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Abstract

We proposed a new iterative power and amplitude correction (IPAC) algorithm to simulate nonstationary and non-
Gaussian processes. The proposed algorithm is rooted in the concept of defining the stochastic processes in the
transform domain, which is elaborated and extend. The algorithm extends the iterative amplitude adjusted Fourier
transform algorithm for generating surrogate and the spectral correction algorithm for simulating stationary non-
Gaussian process. The IPAC algorithm can be used with different popular transforms, such as the Fourier transform, S-
transform, and continuous wavelet transforms. The targets for the simulation are the marginal probability distribution
function of the process and the power spectral density function of the process that is defined based on the variables in
the transform domain for the adopted transform. The algorithm is versatile and efficient. Its application is illustrated
using several numerical examples.

Keywords: Simulation, Nonstationary and non-Gaussian process, S-transform, Continuous wavelet transforms, Seismic
ground motions, Wind velocity

Introduction
Observed time histories of the seismic ground motions
[31], wind velocity [48], wave height [32], etc. fluctuate
randomly in time and space. The time histories are used
as the input to carry out the structural analysis. Since
the available recorded time histories of the random phe-
nomena are limited, their synthetics are generated and
used in practice. The simulation is based on the theory
of stochastic processes [7, 22, 25]. The simulated ground
motions are used to assess seismic risk of infrastructures
such as dams and portfolio of buildings (e.g., [3, 24]).
The simulated winds are employed to assess the per-
formance structures and infrastructure system [55, 60].
For stationary Gaussian processes, and evolutionary pro-

cesses [38], the simulation can be carried out using the
spectral representation method [23, 47], developed based
on the ordinary Fourier transform (FT). A stationary

process is defined by its power spectral density (PSD)
function, and an evolutionary process is defined by the
evolutionary PSD that is a function of an amplitude
modulation function. The evolutionary process with time-
dependent amplitude modulation is widely used in gener-
ating seismic ground motions [1, 10] and fluctuating wind
velocity for high-intensity wind events [5, 17, 20, 21].
Masters and Gurley [27] proposed an iterative spectral

correction algorithm to simulate the stationary non-
Gaussian processes, where the spectral representation
method is used in each iteration to generate the time his-
tory. They showed that their algorithm outperforms the
SRM-based simulation techniques presented in Yamazaki
and Shinozuka [58], Gurley and Kareem [15], Grigoriu
[14], and Deodatis and Micaletti [11]. It is noted that an
algorithm similar to the spectral correction algorithm,
namely the iterative amplitude adjusted Fourier transform
(IAAFT) algorithm, was proposed by Schreiber and
Schmitz [43, 44] in the context of generating surrogate for
statistical hypothesis testing. The use of the translation
process for the stationary non-Gaussian process proposed
in Grigoriu [14] was extended for the nonstationary
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processes by others, including Ferrante et al. [12] and
Shields et al. [46].
The evolutionary PSD is often assessed using (time-

dependent) windowed Fourier transform, such as the
short-time Fourier transform [6]. The resolution of such
a transform is controlled by the width of the window. As
the width of the window increases, a better resolution is
obtained at the low frequencies, and the resolution in
time deteriorates. A good resolution in both time and
frequency (i.e., scale) can be obtained by applying the
continuous wavelet transforms (WT) [9, 35]. A proced-
ure to estimate the evolutionary PSD by applying the
continuous WT was proposed by Spanos and Failla [50].
However, an algorithm that directly applies the continu-
ous WT to simulate the nonstationary stochastic pro-
cesses with a prescribed wavelet spectrum or time-scale
PSD was unavailable. Recently, an iterative algorithm
was presented by Chavez and Cazelles [4] to generate
surrogate for statistical hypothesis testing. We will point
out, in the following sections, a potential weakness of
the algorithm, as well as the link between this algorithm
and an interesting way of defining nonstationary pro-
cesses in the wavelet domain introduced by Maraun
et al. [26]. The lack of continuous WT-based algorithm
to simulate time histories is partly due to that the use of
continuous WT does not lead to the decomposed signal
to be represented by a set of orthogonal basis functions.
Rather than using the continuous WT, the application of
the discrete WT and wavelet packet transform that have
orthogonal basis functions is presented in Gurley and
Kareem [16], and Yamamoto and Baker [57]. The reso-
lution obtained by using these discrete transforms is less
refined than that obtained by using the continuous WT.
The phase information in WT is local, while the phase

information in the Fourier transform refers to the har-
monics at zero time [52]. Stockwell et al. [53] (see also
[37]) developed the S-transform (ST) that provides the
time-frequency representation of the analyzed signal. It
is a hybrid of continuous WT and windowed FT. The S-
transform provides frequency-dependent resolution.
Similar to the continuous WT, ST does not lead to a
decomposed signal to be represented by a set of orthog-
onal basis functions. Stockwell [52] proposed a discrete
orthonormal S-transform. The simulation of the seismic
ground motions by using the discrete orthonormal S-
transform or combination with ST was presented in Cui
and Hong [8] and Hong and Cui [19]. However, an algo-
rithm by using ST alone to simulate nonstationary sto-
chastic processes has not been reported in the literature.
There are other techniques used to simulate the non-

stationary processes. These include the application of
autoregressive moving-average (ARMA) [42], Karhu-
nen–Loéve expansion [36, 49, 51], and polynomial chaos
[41], and Hilbert-Huang transform [56]. The ARMA

uses the recursive relations that connect the random
quantity to be simulated at successive time increments.
The application of the Karhunen–Loéve expansion uses
the eigenfunctions that are obtained by solving Fred-
holm integral equation of the second kind. In the
Hilbert-Huang transform, a random process is decom-
posed into intrinsic mode functions by the method of
empirical mode decomposition. A review of these simu-
lation procedures is beyond the present study since these
techniques involve varieties of mathematical concepts
and algorithms.
In the present study, we exam and extend the definition

of the nonstationary processes in the transform domain.
We proposed an iterative power and amplitude correction
(IPAC) algorithm to simulate nonstationary and non-
Gaussian processes. The algorithm could be viewed as an
extension of IAAFT [43] and the spectral correction algo-
rithm [27] and is rooted in the concept of defining the sto-
chastic processes in the transform domain. In particular,
we provide details of using the proposed algorithm with
FT, ST and WT, where the energy distribution in the
transform domain that satisfies energy preservation is pre-
scribed, and the marginal probability distribution function
of the process is given. We provide numerical examples to
show the proposed algorithm and compare the simulated
time histories obtained by using the ST-based and (con-
tinuous) WT-based approach.

Fourier transform, S-transform, and wavelet
transforms
This section summarizes some basic properties of FT [6,
30], ST [37, 53], and continuous WT [9]. Only the con-
tinuous WT, including its discretized form (which differs
from the discrete wavelet transform), is used in the
present study. Unless otherwise indicated, WT refers to
the continuous WT and its discretized form in the fol-
lowing. The summary provides the basis for the pro-
posed iterative simulation algorithm to be described in
the next sections.
Let x(t) denote a realization of a stochastic process

such as the ground motion record, X(t). FT of x(t), and
its inverse (IFT) can be expressed as

x̂ fð Þ ¼ FTt x tð Þð Þ ¼
Z þ∞

−∞
x tð Þe−i2πftdt; ð1Þ

and,

x tð Þ ¼ IFT f x̂ fð Þð Þ ¼
Z þ∞

−∞
x̂ fð Þei2πftdt x tð Þ

¼ IFT f x̂ fð Þð Þ ¼
Z þ∞

−∞
x̂ fð Þei2πftdt ð2Þ

where FT(•) and IFT(•) denote the FT and IFT opera-
tions, the subscript associated with these operators
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indicates the domain or the index where the operation is
carried out; x̂ð f Þ denotes FT of x(t); f is the frequency in
Hz, x̂ð f Þ ¼ x̂�ð− f Þ, and * denotes the complex conjugate.
A symbol or function with a circumflex is used to repre-
sent its FT throughout the present study. If x(t) is given
in the discrete form x(jΔt), j = 0, …, N − 1, with a sam-
pling time interval Δt and the duration T, T =NΔt, the
(discretized) FT pair is given by,

x jΔtð Þ ¼ IFTp x̂ pΔ f
� �� �

¼ 1
NΔt

XN=2

k¼−N=2þ1

x̂ kΔ f
� �

ei
2π
N kj; for j

¼ 0;…;N−1 ð3Þ

and,

x̂ pΔ f
� � ¼ FT j x jΔtð Þð Þ

¼ Δt

XN−1

k¼0

x kΔtð Þe−i2πN pk ; for p

¼ −N=2þ 1;…;N=2 ð4Þ

where Δf = 1/T, and the operators FT(•) and IFT(•) that
are used for continuous FT are used for discrete FT as
well. It is considered implicitly in the following that the
numerical calculations of x̂ðpΔ f Þ and x(jΔt) are to be
carried by using the fast Fourier transform (FFT) [30]
for computational efficiency. Moreover, the notation {•}N
is used for the collection of its argument of length N.
For example, {x(jΔt)}N represents all x(jΔt) for j = 0, …,
N − 1.
ST of x(t) is defined as [37, 53],

xS f ; τð Þ ¼ ST x tð Þð Þ ¼
Z∞
−∞

x tð Þw f ; τ−tð Þe−i2πftdt; ð5Þ

where xSð f ; τÞ is the ST coefficient, ST(·) denotes the S-
transform of its argument, and τ is the center of the win-
dow function w(f, τ − t) defined as,

w f ; τ−tð Þ ¼ fj jffiffiffiffiffiffi
2π

p
κ

exp −
f 2 τ−tð Þ2
2κ2

 !
: ð6Þ

The parameter κ in Eq. (6) controls the effective width
of the window in ST. It can be shown [53] that,

xS f ; τð Þ ¼
Z∞
−∞

x̂ ϕ þ fð Þ exp −
1
2

2πϕκ
f

� �2
 !

ei2πϕτdϕ;

ð7Þ

and,

x tð Þ ¼ IST xS f ; τð Þð Þ

¼
Z∞
−∞

Z∞
−∞

xS f ; τð Þdτ
2
4

3
5ei2πftdf ; ð8Þ

where IST(·) is the inverse S-transform (IST). Using Eqs.
(7) and (8), the discretized version of x(t) and xSð f ; τÞ ,
represented by x(jΔt) and xSðqΔ f ; pΔtÞ pair, can be writ-
ten as,

x jΔtð Þ ¼ IST xS pΔ f ; qΔt
� �� �

¼ IFTp Δt

XN−1

k¼0

xS pΔ f ; kΔt
� � !

; for j

¼ 0;…;N−1 ð9Þ

and,

xS pΔ f ; qΔt
� � ¼ ST x qΔtð Þð Þ

¼ IFT j x̂ jþ pð ÞΔ f
� �

exp −
2π2 j2κ2

p2

� �� �
;

for p ¼ −N=2þ 1;…;N=2; andq ¼ 0;…;N−1

ð10Þ
indicating that the evaluation of the ST coefficients at
(pΔf, qΔt) and its inverse at jΔt is based on FT.
WT is defined as [9, 35],

xW s; τð Þ ¼ WT x tð Þð Þ

¼ 1ffiffiffiffiffi
sj jp Z∞

−∞

x tð Þψ� t−τ
s

� �
dt; ð11Þ

where xWðs; τÞ is the wavelet coefficient, the operator
WT(•) denotes WT, ψ(⋅) is the mother wavelet and, s is
the scaling or dilation factor, and τ is the translation or
position parameter. Eq. (11) can be expressed as [9, 35],

xW s; τð Þ ¼
ffiffiffiffiffi
sj j

p Z∞
−∞

x̂ fð Þψ̂� sfð Þei2πfτdf ; ð12Þ

to facilitate its computation by using FFT for signals
given in the discretized form. If the admissibility condi-
tion 0 <Cψ <∞ is satisfied, where Cψ ¼ R∞

−∞
ð1=j f jÞ

�jψ̂ð f Þj2df , x(t) can be obtained using the following in-
verse WT [9],

x tð Þ ¼ IWT xW s; τð Þð Þ

¼ 1
Cψ

Z∞
−∞

Z∞
−∞

xW s; τð Þ 1ffiffiffiffiffi
sj jp ψ

t−τ
s

� � 1
s2
dτds; ð13Þ

where IWT(•) is the inverse of WT(•). If ψ(t) = ψ ∗ (−t),
Eq. (13) becomes,

Hong et al. Journal of Infrastructure Preservation and Resilience            (2021) 2:17 Page 3 of 15



x tð Þ ¼ 2
Cψ

Z∞
0

Z∞
−∞

xW s; τð Þ 1ffiffi
s

p ψ
t−τ
s

� � 1
s2
dτds: ð14Þ

Moreover, if the analytical wavelet – complex-valued
wavelet function that its FT is null for negative fre-
quency – is used, Eq. (13) can be expressed in Morlet
formulation [45],

x tð Þ ¼ Re
2

C1ψ

Z∞
0

1
s3=2

xW s; tð Þds
0
@

1
A; ð15Þ

where C1ψ ¼ R∞
0
ðψ̂�ð f Þ=j f jÞdf and Re() denotes the real

part of a complex number.
There are several well-known wavelet families [9, 33,

35], including Daubechies wavelets, generalized Morse
wavelets, and Morlet wavelets.
Eqs. (14), (15) and (12) can be written in the following

discretized form,

x jΔtð Þ ¼ 2Δt lns0
Cψ

XK
k¼0

XLu
r¼−Ll

xW c0s
k
0; rΔt

� � 1

c0sk0
� �3=2 ψ jΔt−rΔt

c0sk0

� �
;

for j ¼ 0;…;N−1

ð16Þ

x jΔtð Þ ¼ Re
2 lns0
C1ψ

XK
k¼0

xW c0sk0; jΔt
� �
ffiffiffiffiffiffiffiffi
c0sk0

q
0
B@

1
CA; for j

¼ 0;…;N−1 ð17Þ
and,

xW c0s
p
0; qΔtð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffi
c0s

p
0

		 		q
� IFTk x̂ kΔ f

� �
ψ̂� c0s

p
0kΔ f

� �� �
; for p

¼ 0;…;K ; and q ¼ 0;…;N−1

ð18Þ
where c0 and s0 are parameters for the numerical com-
putation; K is the total number of scales considered for
the numerical integration; TL = − LlΔt and TU = LUΔt de-
fine the lower and upper limits for the integral over time

τ, and C1ψ ¼ R∞
0
ðψ̂�ð f Þ=j f jÞdf . In the following, we re-

strict ourselves to the real-valued signal and the analyt-
ical wavelets or wavelets with ψ(t) = ψ∗(−t).

Gaussian process, power spectral density, and
defining process in the transform domain
According to the spectral representation method [47]
with the use of FFT [59], a sample of a Gaussian station-
ary process, x(t), can be simulated by transforming
Gaussian white noise w(t) to the Fourier domain, multi-
plying it with an intensity function jŷð f Þj, and transform-
ing it back to the time domain. That is,

x tð Þ ¼ IFT f y fð Þj jeiθF w tð Þð Þ
� �

; ð19Þ

where eiθF ðwðtÞÞ ¼ ηðFTðwðtÞÞÞ , in which the function
η(C) =C/|C| is introduced to normalize the complex
number C. Based on FT pair, x̂ð f Þ ¼ jyð f ÞjeiθF ðwðtÞÞ .
Since, by definition, the double-sided PSD function of
the process x(t) with duration T, SFxð f Þ, is given by,

SFx fð Þ ¼ x̂ fð Þx̂� fð Þ=T ; ð20Þ
it indicates that given the target PSD function SFxð f Þ ,
one could define a stationary Gaussian process in the Fou-

rier domain by assigning jŷð f Þj ¼ jx̂ð f Þj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SFxð f ÞT

p
.

The samples of the process so defined can be obtained
using,

x tð Þ ¼ IFT f x̂ fð Þj jeiθF w tð Þð Þ
� �

; ð21Þ

and the expected PSD of the sampled signals equals the
prescribed SFxð f Þ. The use of the definition given in Eq.
(20) preserves the energy of x(t) according to Parseval’s
theory.
We note that by assigning jŷð f Þj equal to MðtÞjx̂ð f Þj ,

Eq. (19) becomes,

x tð Þ ¼ IFT f M tð Þ � x̂ fð Þj jeiθF w tð Þð Þ
� �

¼ M tð Þ � IFT f x̂ fð Þj jeiθF w tð Þð Þ
� �

; ð22Þ

which simulates a uniformly amplitude modulated evo-
lutionary process [38]. Such a process has an evolution-
ary PSD function equals jMðtÞj2ðx̂ð f Þx̂�ð f Þ=TÞ, and M(t)
is the amplitude modulation function, which will be con-
sidered to be positive. However, the use of |y(f)| equal to
Mðt; f Þjx̂ð f Þj in Eq. (19) does not lend itself to be inter-
preted as a proper inverse Fourier transform because the
modulation function depends on the frequency. This re-
duces the computational efficiency that otherwise can be
gained by using FFT; it also makes the distinction be-
tween the modulation function and intensity function
more blurred. We will concentrate only on the case
where the modulation function is defined outside of the
transform domain. However, the consideration of modu-
lation that depends on variables in the transform domain
could be a valid assumption.
Maraun et al. [26] emphasized the usefulness of using

Eq. (19) to obtain samples of stationary Gaussian process,
and extended it to define a class of nonstationary Gaussian
processes in the wavelet domain by the wavelet multipliers
jyWðs; τÞj, indicating that an individual process is defined
by its multipliers and a synthesizing wavelet pair. Samples
of x(t) based on such a definition are then given as,

x tð Þ ¼ IWT yW s; τð Þ		 		eiθW w tð Þð Þ
� �

; ð23Þ
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where eiθWðwðtÞÞ ¼ ηðWTðwðtÞÞÞ . We use the intensity
function jyWðs; τÞj and eiθWðwðtÞÞ in Eq. (23) instead of
using yWðs; τÞ and WT(w(t)) as suggested in Maraun

et al. [26]. The use of eiθW ðwðtÞÞ instead of WT(w(t)) is
aimed at not biasing the energy arising from the inten-
sity function since [WT(w(t))][WT(w(t))]∗ is not a con-
stant in the wavelet domain by using WT defined in Eq.
(12). The use of jyWðs; τÞj (as well as jŷð f Þj in Eqs. (21)
and (22)) is more restrictive than yWðs; τÞ but is ad-
equate for the proposed algorithm in the following sec-
tion since we are focused on real-valued signals.
However, a negatively valued intensity and complex-
valued intensity may be considered for other
applications.
Similar to the use of M(t) in defining the uniformly

modulated evolutionary process mentioned earlier, we
include M(t) in Eq. (23),

x tð Þ ¼ IWT M tð Þ yW s; τð Þ		 		eiθW w tð Þð Þ
� �

¼ M tð Þ � IWT yW s; τð Þ		 		eiθW w tð Þð Þ
� �

; ð24Þ

to define a modulated and intensity function adjusted
(MODIF) process. The intensity function gives time-
scale characteristics of the process, and the modulation
function provides additional time-varying characteristics
of the process.
We further extend the concept of defining the MODIF

process in the time-frequency domain according to ST,
denoted as the S-domain, where samples of x(t) are
given as,

x tð Þ ¼ IST M tð Þ � yS f ; τð Þj jeiθS w tð Þð Þ
� �

¼ M tð Þ � IST yS f ; τð Þj jeiθS w tð Þð Þ
� �

; ð25Þ

where ySð f ; τÞ is an intensity function in the S-domain,
and eiθSðwðtÞÞ ¼ ηðSTðwðtÞÞÞ.
It is noted that besides the above-mentioned trans-

forms, there are other transforms used for signal analysis
and modeling; for example, the generalized Fourier fam-
ily transforms [2]. Therefore, it is relevant and straight-
forward to conceptually generalize the approach in
defining the MODIF processes in the transform domain
if other transform pair is considered. The definitions
lend themselves to an easily understandable and almost
trivial algorithm to simulate stochastic processes:

A) Sample Gaussian white noise, w(t), and calculate
the normalized coefficients of w(t) in the transform
domain (e.g., eiθF ðwðtÞÞ, or eiθW ðwðtÞÞ, or eiθSðwðtÞÞ if
FT, or WT, or ST is used, respectively).

B) Apply the inverse transform to the product of the
intensity function and the normalized coefficients
obtained in Step A).

C) Apply the modulation function to the simulated
signal from Step B).

Step C) is separated from Steps A) and B) and is not af-
fected by the selected transformation. A critical issue of ap-
plying the MODIF process with prescribed target energy
distribution is that the energy distribution of the sampled sig-
nals for given intensity function may not be readily estab-
lished, except for the case where FT is used (i.e., transforms
with non-redundant representation). This is because unlike
the FT, both WT and ST provide redundant representation.
The redundant representation results in that, in general, jyW
ðs; τÞjeiθWðwðtÞÞ and jySðs; τÞjeiθSðwðtÞÞ do not represent the
proper coefficients of WT and ST, respectively. In other
words, jyWðs; τÞjeiθWðwðtÞÞ and jySðs; τÞjeiθSðwðtÞÞ are not

equal to xWðs; τÞ ¼ WTðIWTðjyWðs; τÞjeiθWðwðtÞÞÞÞ and xS
ð f ; τÞ ¼ STðISTðjySðs; τÞjeiθSðwðtÞÞÞÞ, respectively.
To see the impact of this inequality on the simulated

MODIF process by using Eq. (24), we note that we can
define the double-sided time-scale PSD (TSPSD) func-
tion of the simulated process x(t), SWxðs; τÞ, as,

SWx s; τð Þ ¼ xW s; τð Þ
s
ffiffiffiffiffiffi
Cψ

p
 !

xW s; τð Þ
s
ffiffiffiffiffiffi
Cψ

p
 !�

: ð26Þ

The use of this definition leads to energy preservation
since the integral of SWxðs; τÞ in the wavelet domain
equals the integral of |x(t)|2 in the time domain (see
Proposition 2.4.1 in Daubechies [9]). Consequently, even
we assign jyWðs; τÞj equals ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SWxðs; τÞCψ
p jsj and M(t) =

1 for the simulation, the average energy of the sampled
signals according to Eq. (24) will likely deviate from the
specified target SWxðs; τÞ.
Consider that we simulate the MODIF process using

Eq. (25). We can define the double-sided time-frequency
PSD (TFPSD) function of the simulated process, SSxð f ; τ
Þ, as,

SSx f ; τð Þ ¼ xS f ; τð Þ=
ffiffiffiffiffiffiffiffiffiffiffi
Dκ fj j

p� �
xS f ; τð Þ=

ffiffiffiffiffiffiffiffiffiffiffi
Dκ fj j

p� ��
;

ð27Þ

since the use of this definition leads to energy preservation
[18], where Dκ ¼

R∞
−∞
ð1=jζjÞ � expð−ð2πκðζ−1ÞÞ2Þdζ .

However, the average energy of the sampled signals by

using Eq. (25) with jySð f ; τÞj equal to jxSð f ; τÞj
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SSxð f ; τÞDκj f j
p

and M(t) = 1 will likely deviate from
the specified target.
In addition to the discussed energy distortion, the ap-

plication of the MODIF process is likely to lead to the
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samples obtained from Eqs. (22), (24) and (25) to follow
a marginal cumulative distribution function (CDF) that
deviates from the prescribed marginal CDF of the zero-
mean process FX, t(x(t)). An iterative process is proposed
in the following sections to simulate the nonstationary
and non-Gaussian with prescribed target PSD and CDF.
The PSD functions that satisfy the energy preservation
by considering the selected transform are used as the
basis to describe the proposed algorithm to maintain
consistency. Although this could become clumsy in
some instances, it is useful in checking that a consistent
transform pair is employed.

Iterative power and amplitude correction
algorithm
IAAFT algorithm
To develop the proposed iterative algorithm, we note
that, given the observed {x(jΔt)}N, the IAAFT algorithm
was proposed by Schreiber and Schmitz [43, 44] in the
context of generating surrogates for statistical hypothesis
testing. The algorithm repeatedly uses FT and IFT, and
ranked data. This algorithm is explained using the rank-
ing of x(jΔt) in the following.
The PSD function SFxð f Þ of {x(jΔt)}N is calculated using

Eq. (19) with possible smoothing. The objective of IAFFT
is to generate surrogates that match the calculated SFxð f Þ
and shuffled {x(jΔt)}N. A similar algorithm - the spectral
correction algorithm - was independently designed by
Masters and Gurley [27] to simulate non-Gaussian pro-
cesses for the given target SFxð f Þ and target marginal
CDF FX(x(t)). A subtle difference between these two algo-
rithms is how the prescribed target PSD function and
CDF are obtained or assigned. For example, {x(jΔt)}N is
obtained through distribution mapping in the spectral cor-
rection algorithm. In IAAFT, {x(jΔt)}N is given and shuf-
fled. This shuffling, in the spectral correction method, can
be viewed as matching the prescribed probability distribu-
tion. Once {x(jΔt)}N is prescribed and SFxð f Þ is calculated,
by letting {ξ(j)}N equal to the ascendingly sorted {x(jΔt)}N,
the steps of the IAAFT algorithm are:

1. Sample a sequence of Gaussian white noise, w(t), of
length N, calculate eiϕp ¼ ηðFTðwðtÞÞÞ;

2. Calculate xPCð jΔtÞ ¼ IFTpðj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SFxðpΔ f ÞT

p jeiϕpÞ and
find the ranking of xPC(jΔt), rj, for j = 0, …, N − 1,
based on the ascending order;

3. Set xAC(jΔt) = ξ(rj), for j = 0, …, N − 1; and calculate
eiϕp ¼ ηðFT jðxACð jΔtÞÞÞ, and.

4. Repeat Steps 2) to 3) until the convergence
criterion is achieved.

Steps 1) and 2) are the same as Steps A) and B) de-
scribed earlier that simulates a Gaussian process, except

an additional ranking of xPC(jΔt) is carried out, which is
equivalent to define the CDF as a preparation for the it-
eration. In general, Step 2) leads to xPC(jΔt) with the
PSD correction but may deviate from the target CDF
assigned by {ξ(j)}N, and Step 3) leads to the sampled
xAC(jΔt) with the amplitude correction (i.e., matching
CDF assigned based on {ξ(j)}N) but may deviate from the
target PSD. The iteration adjusts the PSD and CDF of
the sampled time series to their corresponding targets.
The tolerable differences between xPC(jΔt) and xAC(jΔt)
can be used as the convergence criterion. Once conver-
gence is achieved xPC(jΔt) or xAC(jΔt) can be used as the
sampled time series. Note that since the time increment
equals Δt, the corresponding Nyquist frequency for the
considered signal equals 1/(2Δt).
The IAAFT algorithm is designed for stationary pro-

cesses. For the shuffling of {x(jΔt)}N to simulation sta-
tionary process, it is implicitly considered that the
marginal CDF of x(t) at any given time remains to be
the same. Also, the PSD function for the stationary
process is time-independent. The IAAFT algorithm or
the spectral correction method is not applicable to simu-
late nonstationary processes as they have time-varying
PSD and CDF.

Proposed iterative power and amplitude correction
algorithm
In this section, we describe the proposed iterative power
and amplitude correction (IPAC) algorithm to simulate
the time history {x(jΔt)}N of a zero-mean nonstationary
non-Gaussian process. Since Δt is assigned, N can be de-
termined based on the length of the signal to be simu-
lated and vice versa, and the Nyquist frequency for the
sampled signal equals 1/(2Δt). The proposed algorithm
could be viewed as an extension to the IAAFT algo-
rithm. For the simulation, it is considered that, for
M(t) = 1, the PSD function of the process that is charac-
terized based on FT, or ST, or WT is given, and the dis-
tribution type for the marginal CDF of x(t), FX, t(x(t)), is
known. Moreover, it is considered that FX, t(x(t)) can be
completely defined by the zero-mean, the time-varying
standard deviation, σ(t), and other prescribed distribu-
tion parameters if they are required (since, in some
cases, a CDF with more than two parameters may be
considered).
If FT is considered for a stationary process, the stand-

ard deviation σ(t) equals
ffiffiffiffiffiffiffiffi
λFx

p
which is time-

independent, where λFx , equals the integral of SFxð f Þ
over the frequency domain. Since SSxð f ; τÞ provides the
energy distribution over the time-frequency domain, the
integral of SSxð f ; τÞ over the frequency domain provides
the energy distribution in the time domain, λSxðτÞ,
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λSx τð Þ ¼
Z∞
−∞

SSx f ; τð Þdf ; ð28Þ

and the integral of SSxð f ; τÞ over the time domain pro-
vides the energy distribution in the frequency domain,
SSxð f Þ . Analogously to the statistics for the stationary
process, λSxðτÞ represents the variance of x(τ), and σ(t)
equals

ffiffiffiffiffiffiffiffiffiffiffiffiffi
λSxðtÞ

p
. Similarly, for the given SWxðs; τÞ , the

time-varying variance λWxðτÞ is given by,

λWx τð Þ ¼
Z∞
−∞

SWx s; τð Þdf ; ð29Þ

and σ(t) equals
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λWxðtÞ

p
. The integral of SWxðs; τÞ over

the time domain provides the energy distribution in the
scale domain, SWxðsÞ.
Let u(t) be a uniformly distributed random variable be-

tween 0 and 1 with its marginal CDF denoted as U(u(t)).
The relation between u(t) and x(t) can be established
based on the probability transformation, U(u(t)) = FX,
t(x(t)). The steps in the IPAC algorithm in a pseudo-
code form are shown in the flowchart depicted in Fig. 1
and are described as follows:

I) Prescribe the targets and initiate the simulation
process:

Sample {u(jΔt)}N based on a random number gener-
ation algorithm for a uniformly distributed random vari-
able between 0 and 1. Assign {p(j)}N equal to the

ascendingly sorted {u(jΔt)}N, and the intensity function j

yT ð s*pÞj according to the considered transform pair
(Tf(•), ITf(•)), where.

a. For (Tf(•), ITf(•)) = (FT(•), IFT(•)), jyT ð s*pÞj ¼ j
yF ð f Þj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SFxð f ÞT

p
, and σðtÞ ¼ ffiffiffiffiffiffiffiffi

λFx
p

which is
time-independent,

b. For (Tf(•), ITf(•)) = (ST(•), IST(•)), jyT ð s*pÞj ¼ jyS
ð f ; τÞj ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SSxð f ; τÞDκj f j
p

, and σðtÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
λSxðtÞ

p
,

c. For (Tf(•), ITf(•)) = (WT(•), IWT(•)), jyT ð s*pÞj ¼ j
yWðs; τÞj ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SWxðs; τÞCψ
p jsj, and σðtÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λWxðtÞ
p

.

II) Iteration steps:

II.1) Sample a sequence of Gaussian white noise, w(t),

of length N, calculate eiϕT ð s*pÞ ¼ ηðTf ðwðtÞÞÞ;
II.2) Calculate xPCð jΔtÞ ¼ ITf ðjyT ð s*pÞjeiϕT ð s*pÞÞ, pPC

ð jΔtÞ ¼ FX; jΔt ðxPCð jΔtÞÞ , and find the rank of pPC(jΔt),
denoted as rj, for j = 0, …, N − 1;
II.3) Set xACð jΔtÞ ¼ F−1

X; jΔt
ðpðr jÞÞ , for j = 0, …, N − 1;

and calculate eiϕT ð s*pÞ ¼ ηðTf ðxACð jΔtÞÞÞ;
II.4) Repeat Steps II.2) to II.3) until the convergence

criterion is satisfied.
II.5) x(jΔt) =M(jΔt) × xAC(jΔt).
The algorithm essentially simulates the MODIF

process and iteratively corrects the PSD and CDF. The
intensity function and the transform pair are used from
Steps I) to II.4), while the modulation function only af-
fects the assignment of the final results in Step II.5).

Fig. 1 Iterative power and amplitude correction algorithm to simulate nonstatinary and non-Gaussian processes (Tf denotes the selected
transform in this figure)

Hong et al. Journal of Infrastructure Preservation and Resilience            (2021) 2:17 Page 7 of 15



Since xAC(jΔt) is used in Step II.5), the distribution
match (i.e., matching samples of FX(X(t)), {x(jΔt)}N) is
ensured by design. One could replace Step II.5) with
x(jΔt) =M(jΔt) × xPC(jΔt) without altering the results if a
stringent convergence criterion is employed. As can be
observed from the steps of the IPAC algorithm, the ana-
lysis, as well as the simulation, is carried out within the
same transform pair. It avoids the need to map the ob-
tained results from one type of transform into a different
kind of transform (e.g., obtaining the spectrum using
continuous WT and then transform it into evolutionary
PSD). The algorithm emphasizes the ranking and match-
ing of the probability values. Note that it may be
attempting to replace the uniform distribution with the
normal distribution for u(t). However, by doing so, it re-
quires the use of the inverse distribution transformation
in Steps II.2 and II.3) and increases computing demand.
The algorithm can be simplified if FX, t(x(t)) remains un-

changed and only depends on σ(t), that is, the marginal prob-
ability distribution of z(t) = x(t)/σ(t), FZ(z(t)), is time-
independent and z(t) has zero mean and unit variance. In
such a case, we calculate fζð jÞgN ¼ fF−1

Z ðpð jÞÞgN in Step
I); we replace “ pPCð jΔtÞ ¼ FX; jΔt ðxPCð jΔtÞÞ ” in Step II.2)

and “ xACð jΔtÞ ¼ F−1
X; jΔt

ðpðr jÞÞ ” in Step II.3) with “

pPC(jΔt) = xPC(jΔt)/σ(jΔt) ” and “ xAC(jΔt) = ζ(rj)σ(jΔt) ”, re-
spectively. This avoids the use of probability distribution
function during the iteration to gain extra computational effi-
ciency. This simplified version can also be used to generate
surrogate for observed {x(jΔt)}N, which has the effect of the
modulation function already removed. This is done by calcu-
lating {z(jΔt)}N= {x(jΔt)/σ(jΔt)}N, and letting {ζ(j)}N equal to
the ascendingly sorted {z(jΔt)}N in Step I.1) (instead of
fζð jÞgN ¼ fF−1

Z ðpð jÞÞgN ), where σ(jΔt) is to be calculated
based on the PSD function estimated from {x(jΔt)}N by using
a preferred transform.
The usefulness of surrogate in the context of wind en-

gineering was presented in McCullough and Kareem
[28]. The proposed algorithm, when used with WT to
generate surrogate, differs from that given in Chavez

and Cazelles [4] for testing time-localized coherence, in
that the time-varying σ(jΔt) is neglected in their algo-
rithm (i.e., the amplitude adjustment is based on
{x(jΔt)}N rather than its normalized version in the IPAC
algorithm). This is convenient and may likely speed up
the convergence of the algorithm. However, the basis for
the shuffling of {x(jΔt)}N is unclear if the marginal prob-
ability distribution of x(jΔt) for a nonstationary process
is assumed to be time-varying.

Numerical examples
In this section, we illustrate the proposed algorithm by
generating surrogate for a given ground motion record
and for a given fluctuating component of wind velocity
time history of a high-intensity wind event. We apply
the algorithm to sample nonstatinary ground motions
for prescribed target PSD, where the target is defined
based on a set of ground motion records, and the CDF
is assumed to be Gaussian and non-Gaussian. The test
of the proposed algorithm for esoteric mathematical
models is beyond the consideration of the present study.

Generating surrogate for an earthquake record
Consider the record shown in Fig. 2. By applying ST
with the window parameter κ = 1 (see Eq. (6)), the ob-
tained TFPSD function is shown in Fig. 3a, and the cal-
culated time-varying σ(t) is presented in Fig. 3b, showing
that the TFPSD varies in time and frequency.
By applying the IPAC algorithm, a surrogate is simu-

lated and shown in Fig. 3b. The TFPSD of this surrogate
is depicted in Fig. 3c. The figure shows that the surrogate
resembles the given record, and its TFPSD function re-
sembles well that shown in Fig. 3a. As xAC(t) is used for
generating surrogate (see Step II.5 in IPAC algorithm), the
amplitude (or probability distribution) matching is certain,
so no plot is provided. Additional test runs indicate that
the convergence is usually achieved within five iterations,
depending on the adopted convergence criterion. It was
noted that the average TFPSD function from multiple
generated surrogates tends to be smoother as compared

Fig. 2 Ground motions recorded at the CU station, UNAM, Mexico, for the Michoacán earthquake that occurred on September 19, 1985
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to the TFPSD of the observed record, which is expected
since the observed as well as a single sampled record are
realizations of stochastic processes.
The analysis based on ST is repeated but by applying

WT using the generalized morse wavelets (GMWs) [33],

ψ̂0;β;γ fð Þ ¼ U fð Þaβ;γ 2πfð Þβe− 2πfð Þγ ; ð30Þ

where U(ω) is the Heaviside function, aβ, γ = 2(eγ/β)β/γ,
and β and γ are model parameters. For GMW, Cψ =
2a2β, γΓ(2β, γ)/(2γ) and C1ψ = aβ, γΓ(β, γ)/(γ). The GMW
is an analytical wavelet, and it was used to evaluate the
coherence of the seismic ground motions [39]. For the
numerical analysis, β = 3, γ = 20, c0 = 0.528, s0 = 20.1 and
K = 91 (see Eq.(17)) are employed since these values are
suggested as the default values for the algorithm imple-
mented in MATLAB (Version 2019a). The obtained
TSPSD and σ(t) of the record are shown in Fig. 4a and
b, respectively. A generated surrogate is also shown in
Fig. 4b with its corresponding TSPSD function depicted
in Fig. 4c. An inspection of the surrogate depicted in
Fig. 4b and the original record presented in Fig. 2 indi-
cates that they exhibit similar temporal trends. The
TSPSD of the surrogate resembles that of the given rec-
ord. Again, the convergence is achieved within a few

iterations. A comparison of σ(t) shown in Figs. 3 and 4b
indicates that they are almost identical. The minor dif-
ferences between them are due to that ST and WT have
different time-frequency (or time-scale) decomposition.

Generating surrogate for a wind record
Now, consider a wind record presented in Fig. 5a. For
simplicity, the box window with a width of 32 samples is
used to find the mean wind velocity of the time-varying
wind record. By removing the mean, the fluctuating
component of the wind is presented in Fig. 5b.
By applying ST and WT, and following the same ana-

lyses that are carried out for the ground motion record
shown in the previous section, the obtained results are
presented in Figs. 6 and 7. In general, the observations
that can be drawn from this example are similar to those
presented in the previous section for the ground motion
record.

Simulating ground motions
Consider a set of 12 ground motion records oriented in
the E-W direction for a seismic event that occurred on
January 16, 1986, with a local magnitude of 6.1, focal
depth of 10.2 km, and an epicentral distance of 25.2 km.
These records are recorded by the LSST array in Lotung,

Fig. 3 Results by using ST for the given record shown in Fig. 2: a TFPSD of the given record, b a generated surrogate and σ(t) of the given
record, and c TFPSD of the generated surrogate shown in Fig. 3b

Fig. 4 Results by using WT for the given record shown in Fig. 2: a TSPSD of the given record, b a generated surrogate and σ(t) of the given
record, and c TSPSD of the generated surrogate shown in Fig. 3b
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Taiwan, where the separation between any two record-
ing sites is less than 100 m, as shown in Fig. 8a. Three
records from the 15 recording sites seem to be cor-
rupted and are not considered. The record obtained
from FA-1 site is illustrated in Fig. 8b. To minimizing
the wave passage effect, first, each of the remaining 11
records is time-shifted with respect to the record pre-
sented in Fig. 8b such that the sum of the product of a
considered record and that shown in Fig. 8b is maxi-
mized after the shift.
It is assumed that the average PSD of the considered

12 records could provide a good representation of the
ground motions, at least for such type of seismic event.
The calculated average TFPSD based on ST and the cal-
culated average TSPSD based on WT are shown in Fig.
8c and d, respectively. The calculated σ(t) by using the
average TFPSD and the average TSPSD presented in Fig.
8c and d are included in Fig. 8b. The obtained PSD and
the standard deviation indicate the nonstationarity of the
ground motions. σ(t) values obtained by using ST and
WT are in very good agreement.
An assessment of the empirical probability distribution

of the standardized variable z(t) = x(t)/σ(t) is carried out
by considering all 12 records. The empirical distribution
of z(t) by considering all 12 records is presented in Fig. 9,
indicating that the empirical distribution can be fitted by

a normal distribution only for the initial segment of the
records. Moreover, the distribution shape is time-varying
and non-Gaussian. The non-Gaussian behaviour of the
ground motions is supported by the findings given in
Radu and Grigoriu [40], indicating that the Gaussian as-
sumption for the seismic ground motions records in-
cluded in the PEER NGA-West dataset may not always
appropriate. However, for this particular set of records,
the tail of the distribution is shorter than that of the nor-
mal distribution, which differs from the longer tail be-
haviour suggested by Radu and Grigoriu [40].
For illustration purposes, it is assumed that the marginal

probability density function of x(t) can be represented by
the generalized Gaussian distribution (GGD) [29, 54],

f X;t x tð Þð Þ ¼ β0
2β1Γ 1=β0

� � e− x tð Þ−μj j=β1ð Þβ0 ; ð31Þ

where μ denotes the mean, β0 and β1 are positive model
parameters, and Γ(·) denotes the gamma function. If β0
equals 2, it represents the normal distribution. For β0 > 2
and < 2, the distribution tail is lighter and heavier than
that of normal distribution. The variance equals β21Γð3=
β0Þ=Γð1=β0Þ , and the kurtosis coefficient equals Γ(5/
β0)Γ(1/β0)/Γ

2(3/β0).

Fig. 5 Wind velocity record from Tower 4 and 10m height of the rear-flank downdraft that occurred during the evening on June 4, 2002, near
Lubbock, Texas [13, 34]: a the wind record, and b the fluctuating component of the record

Fig. 6 Results by using ST for the wind record shown in Fig. 5b: a TFPSD of the given record, b a generated surrogate and σ(t) of the given
record, and c TFPSD of the generated surrogate shown in Fig. 6b
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By considering β0 = 2 and β1 ¼
ffiffiffi
2

p
(i.e., standard

Gaussian), we use ST and the average target TFPSD
function shown in Fig. 8c to sample the records using
the IPAC algorithm. Since a comparison of two sampled
records is irrelevant for a stochastic process, only a sam-
pled record is illustrated in Fig. 10a. The average TFPSD
function obtained from the 1000 sampled records is pre-
sented in Fig. 10b, and the calculated spectral acceler-
ation (SA) for a damping ratio of 5% is shown in
Fig. 10c for the 1000 sampled records. Similarly, we use

WT and the average target TFPSD function shown in
Fig. 8d to carry out the simulation. The obtained results
are presented in Fig. 10d-f. The PSD functions shown in
Fig. 10b and e are almost identical to their correspond-
ing targets presented in Fig. 8c and d. The mean of SA
values shown in Fig. 10c and f are in good agreement.
The standard deviation of SA obtained by using ST
smaller than that obtained by using WT.
We have tested the IPAC algorithm to simulate

ground motions for additionally selected target PSD
functions. It was observed that in some cases, when the

Fig. 7 Results by using WT for the wind record shown in Fig. 5b: a TSPSD of the given record, b a generated surrogate and σ(t) of the given
record, and c TSPSD of the generated surrogate shown in Fig. 7b

Fig. 8 a The LSST array station of selected records, b record at FA1–1 station, c average TFPSD by using ST based on 12 records, and d average
TSPSD by using WT based 12 records
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initial or final segment of records has less than 0.5% of
total energy, the algorithm may converge very slowly or
may not converge. In such a case, it is suggested that
such segments with negligible energy are to be trun-
cated. This is in agreement with common practice in
earthquake engineering.
To simulate the non-Gaussian process, we consider fX,

t(x(t)) shown in Eq. (31) but with β0 = 3.01 and β1 = 1.54
(i.e., a kurtosis coefficient of 2.4) since their use fit the
data adequately, as depicted in the last plot in Fig. 9. We
repeat the analysis that is carried out for the results pre-
sented in Fig. 10. The obtained results for non-Gaussian

ground motions are presented in Fig. 11. A comparison
of the results shown in Figs. 10 and 11 indicates that the
results follow the same trends. To assess the quantitative
differences between the obtained SA based on Gaussian
and non-Gaussian assumptions, we calculate the ratio of
the mean of SA shown in Fig. 11 (i.e., non-Gaussian
case) to its corresponding value shown in Fig. 10 (i.e.,
Gaussian case). We do the same for the standard devi-
ation of SA. The obtained values are presented in Fig. 12,
indicating that the mean and standard deviation of SA
for the non-Gaussian case with a lighter tail are smaller
than those for the Gaussian case for the vibration period

Fig. 9 Empirical distributions of the normalized time series of the considered ground motions. a Time interval (0, 2), (2, 4), (4, 6); b (6, 8), (8,10),
(10, 12); c (10, 15), (20, 25), (30, 35); d entire duration and the fitted GGD with β0 = 3.01 and β1 = 1.54

Fig. 10 Results based on simulated nonstationary Gaussian records by using ST and WT (the results presented in a to c are for ST, and the results
presented in d to f are for WT): a a sampled record based on ST, b average TFPSD of the 1000 sampled record, c SA from 1000 sampled records
using ST, d a sampled record based on WT, e average TSPSD of the 1000 sampled record, f SA from 1000 sampled records using WT
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less than about 0.5 s. The decrease in SA by considering
non-Gaussian excitation is most noticeable for a shorter
vibration period. This is because stiffer structures are
more sensitive to peak acceleration values. In general,
the ratio based on ST is smoother than that based on
WT. Note that we refrained from discussing the ratio
between the SA values obtained based on ST and WT
since such a comparison could be misleading because

the TSPSD and TSPSD used are based only on 12 re-
cords and from the same seismic event.
We note that the simulation of a record (Gaussian or

non-Gaussian) described in Figs. 10 and 11 is carried
out by using a laptop with Intel(R) Core (TM) i7–7700
CPU @ 3.60GHz (6 core and 12 treads). The wall clock
time for simulating a record (including I/O) is less than
about 0.5 s if ST is used and is less than about 0.15 s if
CWT is used. The difference in the computing time by
using ST and CWT can be explained by noting that the
octave scale is used in CWT.

Summary and conclusions
We elaborated on the concept of defining a modulated
and intensity function adjusted (MODIF) stochastic
process in the transform domain. The definitions of the
stochastic processes in the transform domain lend them-
selves to an easily understandable and almost trivial al-
gorithm to simulate stochastic processes. As such a
simulated signal may not lead to the prescribed target
power spectral density function and marginal cumulative
distribution function of the process, we proposed a new
iterative algorithm, called iterative power and amplitude
correction (IPAC) algorithm, so the sampled signal after
the iteration have the prescribed properties. Besides
simulating nonstationary and non-Gaussian processes,
the proposed iterative algorithm can be used to generate

Fig. 11 Results based on simulated nonstationary non-Gaussian records by using ST and WT (the results presented in a to c are for ST, and the
results presented in d to f are for WT): a a sampled record based on ST, b average TFPSD of the 1000 sampled record, c SA from 1000 sampled
records using ST, d a sampled record based on WT, e average TSPSD of the 1000 sampled record, f SA from 1000 sampled records using WT

Fig. 12 Ratio of statistics of SA of simulated records with non-
Gaussian and Gaussian distribution assumptions
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surrogate. The algorithm can be used with Fourier trans-
form, S-transform, and continuous wavelet transforms.
Practical illustrative numerical examples showed the ap-

plicability of the proposed algorithm by sampling surro-
gates for the ground motions and the fluctuating
component of winds. The use of the IPAC algorithm to
simulate nonstationary Gaussian and non-Gaussian
ground motions based on S-transform (ST) and continu-
ous wavelet transform (WT) is presented. The spectral ac-
celerations are calculated using the simulated records. In
general, the mean and standard deviation of SA of the
simulated records based on ST and based on WT agree
well despite the differences between ST and continuous
WT and between the frequency-dependent window used
in ST and the generalized Morse wavelet used in the con-
tinuous WT.
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