on the dispersion of CNTs
in a cement matrix, and found that 20 wt% silica fume
and 0.3 wt% CNTs were mixed for 4 min could facilitate
the dispersion of CNTs. We can roughly estimate the
maximum concentration of well-dispersed nano-SiO,
that can be realized by this strategy as follows. Assum-
ing that the silica fume particles with a typical size of
50-300 nm can be well separated and completely covered
by a single layer of closely compacted nano-SiO, (with
a typical size of 4-20 nm), the concentration of nano-
SiO, in the cement matrix could reach obtain an optimal
value. Note that, this method in fact realizes a uniform

GO agglomeration
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4]. (Copyright 2018 Elsevier). And (c) SEM image of GO-silica fume dispersion [84]. (Copyright 2018 Elsevier)
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distribution of nano-SiO, throughout the whole matrix,
at the cost of local severe agglomeration specifically at
the surface of silica fume. Therefore, such nano-SiO, can
in principle only modify the local chemistry and micro-
structure around silica fume. Also, the pre-mixing time
of silica fume and CNMs is another key factor that affects
the dispersion of CNMs in the cement matrix. For exam-
ple, Akarsh et al. [94] and Bai et al. [114] pointed out the
GO-cement and graphene-cement should premix for
approximately 3 min and 10 min, respectively, to obtain
a uniform mixture. A similar pre-mixing time for nano-
SiO, and CNMs was also reported in other studies [85,
97, 105].

To increase the shearing stress significantly, high-
energy ball milling can be applied [52, 92, 93, 116]. For
instance, Ghosh et al. [117] proposed that the graphene
and cement grains were blended using a planetary ball
mill via 30 g Zirconia balls, which is an efficient approach
to obtain a homogenous distribution of graphene with
cement grains. Jing et al. [92] used X-ray diffraction
(XRD) and scanning electronic microscope (SEM) to ver-
ify this hypothesis. A similar beneficial role of ball milling
on dispersion graphene was reported in another report
[89], in which the graphene and cement were dry mixed
for 72 h. Chiranjiakumari et al. [118] using a high-energy
planetary ball mill method (at 500 rpm for 8 h) to dis-
perse GO in the matrix, and found that adding 0.1 wt%
GO in 100% recycled concrete could be an alternative
way to achieve sustainability in the construction industry.

As discussed above, ball milling provided an alterna-
tive method for dispersing CNMs in a cement matrix and
showed great practical significance to fabricate CNMs-
cement composites [93]. Note that, the ball-milling
process can also result in cement powder fining, which
increases the reactivity of cement particles [92, 116].
Thus, cautions should be taken when evaluating the true
effects of CNMs on the performance of the obtained
cement composites.
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Dispersion quality assessment

Table 3 summarizes the current techniques are adopted
to evaluate the dispersion quality of CNMs in water or
cement matrix. As can be seen, much evidence reported
the CNMs dispersion quality in water by techniques of
UV-vis spectroscopy [82, 99], laser particle size analysis
[9, 84], dynamic light scattering [8, 119], zeta potential
[82, 109], optical microscope [82, 85], and SEM obser-
vation [21, 28, 120, 121]. However, noted that the high
dispersion quality of CNMs in water before mixing with
cement is not necessarily resulting in high dispersion
quality in the cement matrix.

Because cement is highly heterogeneous, including
multiple phases and pores at multiple scales, the disper-
sion quality of CNMs in a cement matrix is very difficult
to evaluate [12, 30, 36, 44, 100]. And the extremely low
CNMs concentration (e.g., 0.01-0.1 wt%) typically used
further makes this task formidable. SEM equipped with
energy dispersive spectrometer (EDS) has extensively
been used to characterize the dispersion of CNMs in
cement matrix [21, 28, 43, 122], although it is difficult to
locate and even confirm that it is indeed CNMs due to
the complexity of the hydration products. However, SEM
cannot achieve quantitative characterization of CNMs
dispersion in the cement matrix. The complete evalu-
ation of CNMs dispersion and distribution in cement
matrix is critically important for the design and optimi-
zation of the CNMs-cement interaction, and effectively
promotes the effectiveness of CNMs. Recently, Cui et al.
[99] found that the UV-Vis absorbance value of the GO
suspension increased from 0.72-0.95 when ultrasonica-
tion energy increased from 15% to 60%, indicating that
higher ultrasonication energy resulted in a higher degree
of GO dispersion. Additionally, they found that the ratio
of Raman intensity of D band G band (/I ratio) rose
with increasing sonication energy. Therefore, the energy
input of 30% was selected to obtain a balance between
the GO dispersion [99]. This provides new possibilities

Table 3 Techniques are adopted to evaluate the dispersion quality of CNMs in suspension or cement matrix

Methods System Description Ref.

UV-vis spectroscopy Suspension Employing the Beer-Lambert Law to calculate the content of CNMs [4,82,99]
according to the absorbance.

Laser particle size Smaller particle size indicates better dispersion [9, ]

Dynamic light scattering (8,119]

Zeta potential Higher zeta potential value (absolute value) means better dispersion  [82, 109]

Optical microscope Suspension/ Assessment of dispersion based on directly observed dimensions [82, 85]

SEM cement matrix 21 120,121]

Transmission electron microscope [22 32, 87]

X-ray photoelectron spectroscopy [22,24,86,105,107,119]

Raman spectrum [86, 120]




Lu and Zhong J Infrastruct Preserv Resil (2022) 3:2

for a more refined characterization of CNMs dispersion
in the cement matrix. However, such analysis is severely
limited by the resolution of the laser point. Again, hydra-
tion products including ettringite (AFt), monosulfate
(AFm), and calcium hydroxide (CH), all have their own
shape factor (geometrically, AFt has nano-needle shape,
while AFm and CH have nano-plate shape) [123, 124],
which make it very difficult to distinguish them from
the added CNM:s. For instance, Meng et al. [125] used
SEM to locate the distribution of graphene nanoplates,
which as matter of fact, could also be AFm. Therefore, the
employment of elemental mapping or other complemen-
tary techniques is necessary to confirm that the focused
materials under SEM are indeed CNMs.

Influence of CNMs on the performance of cement
composites

Properties of fresh cement composites

In this review work, the main properties of interest
of fresh cement mixture including hydration kinetics
and rheology properties, both of which will affect the

Page 9 of 20

subsequent mechanical and durability properties of hard-
ened cement composites.

Despite the substantial research effort devoted to ful-
filling the nucleation effect potential of the CNTs, pre-
vious reports of CNTs accelerate cement hydration are
somewhat contradictory [22, 24, 27, 38], with some stud-
ies demonstrating an obvious acceleration effect [20, 24]
and others no effects or even retardation [27, 38], as illus-
trated in Fig. 6. For instance, an investigation was con-
ducted by Sobolkina et al. [38], who indicated that the
addition of either 0.25 wt% HNOj;-oxidized CNTs hardly
affects C;S hydration, and they argued that the insig-
nificant effect was mainly due to the limited adsorption
sites present on CNTs surface (Fig. 6a). It was hypothe-
sized that some functional groups on the CNTs surface
or other CNMs may stimulate cement hydration as the
generation of additional calcium silicate hydrate (C-S-H)
[38]. Tafesse et al. [27] reported that pure CNTs are not
capable of activating or delaying cement hydration, based
on the results of nonevaporated water (Fig. 6b), rather,
they only provide nano-filler effect in cement composites.
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In contrast, Jung et al. [28] reported that the surface of
the dispersed CNTs can contribute to precipitate cement
hydrates. These inconsistent findings may be attributed
to the dispersion quality and surface chemical affinity of
CNTs. Note that the high surface area of CNTs cannot
guarantee seeding effect, as reported by many groups
[27, 38, 126]. It has been generally accepted that GO can
accelerate cement hydration because of the rich oxygen-
containing functional groups on its surface [20, 22, 100].
A recent study found the incorporation of 0.025 wt% GO
resulted in an earlier heat flow peak [24], as illustrated
in Fig. 6¢c. A similar accelerating effect of GO on cement
hydration was found in other studies [79, 127], in which
the introduction of 0.025-0.10 wt% GO can significantly
increase the heat flow of cement composites. Unfortu-
nately, direct evidence for the seed effects of CNMs is
still missing, which will be elaborated in the following.

Generally, adding CNMs to the cement matrix can lead
to an improvement of viscosity (decreased workability),
since the super-high SSA of nanoparticles requires more
water for surface wetting [5, 31, 36, 44, 100]. The low vis-
cosities of the fresh mixtures have a negative influence
on the mixing and casting process and then affect the
final mechanical and durability properties [5, 9]. Accord-
ing to the rheological parameters of paste obtained from
the Bingham curve [128], the plastic viscosity (1) of the
cement mixture (w/c=0.36) incorporating 0.03 wt% GO
(by weight of cement) was approximately 40% higher
than that of the plain cement. Similarly, the admixing 0.3
wt% CNFs resulted in increased plastic viscosity of paste
(w/c=0.20) by approximately 35% [29].

Surfactants may be an ideal candidate to overcome this
issue because of their steric hindrance and electrostatic
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repulsion [29, 44, 97, 107], which prevent the agglomera-
tion of cement grains. As provided in Fig. 7, Li et al. [135]
found that the introduction of SP significantly decreased
the yield stress (~80%) and minimum viscosity (~70%) of
cement pastes (w/c=0.24) in the presence of graphene
(at a dosage of 0.75 wt%). However, in the presence of SP,
especially the content over 0.75 wt%, the admixing gra-
phene can hardly influence the yield stress and minimum
viscosity of cement pastes. Note that, the admixed CNMs
may affect the compatibility between cement materi-
als and surfactants thus affect the rheological properties
of cement mixture [29, 136]. In addition, a few stud-
ies reported that CNMs can lubricate solid particles in
cement composites, which improved the flowability of
the mixture [22, 29, 125]. Such knowledge gaps constrain
the wider acceptance of CNMs in developing cementi-
tious composites and drive the need for further research
to advance the understanding.

Properties of hardened cement composites properties
Mechanical strengths

Mechanical properties of cementitious composites are
generally regarded as the most important performance
in practical applications [12, 30, 31, 36, 44, 101]. Dur-
ing the past decades, it had been generally accepted that
admixing a small dosage of CNMs to cement can result
in remarkable improvement in the mechanical strengths
(e.g., compressive, flexural, and tensile strength) [20, 28,
32,114, 128, 137].

Table 4 illustrates the experimental findings collected
from the published reports related to the enhancement of
CNMs to the mechanical strengths. As can be seen, GO
(generally 0.01-0.10 wt%, by weight of cement) is typically
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Table 4 Improvement of CNMs to mechanical properties of cement-based materials cured at 28 days

Matrix CNMs types w/c Increment in mechanical strengths Ref.

(by weight of cement)

Compressive Flexural Tensile

Paste Graphene (0.05 wt%) 035 3-8% 15-24% - [138]
Paste Graphene (0.025 wt%) 0.40 14.9% 23.6% 15.2 [139]
Paste Graphene (2 wt%) 038 -33.3% [140]
Paste GO (0.05 wt%) 0.35 29.0% - - [20]
Paste GO (0.01 wt) 0.30 10.0% 15.6% - [79]
Paste GO (0.03 wt) 0.30 20.1% 27.3% -
Paste GO (0.05 wt) 0.30 27.5% 30.7% -
Paste CNFs (0.1 wt%) 0.485 - 20% - [34]
Paste CNTs (0.15 wt%) 0.40 14.3% 3% - [141]
Mortar GO (0.022 wt%) 042 34.10% 30.37% 33.0% [88]
Mortar GO (0.1 wt%) 048 27.7% - - [142]
Mortar Graphene (0.05 wt%) N.A. 8.3% 15.6% [143]
Mortar GO (0.15 wt%) 0.35 13.7% 14.5% [94]
Mortar GO (0.01 wt%) 037 13.4% 51.7% 47.0% [80]
Mortar GO (0.03 wt%) 037 38.9% 60.7% 78.6%
Mortar GO (0.05 wt %) 037 47.9% 30.2% 35.8%
Mortar CNTs (0.3 wt%) 040 -2.7% - - [43]
Mortar CNTs (0.5 wt%) 0.60 -1.8% - -
Mortar CNFs (0.1 wt%) 0.485 6.15 - - [34]
Concrete CNFs (0.30 wt%) 0.20 60.0% 10.1% 55.0% [29]
Concrete CNTs (0.002 wt%) 0.23 -1.1% - - [28]
Concrete CNTs (0.005 wt%) 0.23 5.5% - -
Concrete CNTs (0.008 wt%) 0.23 -0.8% - -
Concrete CNTs (0.01wt%) 0.23 -4.9% - -
Concrete CNFs (0.1 wt%) 057 8.13% - - (34]
Concrete CNFs (0.10 wt%) 0.51 6.16% - - [144]
Concrete Graphene (0.30 wt%) 0.20 40% 59% - [125]
Concrete Graphene (0.10 wt%) 0.16 62.25 9.25 - [145]

used to manufacture cement paste and cement mortar,
while CNFs and CNTs are generally used to fabricate
cement concrete, especially used to prepare ultra-high-
performance concrete. For improving the compressive
strength of cement-based materials, the addition of GO is
more effective than other CNMs, while CN'Ts and CNFs
seem more effective for improving the flexural and tensile
strengths of cement-based materials.

As illustrated in Fig. 8, the reinforcement mechanisms
proposed by the current literature include i) acting as a
nucleation site to promote cement hydration [20, 22,
24]. For instance, Sobolkina et al. [38] indicated that
the CNMs with high SSA and rich in oxygen-containing
functional groups on their surfaces have a nucleation
effect on early C,;S hydration, as illustrated in Fig. 8a.
Also, Birenboim et al. [22] reported that admixing a
low concentration of GO (<0.05 wt%) can increase the
compressive strength of paste by 40%, mainly due to the
nanosize of GO act as a nucleation site. Interestingly,

a large number of flower-like hydration crystals were
grown on GO sheets (Fig. 8b), this phenomenon is pos-
sibly explained by the template effect of GO, inducing
hydrates growth in a specific space [79, 146]. Notably, the
nucleation effect is a prerequisite for the template effect
and this phenomenon merely occurs in a cement matrix
incorporating GO sheets, which has been observed by
many reports [39, 46, 79, 80]. ii) The nano-filler effect
reduces the porosity and refines the microstructure [5,
88]. A recent study was carried out by Konstantopou-
los et al. [147], who showed that introducing 0.5 wt%
CNTs resulted in higher density hydrated phases and
lower total porosity, this phenomenon was explained by
nanoindentation as enhanced C-S-H connectivity in the
porous network. Besides, Birenboim et al. [22] found that
a dense microstructure was achieved with the addition of
0.03 wt% GO, mainly due to the admixed GO nanosheets
that can act as a nanofiller that refined the microstruc-
ture (Fig. 8c). However, considering the small number of
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CNMs that are utilized, typically less than 0.1 wt%, purely
physical filler effects are probably negligible. And iii) the
bridging effect to inhibit microcracks propagation [8, 27—
29]. Silvestro et al. [91] indicated that the incorporation
of 0.1 wt% CNTs increased the 28-d compressive and
tensile strengths of a cement paste by up to 30% and 50%,
respectively. The microcracks were eliminated with the
addition of CNTs and CNFs [148, 149], and the admix-
ing CNMs plays a dominant role in enhancing the flex-
ural strength and tensile strength of cement composites
because of their larger aspect ratio (Fig. 8d), as discussed
in section 2.

Recent work was conducted by Xu and Shi et al. [20],
who found that the admixing 0.02 wt% GO promoted
cement hydration to generate Si-rich phases (tober-
morite-like hydrate) and Ca-rich hydrates (jennite-like
structure), instead of ordinary C-S-H gel. This seems to
provide a new possibility to explain the possible mecha-
nisms of GO-reinforced cement composites. Note that
the reported experimental evidence mainly comes from
SEM images of fractures cement composites samples,
where CNMs are exposed and hydration products can be

observed to be attached on CNMs. Note that, this phe-
nomenon can be also induced by the growth of hydration
products far away from CNMs, and CNMs are merely
passively embedded inside. Recently, we have employed
CNTs sponges, with unique nano-pores microstruc-
ture, as a platform to in-situ separate pore solution from
cement grains [71]. The experiments directly prove that
CNT with and without strong acid treatment are all inert
for cement hydration, and there is no seed effect.

Durability

Durability is critical to guarantee the reliability and sta-
bility of cement composites [5, 12, 31, 36, 37, 101]. Typi-
cally, their durability is evaluated in terms of transport
properties and chemical resistance [30, 37]. It is an issue
attracting wide interest in the application of cementitious
composites as it relates to the safety, service life, and
maintenance costs [30, 150-153]. Currently, the dura-
bility of CNMs reinforced cement composites has not
been sufficiently studied, compared to the comprehensive
studies concerning their mechanical properties. This sec-
tion summarized the findings brought out by CNMs in
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the durability of cement composites in recent literature,
including transport property and chemical degradation.

Transport properties of cement composite reflect its
resistance to the ingress of aggressive agents (e.g., water
and ions, etc.) to pass through inside [12, 30, 36, 150,
151], which can be improved by introducing well-dis-
persed CNMs [122, 152]. For instance, an investigation
was carried out by Qureshi et al. [153], who reported
that the maximum water vapor adsorption at 98% relative
humidity increased up to 2% in the 0.06% GO-cement
composites, suggesting additional C-S-H gel was formed
in the cement composites, which can induce a denser
microstructure (see Fig. 9). A similar result has been
observed by others [53, 112], who found that the water
absorption and gas permeability of a cement composite
could be reduced by 10-20% with the addition of GO.
Similar to the role of GO in the cement matrix, CNTs or
CNFs possess the nanofiller effect and bridging effect to
improve the microstructure of cementitious materials
[28-30, 122].
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Chemical degradation of cement-based materials gen-
erally includes sulfate attack, carbonation, and acid attack
[12, 30, 36, 37]. As discussed above, the addition of CNMs
also showed great potential to improve the chemical
resistance for cement composites. For example, the intro-
duction of 0.03 wt% GO reduced the carbonation depth
due to the movement of CO, molecules into the cement
matrix was restricted by GO, that is, the reduction of car-
bonation depth of GO-reinforced cement composites is
related to the reduced porosity [53, 154]. Also, Long et al.
[53] found that the introduction of 0.2 wt% GO could
reduce the carbonation depth by approximately 40%
after 28 days, mainly due to the reduced porosity and
refined pore structure, as presented in Fig. 10a. Accord-
ing to Mohammed et al. [155], who reported that a con-
siderable decrease (from 11 mm to 2 mm) of carbonation
depth in a cement specimen incorporating 0.06 wt% GO
after 15 months, this result has attributed the benefit to
the increased air content and the decreased mesopore
volume (see Fig. 10b and c). Similarly, a recent study was
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carried out by Li et al. [47], who reported that the weight
loss of a paste specimen incorporating CNTs decreased
by 13.3%. A similar beneficial role of CNTs or CNFs on
the chemical resistance of cement composites was also
found in other studies and attributed this benefit to the
refinement microstructure [21, 22, 27-29].

Overall, the addition of CNMs has demonstrated a
promising durability performance for cement materials.
Compared with CNTs or CNFs, GO has a much higher

SSA and abundant hydrophilic functional groups, ena-
bling it to perform better in improving the durability of
cement-based materials. Currently, although the con-
sensus is that the durability of cement-based materials
strongly relies on both strength and microstructure, the
fundamental mechanisms underlying the durability dam-
age of CNMs-reinforced cement-based materials are not
fully unraveled. To this end, more in-depth studies should
be explored in the future to verify this hypothesis.
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Conclusions and remaining challenges

Over the past decade, the addition of a small dosage of
CNMs has demonstrated great potential to improve the
mechanical and durability properties of cement com-
posites. We summarized the relevant publications in the
last decade (from 2011 to 2021), and the main findings
and remaining challenges identified from the literature
review can be drawn as follows:

1) The dispersion quality and distribution of CNMs in
the cement matrix are the keys to understand their
roles in the cement matrix. Although previous stud-
ies on the admixed CNMs have achieved some sat-
isfactory achievements in terms of reinforcement
efficiency [20, 22, 29, 88, 104, 156], the effective
dispersion of CNMs in the cement matrix is still a
top challenge. Also, semi-quantitative or quantita-
tive evaluation of the dispersion and distribution of
CNMs in cement composites faces great challenges,
which constrains their feasibility to be widely utilized
in the construction industry.

2) It has been generally accepted that the addition
of GO can accelerate cement hydration, where
admixed GO mainly demonstrated the nanofiller
and hydration template roles. In addition, the nega-
tively charged GO could consume Ca ions, thereby
affecting the degree of polymerization of the cement
hydrates. However, direct evidence is still very
limited, more detailed investigations need to pro-
ceed to investigate the influence of admixed GO on
the formation of cement hydrates. Especially the
cement hydration lasts for a long time and a variety
of hydrates are produced at different times, and how
(when) the admixed GO affects cement hydration is
still needs to be further in-depth studied.

3) Pure CNTs or CNFs are generally not capable of acti-

vating or delaying the hydration products, rather,

they offer a nanofiller and cracking-bridging capabil-
ity in cement composites. Interestingly, it has been
found that the CNTs rich in oxygen-containing func-
tional groups demonstrated the potential to promote
cement hydration. Overall, the admixed CNTs that
accelerated the cement hydration have not yet been
unanimously agreed upon. Although previous stud-
ies claimed that the nucleation effect of the admixed

CNMs in the cement hydration, direct evidence is

still missing. Note that recently, we have utilized

CNTs sponge as a platform to investigate the true

effects of CNT on the growth of cement hydration

products, and the results indicate that CN'T with and
without acid treatment have no seed effects.

For the fresh mixtures, the introduction of CNMs

results in higher viscosity, that is, the admixed CNMs

4

~
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harm the setting time and workability of the mix-
tures, which is not conducive to the later transpor-
tation, casting, and compaction process. Fortunately,
this may be compensated by employing some SCMs,
such as fly ash.

5) At present, the research of CNMs-engineered
cement composites is a booming field and there are
many handicaps to be overcome. The admixing an
extremely low concentration of CNMs has a positive
influence on the mechanical strengths of cement-
based materials, on the premise of effective disper-
sion. More attention should be paid to investigate the
effects of various CNMs on the formation of multiple
cement hydrates. Additionally, CNMs demonstrate
great potential to develop smart cement composites
in the future.
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