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Abstract

Hurricanes and sea level rise pose significant threats to infrastructure and critical services (e.g., air and sea travel,
water treatment), and can hinder sustainable development of major economic sectors (e.g., tourism, agriculture, and
international commerce). Planning for a disaster-resilient future requires high-resolution, standardized data.
However, few standardized approaches exist for identifying, inventorying, and quantifying infrastructure lands at risk
from natural hazards. This research presents a cost effective, standardized and replicable method to geospatially
inventory critical coastal infrastructure land use and components, for use in risk assessments or other regional
analyses. While traditional approaches to geospatial inventorying rely on remote sensing or techniques, such as
object-based image analysis (OBIA) to estimate land use, the current approach utilizes widely available satellite
imagery and a “standard operating procedure” that guides individual mappers through the process, ensuring
replicability and confidence. As a pilot study to develop an approach that can be replicated for other regions, this
manuscript focuses on the Caribbean. Small islands rely heavily on a small number of critical coastal infrastructure
(airports, seaports, power plants, water and wastewater treatment facilities) and climate related hazards threaten
sustainable development and economic growth. The Caribbean is a large and diverse area, and gaps exist between
countries in the resources required for planning but much of the region lacks a comprehensive inventory of the
land, infrastructure, and assets at risk. Identifying and prioritizing infrastructure at risk is the first step towards
preserving the region’s economy and planning for a disaster resilient future. This manuscript uses high resolution
satellite imagery to identify and geo-spatially classify critical infrastructure land area and assets, such as structures,
equipment, and impervious surfaces. We identified 386 critical coastal infrastructure facilities across 28 Caribbean
nations/territories, with over 19,000 ha of coastal land dedicated to critical infrastructure. The approach establishes a
new standard for the creation of geospatial data to assess land use change, risk, and other research questions
suitable for the regional scale, but with sufficient resolution such that individual facilities can utilize the data for
local-scale analysis.
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Highlights

� Created a cost effective, standardized, and replicable
method to geospatially inventory critical coastal
infrastructure land use

� The approach improves on other geospatial data
collection approaches where land use data is
required for conducting regional assessments of
storm risk, climate risk, or economic projections

� Pilot study of Caribbean shows 19,000 ha of coastal
land dedicated to critical infrastructure

� Developed an inventory of Caribbean critical
infrastructure assets (buildings, paved surfaces,
industrial structures, etc.) at a regional scale

� The results of this study can be used to track land
use change over time and provide guidance for
urban planning in coastal regions with limited land
area for development

Introduction
Planning for a disaster-resilient future requires high-
resolution, standardized data on a regional scale in order
to properly assess risk. However, few standardized ap-
proaches exist for identifying, inventorying, and quanti-
fying regional land and infrastructure at risk from
natural hazards. Hurricanes and sea level rise pose a sig-
nificant threat to infrastructure and critical services that
were built in harm’s way, such as water telecommunica-
tions, energy, and international commerce. These threats
hinder sustainable development of major economic sec-
tors, such as tourism, agriculture, and international com-
merce. They also pose significant threats to fragile
coastal ecosystems, as infrastructure-related disasters
can result in the release of hazardous materials [1–3].
While individual islands, nations, or local governments
may already possess such datasets for their specific loca-
tion, access to and consistency between such datasets re-
mains a significant challenge for researchers wishing to
conduct regional studies [4, 5]. Due to the varying na-
ture of coastal infrastructure, this last piece presents
unique challenges. This research develops a standardized
and replicable method to geospatially inventory critical
coastal infrastructure land use and components. The
resulting data can be used for natural hazard vulnerabil-
ity assessment, tracking land use change over time, as
well as other applications, on a regional scale.
As a pilot to develop an approach that can be repli-

cated for other regions, this manuscript focuses on the
28 island nations and territories in the Caribbean. Island
economies such as those in the Caribbean rely on their
critical coastal infrastructure, such as airports, seaports,
power plants, water and wastewater treatment facilities.
Due to its geographic location and topography, the
Caribbean is one of the most natural-disaster prone

regions worldwide [6] and climate related hazards
threaten sustainable development and economic growth
[7, 8]. While climate related hazards pose a significant
threat to critical infrastructure, like many areas around
the world, the region lacks a comprehensive inventory of
the land, infrastructure, and assets at risk. Identifying
and prioritizing infrastructure at risk is a first step to-
wards preserving the region’s economy and planning for
a disaster resilient future [9, 10].
Using the most up-to-date high-resolution satellite im-

agery, this manuscript employs heads-up digitizing, a
method of manually tracing geographic features using aer-
ial imagery, to identify and geo-spatially classify critical in-
frastructure land area and assets, such as buildings,
industrial structures, and impervious surfaces. This ap-
proach establishes a standard for the creation of geospatial
data that can be used to assess land use change, hazard
risk, and other research questions suitable for the regional
scale, but with sufficient resolution such that individual fa-
cilities can utilize the data for local-scale analysis.
This paper begins with a discussion of various ap-

proaches to the creation and classification of geospatial
data that could be used for analyzing environmental
risks and answering other questions about intra-regional
challenges. It then provides our justification for focusing
on the Caribbean as a pilot study to develop a new
methodology for creating regional land use inventories.
Next, the methodology and “standard operating proced-
ure” is laid out in detail. We tested our approach in a
validation exercise to explore how well our methodology
worked when followed by different mappers. The results
section summarizes the total coastal land area in the
Caribbean that is devoted to critical coastal infrastruc-
ture. Finally, the discussion section addresses the impli-
cations, shortcomings, and next steps for this work.

Background – geospatial data and its implications
for storm assessments and land use planning
Hurricanes and sea level rise pose a significant threat to
infrastructure and critical services and can hinder sus-
tainable development of major economic sectors [11].
Planning for a disaster-resilient future requires high-
resolution, standardized data on a regional scale [12].
For example, ocean scientists rely on high-resolution ba-
thymetry and elevation data sets to develop models of
sea level rise, storm surge, waves, and riverine flooding
[13]. The impacts of these hazards on society and the
environment, however, depend on what lies in harm’s
way. While advances in regional storm modeling have
resulted in more reliable projections of climate hazards,
few standardized approaches exist for identifying, inven-
torying, and quantifying regional land and infrastructure
at risk from episodic coastal flooding and/or chronic sea
level rise. While there are numerous methods to assess
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vulnerability and risk at the micro and meso-scale, crit-
ical infrastructure are not typically included [14] and
when they are, risk is typically assessed only to one XY
coordinate (a “point”) as opposed to the land occupied
by the entire facility (See e.g., [12, 15, 16]). Developing
countries are expected to experience the greatest im-
pacts of climate change to their economies and liveli-
hoods [17, 18] and limited access to resources constrains
their ability to adapt in the face of more frequent storm
events and a changing climate [17]. While a vast amount
of geospatial data has been created over the last several
decades at almost every scale, there remains a dearth of
high-resolution land use classification data at the re-
gional scale that can be used for environmental risk and
vulnerability assessments of coastal infrastructure. The
rest of this section describes some of the techniques to
create and classify data.

Land use and land cover data
Vegetated, non-vegetated, and man-made features are ubi-
quitous throughout the Earth’s landscape. High spatial
and temporal resolution satellite imagery have improved
researchers’ ability to classify land use and land cover
(LULC). Most notably, the Landsat satellite program
(www.nasa.gov/mission_pages/landsat/) sparked a surge in
the development of remote sensing techniques to compre-
hensively characterize, quantify, and monitor the Earth’s
surface [19, 20]. Land cover characterizes the physical ma-
terials covering the landscape, such as forest, grass, or
open water while land use represents the function land
serves, such as commercial, residential, or agricultural
[21]. LULC information play an important role for ad-
dressing environmental issues, such as monitoring LULC
change [22–24] and modeling the impacts of urbanization
[25, 26]. Seto et al. [27] estimated that global urban land
cover will increase by 1.2 million km2 by 2030, a 185% in-
crease from the year 2000. Increased urbanization will
likely threaten biodiversity, result in the loss of fertile crop
land [28] and exacerbate the impacts of climate change
[29]. While only 1.8% of world land, excluding Antarctica,
is located in the low elevation coastal zone (LECZ), a full
10% of the world population lived in this zone in 2010.
Density is expected to increase from 288 inhabitants/km2

to 455 inhabitants/km2 by 2100 [30]. High concentrations
of people, industry, assets, and infrastructure in urban
areas, like major cities located in the LECZ, are at the
greatest risk to the effects of climate change and natural
disasters [31].

Automated and machine learning LULC classification
Identifying, extracting, and classifying detailed and nu-
anced features in urban areas requires high spatial reso-
lution (HSR) satellite imagery [32, 33]. However, HSR is
not available in all regions of the world and lower

resolution imagery lacks the level of detail necessary to
extract detailed urban LULC [34]. Automated classifica-
tion techniques like object-based image analysis (OBIA),
a method that groups pixels into objects with similar
spectral characteristics, are promising approaches for
higher accuracy land use and land cover classification
[35, 36]. However, OBIA is not effective for classifying
the urban landscape [37]. OBIA relies on the segmenta-
tion of pixels into groups, limiting the ability to differen-
tiate objects constructed of materials with similar
spectral characteristics, such as impervious surfaces and
buildings [35]. Pixel based urban land-use classification
has a similar problem. Even with high resolution satellite
imagery, the heterogeneity of the landscape is too com-
plex for accurate classification. Machine learning tech-
niques, such as Convolution Neural Networks (CNN)
and Random Forest (RF), have also been applied to im-
prove accuracy of automated land cover classification
[38, 39]. However, these methods present similar limita-
tions of classifying urban land-cover, such as misidenti-
fying features with similar spectral characterizes and
requiring large amounts of training data for high accur-
acy classification, in addition to requiring a reasonably
high skill set to properly implement [38–40].

Open street maps
Open Street Maps (OSM) is a web-based platform for
crowd-sourcing of publicly available spatial data gener-
ated by users all over the world, commonly referred to
as volunteered geographic information [41]. OSM col-
lected data has been integrated in a number of applica-
tions including LULC mapping [42] and urban planning
[43]. Due to the high cost of collecting and maintaining
geo-spatial data, OSM provides a free alternative map-
ping service for the aggregation and distribution of
spatial data. While OSM data is extensive, particularly in
densely constructed urban areas, the contribution of in-
dividuals lacking a formal training in geographic infor-
mation systems can lead to the generation of data that is
of lower quality and accuracy compared to authoritative
databases generated by local, state, and national agencies
[44, 45]. For example, a comparison of OSM building
footprint data to an authoritative reference dataset in
Munich, Germany identified that while OSM derived
geospatial data had a high area completeness, many of
the buildings included in the authoritative dataset were
not mapped in OSM dataset [4]. In addition, buildings
in dense urban areas were grouped together and lacked
rich building attribute information. Other studies com-
paring OSM derived data to authoritative databases have
identified similar limitations, such as a lack of detailed
attributes and lower accuracy and completeness in rural
areas [45].
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Heads-up digitizing
Heads-up digitizing refers to a method of manually
transposing information from an image into points,
lines, and polygons in a digital file typically called a sha-
pefile. The user looks at an image, such as an orthopho-
tograph, on a computer screen and traces the features of
interest into a new digital file. The technique is more
labor intensive than automated classification used in re-
mote sensing, but is still used for many applications, es-
pecially when data are not conducive to an algorithm for
making classification decisions. Many digital maps cur-
rently in wide use were created using this process.

Limitation of risk/vulnerability assessment
The frequency of coastal flooding due sea level rise is ex-
pected to double in the coming decades [46]. High ac-
curacy spatial resolution Light Detecting and Ranging
(LIDAR) and Digital Elevation Models (DEMS) have
allowed for greater detailed flood risk mapping and vul-
nerability assessments [47, 48]. However, varying DEM
sources and their associated elevation error can impact
the ability to predict coastal flooding and its risk [49].
For example, a study comparing LiDAR derived DEMs
to publicly available DEMs concluded that publicly avail-
able DEMs did not meet the level of accuracy necessary
for flood risk assessment, particularly at a greater spatial
scale [50]. Risk and vulnerability assessments are used in
coastal regions throughout the world to aid in under-
standing the impacts of major storm events and future
sea level rise scenarios [51–53]. High-resolution model-
ing, such as the Advanced Circulation Model for
Shelves, Seas, and Estuaries (ADCIRC), has allowed for a
comprehensive and informative assessment of flooding
risk [54, 55]. Increasing development in coastal regions
coupled with more frequent and intense extreme wea-
ther events has increased exposure and vulnerability to
people, assets, and infrastructure [56].

Methods
The approach used in this manuscript establishes a
standard for the creation of geospatial data that can be
used to assess land use change, risk, and other research
questions suitable for the regional scale, but, with suffi-
cient resolution such that individual facilities can utilize
the data for local-scale analysis. This manuscript builds
on work that developed the first geospatial inventory of
Rhode Island’s (USA) commercial ports and harbors
[57]. It introduces a “standard operation procedure”
(SOP) to employ a heads-up digitizing approach to iden-
tify and geo-spatially classify critical infrastructure, their
land area and assets, such as buildings, industrial struc-
tures and impervious surfaces. Serving as a guide for a
reliable and repeatable approach for the creation of geo-
spatial data for critical infrastructure using heads-up

digitizing, the SOP consists of decision-making criteria
mappers can use to determine critical infrastructure fa-
cility land use boundaries and key features to digitize, as
well as outlining the digitizing procedure and a number
of “what-if” scenarios that a mapper might encounter.

Caribbean as a case study
In this paper, we use the Caribbean region as a case
study (Fig. 1 and Table 1). This collection of island na-
tions faces a unique set of economic, social, and environ-
mental challenges. Island economies such as those in the
Caribbean heavily rely on critical infrastructure and the
services they provide. With much of the region’s infra-
structure located in the coastal zone, the impacts of cli-
mate change are expected to disrupt the regions tourism
economy and commerce [58]. The Inter-American De-
velopment Bank projects that the Caribbean could face
climate-related losses in excess of $22 billion annually
by 2050 [59]. Due to the relative isolation of the islands
and lack of natural resources, airports and seaportsare
important links for socio-economic development and
connectivity between islands in the region and the global
economy. In addition, seaports and airports are lifelines
for goods such as energy resources, food, potable water
(and nearly all of the other imported goods that are part
of modern life). Energy facilities and water treatment
provide electricity and potable water, necessities that
modern day cities cannot do without. Under current cli-
mate change projections plus continued development in
the coastal zone which is often improperly regulated,
critical infrastructure in the region may face more fre-
quent flooding and operational disruptions as early as
the 2030s [60]. While climate related hazards pose a sig-
nificant threat to critical infrastructure, like many areas
around the world, the region lacks a comprehensive in-
ventory of the land, infrastructure, and assets at risks.
In this pilot study, mapped infrastructure meets the fol-

lowing criteria: 1) it is an airport, seaport, water treatment,
or energy facility, 2) it is located within 1 km of the coast-
line, and 3) it must be currently in use All facilities were
also cross-referenced through Google searches.

Existing databases of infrastructure
In order to create the inventory, we first searched for
existing datasets of infrastructure. Limited critical infra-
structure databases exist in this region and throughout
the world. Those that do exist are almost exclusively
“point datasets,” meaning that each facility is identified
as one XY coordinate, with information provided about
aspects of that facility, such as depth of water if a seaport
or airport code if an airport. The single XY point coord-
inate associated with each facility may or may not be
geographically located on the facility itself, though it
usually is in close proximity. Our manuscript recognizes
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the need for “polygon” datasets, which allow for a more
nuanced analysis of land use and risk.
That said, we relied upon several worldwide databases

(Table 2) and online sources to first identify and inven-
tory critical infrastructure points. Seaports were identi-
fied from the World Port Index [61] prepared by the
National Geospatial–Intelligence Agency and Countries
with ports in the Caribbean prepared by World Port
Source [62]. These databases include port name, latitude
and longitude, and port characteristics (e.g., facilities and
services offered). Seaport types within our database in-
cluded cruise ports, container ports, oil terminals, and
general purpose ports. Airports were identified from
OpenFlights Airport Database [63] and World Airport
Database [64]. These databases included airport name,
longitude and latitude, and airport ID. We were unable
to locate regional databases for water and wastewater
treatment facilities and energy facilities. Instead, both

facility types were identified through a google search
using terms such as “Caribbean Power Plants” of “Carib-
bean Water Treatment Facilities”. Energy facilities were
categorized by their fuel source, and included power
plants (natural gas, coal, etc.,), oil refineries, nuclear
power plants, and solar and wind farms. Water and
wastewater treatment facilities included water treatment
facilities, desalination plants, and wastewater treatment
facilities. We aggregated critical infrastructure facilitates
identified from existing databases and google searches
into an individual inventory for each facility type in a
point shapefile containing facility name, facility type, lo-
cation, and coordinates.

Satellite imagery
In order to create polygons for land uses and facility as-
sets, we relied on satellite imagery to recognize key fea-
tures. Base imagery used to digitize critical infrastructure

Create new feature classes within the 
file geodatabase:

Airports
Seaports
Energy Facilities
Water Treatment Facilities

Create new file geodatabase

Add ESRI World Imagery Base Map

In each new feature class, create an 
attribute for:

Infrastructure name
Land use description
Area (for polygon features)

Set feature class coordinate system to 
be: WGS_1984_World_Mercator

Identify infrastructure of interest

Turn Editor on

Start editing feature class of interest 
(airports, seaports, energy facilities, 
wastewater treatment facilities, marinas, 
or roads)

Using the Create Feature tool, create 
polygons delineating the boundaries of 
the infrastructure

Create several polygons for each 
infrastructure of interest by delineating 
land use (e.g., one polygon for the 
runway, one polygon for the terminal 
buildings)

Continue until all features and all 
infrastructure of interest have been 
mapped

Save edits Turn Editor off

Record relevant information in the 
attribute table 

Calculate area of polygons in attribute 
table used Calculate Geometry

Fig. 1 Map of critical coastal infrastructure facilities in study area
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boundaries and assets needs to be up-to-date and high
resolution. Availability of recent high-resolution satellite
imagery varies depending on geographic location. While
sources for high-resolution imagery, such as Planet, Inc.
(https://www.planet.com/) and Satellite Imaging Corp
(https://www.satimagingcorp.com/), are available for
some regions throughout the world, acquiring regional
scale imagery can be costly. Publicly available imagery,
such as ESRI World Imagery, is a cost-effective source
of high-resolution imagery for detailed feature extrac-
tion. Last updated in 2020, ESRI World Imagery pro-
vides 1 meter or better satellite and aerial images

worldwide, including 15m Terra Color Imagery at small
and mid-scales (~ 1:591M down to ~ 1:72 k) and 2.5 m
SPOT Imagery (~ 1:288 k to 1:72 k) and typically cap-
tured within the last three to 5 years. To be considered
suitable for this project, imagery used must have been
the most up-to-date and captured after 2010. Imagery
resolution ranged between 0.31–0.50 m with the date of
imagery ranging from 03/09/2011 to 12/10/2019. We de-
fined an imagery scale range of 1:1000–1:8000, allowing
for the digitization of larger features and parcel bound-
aries while ensuring that smaller features could be cap-
tured accurately. In some instances, imagery was either

Table 1 Study area characteristics

Country Total Land Area
(km2) a

Population
(2020) a,b

GDP
(US$M)
a,b

# of
Airportsa

# of
Seaportsa

# of Energy
Facilitiesa

# of Water Treatment
Facilitiesa

Anguillas,u,oe 91 18,090 175.4 1 1 1 1

Antigua and
Barbudas,u, oe

442.6 98,179 1.5 2 1 3 1

Arubas 180 119,428 2700 1 4 3 3

The Bahamass,u 10,010 337,721 12,060 9 8 3 0

Barbadoss,u 430 294,560 4990 1 1 3 3

Bermudas, 54 71,750 6127 1 4 2 2

Bonaire 228 25, 897 428 1 2 2 1

British Virgin
Islandss,oe

151 37,381 1028 2 1 1 0

Cayman Islandss 264 61,944 2250 3 2 2 5

Cubas,u 110,860 11,059,062 93,790 6 31 12 0

Curaçaos 444 151,345 5600 1 4 4 1

Dominicas,u,oe 751 74,243 557 2 3 2 1

Dominican Republics,u 48,760 10,499,707 76,090 7 16 8 0

Grenadas,u,oe 344 113,094 1119 2 1 1 0

Guadeloupes,oe 1628 400,139 – 2 4 4 2

Haitis,u 27,750 11,067,777 8608 2 10 3 1

Jamaicas,u 10,991 2,808,570 14,770 5 12 7 3

Martiniques,oe 1128 376,400 – 1 2 3 3

Montserrats,oe 102 5373 167.4 0 1 1 0

Puerto Ricos 8959 3,189,068 104,200 5 18 13 8

Saint Lucias,u 606 166,487 1686 1 3 0 0

Saint Martins 54.4 32,556 561.5 2 4 3 1

Sint Eustatiuss 21 3140 108 1 1 1 0

St. Kitts and Neviss,oe 261 53,821 964 2 2 3 1

St. Vincent &
Grenadiness,u,oe

389 101,390 785 5 6 1 0

Trinidad & Tobagos,u 5128 1,208,789 22,780 1 10 4 3

Turks and Caicos
Islands

948 55,926 632 3 3 2 1

U.S. Virgin Islandss 346 106,235 5182 2 15 6 6
a Facilities within 1 km of the coastline and currently active; bThe WorldFactBook (https://www.cia.gov/library/publications/resources/the-world-factbook/); c Statista
(https://www.statista.com/); sSmall Island Developed State; uUnited Nations Member;;oe Organsation of Eastern Caribbean States (OECS) member
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of low resolution or had significant cloud cover over a
facility. In these situations, we were unable to extract
features from the imagery.

Creation of a standard operating procedure (SOP)
To standardize an approach for geospatially inventorying
critical coastal infrastructure, we developed a Standard-
ized Operating Procedure (SOP) for digitizing critical
coastal infrastructure in ArcMap (Fig. 3). The SOP lays
out clear guidelines and directions for different mappers
to develop similar geospatial data. While the method-
ology developed is specific to ArcMap, it can be easily
be adapted for use on any platform or open source ap-
plication (e.g., QGIS). For each facility type, mappers
create a polygon feature class projected using WGS 1984
Web Mercator (Auxiliary Sphere) within a file geodata-
base in ArcMap. The digitization process followed these
three basic steps (further details may be found in the
Additional file 1):

Step 1: The first step in our digitization process was to
define the parcel boundary for a facility, which we
defined as the entire land area owned by the facility
that encompassed all assets owned by the facility. With

many of the critical coastal infrastructure located in
highly developed areas, determining the facility
boundary could be challenging, particularly in regions
with lower resolution imagery. To guide boundary
delineation, we used linear structures, such as roads
and fences surrounding a facility to determine the land
area covered by the facility.
Step 2: Next, polygons of key assets for each facility
type, such as buildings, liquid bulk storage tanks, and
runways were delineated from the imagery. Mappers
used the snapping toolbar in ArcMap to prevent
adjacent features, such as buildings in close proximity,
from overlapping.
Step 3: For each feature digitized, detailed information,
such as the feature type, facility name, facility type,
location, the date and resolution of the imagery used
were recorded in the attribute table. This process was
completed for each facility type, and each database was
checked for quality assurance and consistency.

Because decisions about boundaries and classifications
are subjective to the mapper’s perceptions, the SOP de-
scribes in detail how decisions should be made regarding
drawing lines, classification, and scale. Within the SOP,

Table 2 Databases used to locate critical infrastructure facilities

Facility Type Main
Source

Specific
Source

URL Data Type Description

Ports World Port
Index

WPI_
Shapefile

https://msi.nga.mil/
Publications/WPI

Shapefile Shapefile with points for each terminal. Multiple
terminals per port.

Ports World Port
Source

Countries
with ports in
the
Caribbean

http://www.worldportsource.
com/ports/region.12.php

Shapefile Breakdown of ports by country. Port icons are coded
by size.

Airports OpenFlights
Airports
Database

OpenFlights
Airport
Database

https://openflights.org/data.
html#airport

Spreadsheet
File

As of January 2017, the OpenFlights Airports Database
contains over 10,000 airports

Airports World
Airport
Database

World Airport
Database

http://www.world-airport-
database.com/database.html

Spreadsheet
File

One of the largest airport databases in the world with
information on 33,539 airports in 228 countries. A
satellite map of more than 31,000 airports is also
available.

Water and
Wastewater
Treatment
Facilities

Google Google Maps https://www.google.com/
maps

N/A Key Search Terms: Water treatment plant; Wastewater
Treatment Plant; Sewage Treatment Plant; Desalination
plant; Water Authority

Energy
Facilities

Google Google Maps https://www.google.com/
maps

N/A Key Search Terms: Power Plant; Power Station; Nuclear
Power Plant; Wind Farm; Solar Farm

All ArcGIS Basemap –
World
Imagery

https://www.arcgis.com/
home/item.html?id=10df22
79f9684e4a9f6a7f08febac2a9

Orthoimagery World Imagery, last updated August 2020, provides
one meter or better satellite and aerial imagery in
many parts of the world and lower resolution satellite
imagery worldwide. The map includes 15 m TerraColor
Imagery at small and mid-scales ((~ 1:591 M down to
~ 1:72 k) and 2.5 m SPOT Imagery (~ 1:288 k to ~ 1:72
k) for the world.

All Google
Earth

Google Earth https://support.google.com/
earth/answer/148094?hl=en

Orthoimagery Google Earth contains a large collection of imagery,
including satellite, aerial, 3D, Street View, as well as
historical images. Images are collected over time from
providers and platforms.
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we developed a set of systematic and repeatable proce-
dures, such as defining an imagery scale range for heads-
up digitizing, to guide a mapper in the creation and clas-
sification of uniform polygon features for critical coastal
infrastructure (Fig. 2). For each facility type, we outlined
a standardized inventory of features to be mapped, such
as runways for airports, for the mappers to reference as
a guide in making decisions about extracting features
from satellite imagery (Fig. 3).
Given the lack of publicly available imagery in certain

regions and the geospatial circumstances for some critical
infrastructure facilities, such as facilities located in densely
constructed urban vs. less developed rural areas, mappers
may be confronted with circumstances that complicate
the process of heads-up digitizing critical coastal infra-
structure. To meet this challenge, we created “what-if”
scenarios (see SOP Section 4.1) to augment the set of rules
and provide mappers with guidance on how to proceed
under different circumstances. For example, the “what ifs”
can help the mapper determining a parcel boundary that
is not immediately obvious or select the appropriate im-
agery to use when the imagery and image date changes at
different scales.

Results
Results of this pilot study allow for a macro-level ana-
lysis of infrastructure land use in the Caribbean Islands
region. In total, we identified 566 critical infrastructure
facilities in the Caribbean across the 28 island nation
territories. Of that, approximately 65% (n = 386) of the
facilities were within 1 km of the coast and satisfied the
requirements as critical coastal infrastructure, thus we
included in our analysis. These facilities encompass a
total land area of 19,118 ha of land area in the Caribbean
(Table 3). This section first describes results for each
critical infrastructure category, as well as the results of a
validation exercise. It then provides some key findings
about the methodological approach itself.

Airports
Island economies such as those in the Caribbean depend
on airports for trade, food, and energy needs. Additionally,
a majority of Caribbean Island GDP is directly dependent
on tourism, for which airports are a critical component.
Airports in the Caribbean are frequently sited along the
coast, as coastal land offers large expanses of flat space and
an approach by sea that makes takeoff and landing easier

Fig. 2 Decision making process for mapping critical coastal infrastructure (See SOP in Additional file 1 for full details)
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for pilots. Rising air temperatures and decreasing air dens-
ity over the coming century will impact airplane takeoff,
resulting in the need for longer runways. Increasing heat
can buckle pavement, reduce payload limits, and lead to
other health and safety risks. Sea level rise and storm surge
further threaten airstrips that often extend directly over
the sea on filled land [65]. We identified 71 airports in the
Caribbean that meet the criteria of coastal critical infra-
structure, covering 10,588 ha of land (Table 4). At each air-
port, we mapped paved surfaces including runways,
aprons, taxiways, and parking areas, as well as building, in-
cluding terminal buildings, hangars, and control towers.
An example of a mapped airport is included in Fig. 3a.

Among the critical infrastructure facility types we digi-
tized, airports by far had the largest footprint in the
Caribbean in coastal regions. Depending on the size of
the airport and the requirements of the planes landing
there, runways alone can require a large amount land.
For example, the United States Department of Transpor-
tation recommends a runways length of 9000 ft for a
Boeing 737 [66]. Larger airports may have more than
one runway, in addition to taxiways, aprons, and land
area dedicated to terminal buildings and parking areas
for travelers. Given current climate conditions and the
associated need for longer runways, our inventory could
be a useful tool to aid planners in designing and

Fig. 3 Example mapped critical infrastructure facilities and key features. a Fernando Luis Ribas Dominicci Airport, Puerto Rico; b Port of Spain,
Trinidad and Tobago; c Bahama Light and Power Clifton Pier, The Bahamas; d Planta De Tratamiento De Aguas Negras, Puerto Rico
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Table 4 Airports results summary

Total footprint (ha.) # of features mapped

Parcel Runways Aprons Taxiway Buildings Terminal Buildings Hangars

10,588.5 924 493 411 539 36 87

Table 3 Number of coastal critical infrastructure facilities and total land footprint in the Caribbean

Infrastructure Type # of
Facilities
Identified

# of
Facilities
within 1
km of
Coast

Total footprint (ha.) # of features mapped

Parcels Paved Surfaces Buildings Tanks

Airports 147 71 10,589 1876 671 N/A

Seaports 210 170 3704 792 1494 735

Energy Facilities 136 98 4619 90.5 1718 2280

Water & Wastewater Treatment Facilities 73 47 206 0.3 174 81

Total 566 386 19,118 2759.52 4057 3096

Table 5 Seaports results summary

Seaport Type # of
facilities

Total footprint (ha.) # of features mapped

Parcel Apron Container Yard Laydown Area Buildings Tanks

General Cargo 101 1668.9 39.6 151.4 85.1 886 322

Container Port 25 1154.1 27.8 353.7 60.5 407 100

Oil Terminal 19 826.8 0.65 – 5.5 115 313

Cruise Port 25 54.5 3.4 – 2.2 86 –

Total 170 3704.3 71.5 505.1 153.1 1494 735
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adapting airports in the coastal regions, where undevel-
oped land area is already scarce, and will become in-
creasingly scarce with a changing climate.

Seaports
Seaports serve as the economic lifeblood of island na-
tions, many of which are served by only one seaport
which imports all materials and supplies that would be
too expensive to transport via air. Island economies de-
pend on cruise ports for tourism, container ports for im-
ports/exports and transshipment, and bulk ports for the
import/export of raw materials. Additionally, energy
ports import valuable petroleum products needed for
road and air transport, as well as general power for the
electric grid that powers other critical infrastructure fa-
cilities including desalination plants, water treatment
plants, and telecommunication systems. Across the 28
island nations in this study, we identified 170 individual
seaports, which includes: container ports, cruise ports,
oil terminals, and general cargo ports (Table 5). We
mapped the full outline of the parcel, the individual
buildings, key paved surfaces, and tank used to store pet-
roleum or other liquid products. An example of a
mapped seaport is include in Fig. 3b. Results show that
3704 ha of Caribbean land was devoted to seaport
infrastructure.

Energy facilities
Energy facilities play an important role in supplying
power to the industries that drive economic growth and
development, in addition to powering homes and busi-
ness. With increased urban development in coastal re-
gions, the placement of energy facilities is critical for
supplying power to a growing population. In addition,
energy facilities need access to a water source for cool-
ing, with sea water being a common source utilized due
to its high availability. For Island nations, reliance on re-
liable energy infrastructure that supplies consistent
power is a vital function for maintaining health and well-
being among the residents of island nations, as well as
ensuring these countries can produce goods and services

that can be distributed between islands and the global
economy.
In total, we located and mapped 98 energy facilities

throughout the Caribbean region, including: fossil fuel
power plants, nuclear power plants, oil refineries,
solar farms, and wind farms (Table 6). We mapped
the facility land area, buildings, structures dedicated
to generating power, and tank farms used to store
fuel. An example of a mapped energy facility is in-
cluded in Fig. 3c. In total, energy facilities covered
4619 ha of the coastal land in the Caribbean region.
Not surprisingly, as the size of the country and its
population increased, so did the number of facilities
and land area dedicated to generation of power and
the storage of fuels such as oil, petroleum, or natural
gas. Of the 98 facilities mapped, only 8 used a renew-
able fuel source such as solar or wind, with the rest
relying on fossil fuel as a primary fuel source to pro-
duce power. The reliance on fossil fuel power plants
as a primary fuel source may be indictive of a level
of reliability and consistent power supply associated
with these fuels sources, in addition to supplying
large quantities of power with a relatively small foot-
print on islands with limited land area to produce
enough power to supply a growing population and
economy.

Water & Wastewater Treatment Facilities
Society depends on safe, clean, treated water to prevent
disease and maintain health. Properly treated wastewater
protects the environment and similarly prevents disease
in humans. Many water and wastewater treatment facil-
ities are located in the coastal zone, as they either rely
on seawater as a source (e.g., for a desalination plant) or
a destination for treated water [15]. Though such facil-
ities are not limited to coastal locations, such locations
are often more cost effective, as the low elevation re-
duces the need for expensive pumping systems. In this
study, we identified 47 water treatment, wastewater
treatment, and desalination facilities, encompassing 206
ha of coastal land (Table 7). The limited number of
water and wastewater treatment facilities inventoried

Table 6 Energy facilities results summary

Energy Facility Types # of
facilities

Total footprint (ha.) # of features mapped

Parcel Paved Surfaces Buildings Power Structures Tanks

Fossil Fuel Power Plant 66 1308.1 44.0 876 116 594

Nuclear Power Plant 1 15.0 1.1 15 7 38

Oil Refinery 23 3155.4 45.4 824 62 1658

Solar Farm 4 103.6 – 3 – –

Wind Farm 4 36.9 – – – –

Total 98 4619 90.5 1718 185 2280
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may be a result of the lack of a regional database and
the challenges of locating these facilities. However, the
Caribbean region does suffer for a lack of adequate re-
sources to treat water, with only 17% of the homes in
the region directly connected to a form of water treat-
ment (Fluence News [67]).

Validation exercise/accuracy assessment
One of the potential applications for this approach is
tracking land use over time. For example, researchers
could conduct an inventory every five years in order
to monitor how infrastructure land use is growing or
shrinking for a particular region. To this end, the ap-
proach must be replicable such that different individ-
ual mappers would make the similar choices with
respect to boundaries and classifying assets. To assess
the accuracy and replicability of the methodology, we
hosted a validation exercise to compare results ob-
tained by independent mappers for a subset of facil-
ities within our database. We recruited 11 volunteer
mappers with basic GIS skills. Using a random name
generator, two facilities for each facility type (eight fa-
cilities in total) were selected for testing. Facilities
represented areas from a variety of built-environment
densities and had varying resolution satellite imagery.
Prior to digitizing the facilities, mappers reviewed our
SOP and partook in a two-hour training exercise.
Once they reviewed the materials, each mapper was
assigned four facilities and tasked with determining
and digitizing the parcel boundary, buildings, and
other features for each facility. We then compared
the percent overlap between polygon boundaries to
determine the effectiveness of our methodology in
guiding mappers to create a dataset that matched the
one created by our research team. In addition, we
made comparisons to data derived from OpenStreet-
Maps (OSM) for the same subset of facilities. How-
ever, of the eight facilities selected for the validation
exercise, only four were mapped in OSM for
comparison.
To determine the percentage of parcel polygon

overlap between our dataset and the participants
dataset, we applied the Union tool in ArcMap to join

the sample polygon features for each mapper with
those in the researcher dataset. We then divided the
area that intersected by the total area (i.e., intersect-
ing + non-intersecting) of the joined polygons. In
comparison of the polygon overlap for parcels, we
found that an average of 83.6% of the polygon area
from the volunteer mapper derived dataset over-
lapped with our polygon parcels (Table 8). After the
exercise, we survey the mappers to identify the com-
ponents that the participants struggled the most with
when completing the exercise. The most common
challenges of the exercise identified from the feed-
back was determining the boundary that surrounded
a facility, particularly for facilities that were in
densely developed areas. Three of the facilities that
were mapped were problematic for participants, with
variability in the percentage overlap among mappers
(Fig. 4). In comparison to OSM, we found an average
of 82.8% overlap of polygon area between our dataset
and the facilities mapped in OSM. Analysis shows
that the variation may be indicative of the geographic
location of the facility, such as facilities in highly de-
veloped regions or areas with lower resolution im-
agery available, as well as the experience level
mappers have with GIS and the efficacy of the meth-
odology we have developed. Overall, the results of
this exercise suggest that our approach and SOP pro-
vide enough instruction such that different mappers
could obtain similar results, though additional train-
ing would be helpful to boost replicability. This
validation exercise lends confidence to the replicabil-
ity of this method for conducting such geospatial
analysis.

Table 7 Water and wastewater treatment facilities results summary

Water Treatment Facility
Types

# of
facilities

Total footprint (ha.) # of features mapped

Parcel Paved Surfaces Buildings Clarifiers Tanks

Water Treatment Plant 16 55.2 – 69 21 30

Wastewater Treatment Plant 27 119.5 0.32 77 64 29

Desalination Plant 4 31.4 – 24 – 22

Total 47 206.1 0.32 170 85 81

Table 8 Results of the validation exercise and comparison with
Open Street Maps

% Polygon Overlap

Dataset Mean Range SD

Validation Exercise
(# of mappers = 11, # of facilities = 8)

83.6 45.4 14.1

OSM (# of facilities = 4) 82.8 38.1 18.1
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Discussion and implications
The primary purpose of this manuscript was to develop
a standardized, replicable approach to mapping critical
coastal infrastructure using the most-up-to date satellite
imagery. The resulting data can be used for a variety of
applications. For example, by running a regional sea
level analysis, researchers can quantify the amount of
critical infrastructure at risk from inundation or storm
surge on a more granular level than by simply using
point datasets. It could also be used for analysis of other
regional trends, such as tracking coastal land utilization
over time, regional economic studies, or planning. The
approach developed here provides empirical data that
has a higher level of precision than estimates based on
more generic land use. For example, Dronkers et al. [68]
developed an approach to estimate land use for ports
based on cargo throughput. This approach was subse-
quently improved by Hansen and Nicholls [69] for a
study that projected 2050 port land use demands based
on a variety of economic and climate scenarios. The data
resulting from the approach described in this study
could allow for validation, as well as for including a
wider variety of coastal infrastructure. Additionally, this
data could be used to identify facilities and infrastructure
storing hazardous materials, such as oil refineries and
power stations, that could potentially release pollutants
into the surrounding ecosystem similar to what occurred
in Galveston Bay during Hurricane Harvey [2].

While the Caribbean was used as a case study for this
pilot, there are many other regions throughout the world
with finite land area and infrastructure located in low-
lying coastal areas. Many will likely experience similar
climate related challenges. For example, island nations
located in the South Pacific are particularly susceptible
to climate related hazards. A recent study on the expos-
ure of infrastructure to climate risks in the South Pacific
estimate that 57% of the infrastructure is located with
500 m of the coastline [12]. While this study was one of
the first to develop a comprehensive assessment of the
infrastructure assets vulnerable to climate risk, a point
database was used to identify infrastructure, thus limit-
ing the ability to determine the assets at greatest risk.
The methodology we outline in this paper provides an
opportunity to develop more detailed geodatabases that
could be used for a comprehensive analysis of the assets
and infrastructure at greatest risk in regions like the
South Pacific. While other mapping techniques are avail-
able, the SOP standardizes the process of creating spatial
data for critical infrastructure features in a way that is
cost effective, fast, and useful for projects relying on par-
ticipatory mapping to generate spatial data. The SOP
can also be used as a complimentary guide pre-existing
mapping techniques as well as for the creation of geo-
spatial data using OSM or other open source mapping
applications. Additionally, the SOP can be utilized to
allow for revisions as satellite imagery is updated.

Fig 4 Validation exercise comparison of polygon overlap among eight mappers for each facility type
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Next steps for this work include an expansion of the
approach to include other types of coastal land use (e.g.,
marinas and emergency facilities), expanding the SOP to
include standardized approaches for mapping other crit-
ical infrastructure features, such as roads, bridges, and
railways within close proximity to coastal infrastructure
facilities, as well as conducting the study in other regions
around the world (e.g., the South Pacific). In addition,
the data could be used to conduct a regional analysis of
Caribbean coastal infrastructure at risk from storm
surge, similar to methods described in a pilot study we
conducted for the U.S. Virgin Islands [70].

Limitation of this approach
There are a few challenges and limitations to this ap-
proach that warrant discussion. This section describes
some of the larger issues.

Identifying facilities
This manuscript relies on existing point datasets and
Google searches to identify where facilities are located
along the coast. It then develops those point datasets
into polygon datasets to allow for a more nuanced un-
derstanding of land use. For ports and airports, we were
able to find comprehensive datasets. However, for water
treatment and energy facilities, we relied more on Goo-
gle searches to identify where on each island these facil-
ities could be found. As such, it is possible that some
facilities were missed. In next steps, we plan to expand
our approach to include other types of uses, such as ma-
rinas, hospitals, emergency facilities, and bridges. Some
of these, such as marinas, have likely been assembled
into databases that can be used to identify locations.
Others, however, will rely on a more hands-on approach
through Google or other search engines.

Determining parcel boundaries
“Parcel” generally describes the boundaries of a piece of
land held by a particular owner. Delineating such owner-
ship boundaries through an inspection of satellite im-
agery would be an impossible task. For this project, we
consider the parcel to be the land area devoted to a par-
ticular infrastructure use. In some cases, identifying this
boundary was relatively straightforward, such as for a
river or a road. However, in other cases, the mapper
needed to use their best judgement to determine where
a parcel boundary should be drawn. Though we included
several “what if” instructions in the SOP, this type of de-
cision making could lead to errors in the dataset.

Limitations in publicly available imagery
Acquiring high resolution satellite imagery at the re-
gional scale from a private company could be costly,
thus for purposes of this study, we relied on publicly

available satellite imagery provided by ESRI. While the
cost associated with accessing publicly available data was
negligible, a reliance on this imagery presents several
limitations as compared to formal imagery sources. For
one thing, cloud cover sometimes presented challenges
in identifying infrastructure. In addition, the date of the
imagery may vary with scale, meaning that as a mapper
zooms in on a piece of infrastructure the image date at a
higher resolution could be several years earlier or later
than that of the image at a smaller scale.

Conclusion
This paper describes a cost effective, precise and stan-
dardized approach to inventory critical infrastructure on
a regional scale. Using a heads-up digitizing approach,
the methods outlined in this paper can be used to create
a high-resolution dataset for the land and key features
dedicated to critical infrastructure. The dearth of such
datasets has been identified as a barrier to conducting
research to understand a variety of issues, especially in
developing nations such as many of the islands in the
Caribbean. Along with high-resolution bathymetry and
elevation data, land use data such as developed in this
manuscript is the third major category of data necessary
to assess storm surge and sea level rise impacts to the
coast at the local and regional scale. Using the 28 islands
in the Caribbean region to pilot the approach, we identi-
fied 386 critical coastal infrastructure facilities, with over
19,000 ha of coastal land dedicated to critical infrastruc-
ture. This data can be available to other researchers who
wish to conduct regional-scale work on climate vulner-
ability or other applications. Such geospatial datasets are
necessary for a variety of analyses, including risk assess-
ment and tracking land use change over time for a re-
gion. While other approaches to inventorying rely on
complex or automated remote sensing or techniques to
estimate land use, this approach utilizes satellite imagery
and a “standard operating procedure” that guides indi-
vidual mappers through the process, ensuring replicabil-
ity and confidence. The approach will be expanded and
the SOP further developed to include other regions, such
as the South Pacific, and additional types of
infrastructure.
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