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Abstract

The performance of civil infrastructure systems is vital in supporting a community’s functionalities. Reliability
assessment of these systems is a powerful approach to evaluate whether the system performance is desirably safe
under the impacts of resistance degradation and non-stationary loads. A k-out-of-n system is a widely-used logic
model for a system with n components, which survives (works) if at least k components work. Its special cases include
a series or a parallel system. Furthermore, a weighted k-out-of-n system has components with positive integer
weights and the system survives if the total weight of working components reaches the predefined threshold k. This
paper proposes a method for estimating the time-dependent reliability of both ordinary and weighted k-out-of-n
systems, taking into account the effects of resistance deterioration, resistance correlation and load non-stationarity, for
which a mathematical solution is derived. The applicability of the proposed method is illustrated through reliability
evaluation of a representative k-out-of-n system.

Keywords: System reliability, Time-dependent reliability, Weighted k-out-of-n system, Degradation, Non-stationary
loads

Introduction
Civil infrastructure systems are expected to function with
an acceptable level of serviceability and safety during their
service lives. The aggressive environmental or operating
conditions in service, however, could threaten the system
performance significantly. Taking into account the uncer-
tainties associated with these safety-threatening factors,
which are often difficult or even impossible to predict
exactly, structural reliability assessment is a powerful tool
to evaluate a system’s capability of fulfilling the safety
requirements during a reference period of interest [1–4].
An important ingredient in reliability assessment is

to model the degradation of structural resistance (e.g.,
strength, stiffness, and others) at both the component and
system levels [5–8]. On the other hand, the external load
process could be non-stationary on the temporal scale in
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terms of occurrence frequency and/or magnitude [9–11].
For example, for structures in cyclone-prone areas, the
future cyclone winds could be affected by the impact of
climate change [9, 10]. As a result, it is important to incor-
porate the factors of resistance deterioration and load
non-stationarity in structural reliability assessment. Mori
and Ellingwood [12] developed a method for estimating
structural time-dependent reliability, where the load pro-
cess was modeled by a homogeneous Poisson process.
This work was later improved by Li et al [13] so that the
non-stationarity in the load process can also be considered
in structural reliability assessment.
Most of infrastructure systems consist of multiple struc-

tures or components [14]. One of the key features of a
system is the interaction between different components
[15–17]. Furthermore, correlation may also arise between
the performances of different components due to com-
mon design provisions and construction practices [18, 19].
Wang et al [20] developed an approach for estimating the

© The Author(s). 2021Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://crossmark.crossref.org/dialog/?doi=10.1186/s43065-021-00018-1&domain=pdf
http://orcid.org/0000-0002-2802-1394
mailto: wangc@uow.edu.au
http://creativecommons.org/licenses/by/4.0/


Wang Journal of Infrastructure Preservation and Resilience             (2021) 2:3 Page 2 of 10

time-dependent reliability of an aging series system con-
sidering resistance correlation of different components.
Wang and Zhang [21] investigated the seismic resilience of
a power grid system, where the impact of correlation and
deterioration of component resistances was considered.
The concept of a k-out-of-n system has been extensively

employed in engineering practice, which refers to such a
system with totally n components that the system survives
(works) if at least k components normally work. With this
definition, the system is written as a k-out-of-n : G sys-
tem. Intuitively, the system reduces to a series or parallel
system when k = n or k = 1 respectively. Note that
there exists an alternative definition for k-out-of-n system,
with which the system fails if at least k components fail.
Both definitions serve as a complement for each other and
should be used with careful instruction. In this paper, the
k-out-of-n : G system will be discussed, and will be simply
referred to as a k-out-of-n system unless otherwise stated.
A generalized case of a k-out-of-n system is known as a

weighted k-out-of-n system [22], where each component
has a positive integer weight. Correspondingly, the sys-
tem works when the total weight of working components
reaches the threshold k. For example, consider two substa-
tions from an electricity distribution network, which are
connected directly by different transmission lines (com-
ponents) [23]. The voltage of each transmission line could
differ, resulting in different weights accordingly. When
a certain level of voltage is needed for electricity trans-
mission between the two substations, giving the required
threshold k, the system (consisting of these transmission
lines) can be modeled by a weighted k-out-of-n system. In
the presence of natural hazards such as earthquakes, the
resistance of each component is reflected by the seismic
fragility curve, which could degrade due to the impact of
environmental conditions [21]. One can also refer to [24]
for other examples of a weighted k-out-of-n system.When
the weight for each component equals unity, the weighted
k-out-of-n system reduces to an ordinary one.
The reliability assessment of a k-out-of-n system has

been widely discussed in previous studies [25–27]. Wang
et al [28] proposed a method for time-dependent relia-
bility of a k-out-of-n system with common cause failure
through system-level load-strength interference analysis.
Zhang et al [29] developed a reliability model for a load-
sharing k-out-of-n system subjected to discrete loads,
where the load-sharing effect was reflected by model-
ing the load distribution variation and strength damage
after component failures directly. However, these stud-
ies did not consider the impacts of component resistance
(in terms of correlation and deterioration) and load non-
stationarity on the time-dependent reliability of k-out-of-
n systems.
In an attempt to compute the reliability of a weighted

k-out-of-n system, recursive formulas were developed in

[30, 31]. Eryilmaz and Tutuncu [32] investigated the reli-
ability of a weighted k-out-of-n system by modeling the
component interdependency as a Markov type. Eryilmaz
[33] studied the reliability of a k-out-of-n system with
random weights and proposed a recursive formula to
compute the system state probabilities. Faghih-Roohi et
al [34] presented a dynamic model for availability assess-
ment of multi-state weighted k-out-of-n system and opti-
mized the component availability and capacity through a
genetical algorithm. Coit et al [35] proposed a reliability
model for dynamic k-out-of-n system considering com-
ponent partnership, where the system reliability at time
t is measured by the instantaneous system performance.
Franko et al [36] studied the impact of cold standby com-
ponent on the reliability of weighted k-out-of-n systems
with two types of components. Zhang [37] performed
reliability analysis of k-out-of-n systems with heteroge-
neous components and random weights. Hamdan et al
[38] developed an optimal preventive maintenance model
for weighted k-out-of-n systems on the basis of cost anal-
ysis. Yet the time-dependent reliability assessment of a
weighted k-out-of-n system has to be addressed by con-
sidering the time-variation of both component resistances
and external loads.
This paper presents a method for the time-dependent

reliability of an aging (weighted) k-out-of-n system, taking
into account the impacts of component resistance dete-
rioration, resistance correlation and non-stationary load
effect. It is shown that the proposed reliability method is
a generalized form of that for a single component, series
system or parallel system. The implementation of the pro-
posed method is also discussed. The applicability of the
developed reliability method is demonstrated through an
illustrative example.

Time-dependent reliability assessment
Reliability of a single component
Consider the reliability of a component over time inter-
val [ 0,T]. Significant load events (e.g., earthquake events)
occur randomly in time with random intensities. Using
a Poisson process to model the occurrence of the load
events, let λ(t) be the time-variant occurrence rate (t
denotes time), and FS(s, t) the cumulative distribution
function (CDF) of the load effect at time t conditional on
occurrence. Mathematically, if the load effect at time t is
S(t), then Pr(S(t) ≤ s) = FS(s, t), where Pr( ) denotes the
probability of the event in the brackets.
The resistance at time t, R(t), is modeled as follows,

R(t) = R0 · g(t) (1)

where g(t) is the deterioration function, and R0 is the
initial resistance. The deterioration function may take
different shapes (e.g., linear, square-root and parabolic),
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depending on the dominant deterioration mechanism
[2, 39].
With this, the time-dependent reliability within [ 0,T],

L(T), is estimated by [13]

L(T) =
∫ ∞

0
exp

{
−
∫ T

0
λ(t)

[
1 − FS(r · g(t), t)] dt

}

· fR(r)dr
(2)

where fR(r) is the probability density function (PDF) of the
initial resistance.

Reliability of a series or parallel system
For a series system with n components (structures), let Rj
be the initial resistance of component j (j = 1, 2, . . . n),
and gj(t) the deterioration function of component j =
1, 2, . . . n, which is assumed to be independent of the load
process. Suppose that the load process is modeled by a
Poisson process with a time-variant occurrence rate of
λ(t) and a time-variant CDF of load effect FS(s, t). An
occurring load event with magnitude s induces a struc-
tural action cj · s in component j (e.g., moment, shear, etc)
for j = 1, 2, . . . n. With this, the time-dependent series
system reliability, Lss(T), is given by [20]

Lss(T) =
∫

. . .

∫
exp

[
−
∫ T

0
λ(t) ·

{
1 − FS

(
n

min
j=1

rjgj(t)
cj

, t
)}

dt
]
fR(r)dr

(3)

where fR(r) is the joint PDF of the initial resistances R =
{R1,R2, . . .Rn}, and r = {r1, r2, . . . rn}.
For a parallel system consisting of n components with

the same configuration as that of the series system as dis-
cussed earlier, if each cj is independent of the number of
working components, and the deterioration function of
each component is identical, denoted by g(t), the time-
dependent parallel system reliability, Lps(T), is given by
[40]

Lps(T) =
∫

. . .

∫
exp

[
−
∫ T

0
λ(t) ·

{
1 − FS

(
nmax

j=1

rjg(t)
cj

, t
)}

dt
]
fR(r)dr

(4)

In Eqs. (3) and (4), if the component resistances are sta-
tistically independent, then fR(r) = ∏n

i=1 fRi(ri), where
fRi(ri) is the PDF of Ri. However, taking into account
the correlation between different component resistances,
one would need to reasonably model the probabilistic
behaviour of fR(r). With this regard, the copula function is
a promising tool to describe correlated random variables
[40, 41].

Reliability of a k-out-of-n system
For a k-out-of-n system with n components (structures),
the system survives if at least k components work, as men-
tioned before. Its time-dependent reliability will be dis-
cussed in this section. Assume that the resistance deteri-
oration function for each component is identical, denoted
by g(t), and is independent of the load process. It is also
assumed that the value of cj(j = 1, 2, . . . n) is independent
of the number of working components.
We introduce M(a, k), which is a function of vector a

(with n elements) and integer k ≤ n. The function M
returns the kth largest element of a, which will be used in
the following derivation. It is straightforward to observe
thatM(a, 1) = max(a) andM(a, n) = min(a).
The hazard function, denoted by h(t) at time t, repre-

sents the probability of structural failure at time t provided
structural survival up to time t. It can be related to the
time-dependent reliability L(t) according to [3, 40]

h(t) = −d ln L(t)
dt

(5)

or equivalently,

L(t) = exp
(

−
∫ t

0
h(τ )dτ

)
(6)

Consider the hazard function hkn(t) for the k-out-of-n
system at time t, conditional on R = {R1,R2, . . .Rn} = r =
{r1, r2, . . . rn}. Let a(t) =

[
r1g(t)
c1 , r2g(t)c2 , . . . rng(t)

cn

]
. By the

definition of hazard function, for�t → 0, hkn(t)�t equals
the probability that the system fails within time interval
(t, t+�t] provided the system’s survival within [ 0, t]. The
system failure is caused by the occurrence of a significant
load event with probability λ(t)�t, with which

hkn(t) = λ(t) {1 − Pr[ S(t) ≤ M(a(t), k)] }
= λ(t) {1 − FS[M(a(t), k), t] } (7)

where S(t) is the load effect at time t conditional on load
occurrence as before. It is noticed that in Eq. (7), hkn(t)
represents the instantaneous failure probability of the sys-
tem. The condition of system survival before time t refers
to the case that at least k components work at any time
τ ∈[ 0, t] (not necessarily all the n components working at
time τ ).

Remark 1 Letting Nf (τ ) denote the number of working
components at time τ , the probability of structural survival
up to time t, L(t), is determined by

L(t) = Pr
(
Nf (τ ) ≥ k,∀τ ∈[ 0, t] ) (8)

If there are nt load events occurring within [ 0, t] at times
t1, t2, . . . tnt respectively, it follows that

L(t) = Pr
( nt⋂
i=1

S(ti) ≤ M(a(ti), k)
)

(9)
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Eq. 9 is explained by the fact that, with an identical
deterioration function for each component, the condition
of
⋂nt

i=1 S(ti) ≤ M(a(ti), k) guarantees that the k com-
ponents with the greatest resistances at the initial time
survive at any time τ1 ∈[ 0, t]. Furthermore, at time τ2 ∈
(t, t + dt], where dt → 0, if one load event occurs (with
probability λ(t)dt) and the magnitude satisfies S(τ2) >

M(a(τ2), k), then the system fails at time τ2.

According to Eq. (7), the time-dependent reliability for
a reference period of [ 0,T], conditional on R = r, is
estimated by

Lkn(T) = exp
[
−
∫ T

0
λ(t) · {1 − FS [M(a(t), k), t]} dt

]

(10)

which is further rewritten as follows taking into account
the uncertainties associated with the component initial
resistances,

Lkn(T) =
∫

. . .

∫
exp

[
−
∫ T

0
λ(t) · {1 − FS [M(a(t), k), t]} dt

]
fR(r)dr

(11)

where fR(r) is the joint PDF of R = {R1,R2, . . .Rn}, and
r = {r1, r2, . . . rn} as before. Furthermore, Eq. (11) can be
simplified as follows,

Lkn(T) =
∫

exp
[
−
∫ T

0
λ(t) · {1 − FS

[
r · g(t), t]} dt

]
fM(a(0),k)(r)dr

(12)

where fM(a(0),k)(r) is the PDF ofM(a(0), k). Eq. 12 implies
that the (n + 1)-fold integral in Eq. (11) can be con-
verted into a two-fold integral if fM(a(0),k)(r) is known.
In Eq. (12), if treating M(a(0), k) as a generalized initial
resistance, then Eq. (12) is consistent with Eq. (2) by con-
sidering an equivalent component having a resistance of
M(a(0), k) for the system.
Eq. 12 (or (11)) is the proposed method for time-

dependent reliability of an aging k-out-of-n system, where
the non-stationarity of loads can be reflected by the time-
variation of λ(t) and FS(·, t).

Remark 2 Note that Eq. (11) is consistent with Eqs. (3)
and (4), since a series system is equivalent to an n-out-of-n
system and a parallel system is simply a 1-out-of-n sys-
tem. In fact, in Eq. (11), letting k = n gives M(a(t), k) =
minnj=1

rjg(t)
cj , and similarly,M(a(t), 1) = maxnj=1

rjg(t)
cj .

Remark 3 For an n-dimensional vector a and an inte-
ger k ≤ n, if M(a, k) returns the kth smallest element
of a, then M(a, k) = M(a, n + 1 − k) and M(a, k) =
M(a, n + 1 − k). The implementation of M and M can

be realized through some commercial software such as
Matlab (https://www.mathworks.com). For example, the
built-in function mink(a,k) in Matlab returns a vec-
tor containing the k smallest elements of a. Illustratively,
if a =[ 1 2 3 4 5], then M(a, 2) = M(a, 4) =
max(mink(a,4)) = 4.

Remark 4 Note that Eq. (12) has been based on a k-out-
of-n : G system. If considering a k-out-of-n : F system (that
is, the system fails if at least k components fail), then the
hazard function for the system is

hkn(t) = λ(t)
{
Pr[ S(t) > M(a(t), k)]

}

= λ(t)
{
1 − FS[M(a(t), k), t]

}

= λ(t) {1 − FS[M(a(t), n + 1 − k), t] }
(13)

which is consistent with that in Eq. (7).

Remark 5 It is noticed that in Eq. (12), the deterio-
ration process of each component has been assumed to
be deterministic. This is applicable for many engineer-
ing cases where the variation of the deterioration process
is small [42]. However, for a deterioration process with
large variation, Eq. (12) needs to be modified slightly to
incorporate the effect of uncertainty associated with com-
ponent deterioration.With this regard, it was shown in [13]
that a fully-correlated process is reasonable to describe the
component resistance deterioration. That being the case,
letting fG(T)(g) be the PDF of g(T), the two-fold integral
in Eq. (12) would become three-fold by replacing the item
fM(a(0),k)(r)dr with fM(a(0),k)(r)fG(T)(g)dgdr, if taking into
account the uncertainty associated with the component
deterioration process.

Reliability of a weighted k-out-of-n system
In this section, the time-dependent reliability of a
weighted k-out-of-n system will be discussed, which is
by nature a generalized form of Eq. (12). Recall that the
system works if the sum of weights associated with the
working components is no less than the threshold k.
As before, let a(t) =

[
r1g(t)
c1 , r2g(t)c2 , . . . rng(t)

cn

]
, and as(t)

the sorted a(t) in a descending order. Let b be an n-
dimensional vector representing the weights of the ele-
ments in as(0). We can determine such a positive integer
ks that

ks = min

⎧⎨
⎩j :

j∑
i=1

bi ≥ k

⎫⎬
⎭ (14)

Clearly, ks = k if bi = 1 for ∀i = 1, 2, . . . n.
Note that M(a(t), ks) = M(as(t), ks). With this, the

hazard function hwkn(t) at time t, conditional on R = r, is
determined by

https://www.mathworks.com
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hwkn(t) = λ(t) {1 − Pr[ S(t) ≤ M(a(t), ks)] }
= λ(t) {1 − FS[M(a(t), ks), t] } (15)

Similar to Eq. (10), the time-dependent reliability for
a service period of [ 0,T], conditioned on R = r, is
estimated by

Lwkn(T) = exp
[
−
∫ T

0
λ(t) {1 − FS [M(a(t), ks), t]} dt

]

(16)

which, using the law of total probability, is rewritten as
follows considering the uncertainty of R,

Lwkn(T) =
∫

. . .

∫
exp

[
−
∫ T

0
λ(t) · {1 − FS

[
M(a(t), ks), t

]}
dt
]
fR(r)dr

(17)

By referring to Eq. (12), Eq. (17) can be further reduced
to

Lwkn(T) =
∫

exp
[
−
∫ T

0
λ(t) · {1 − FS

[
r · g(t), t]} dt

]
fM(a(0),ks)(r)dr

(18)

where fM(a(0),ks)(r) is the PDF ofM(a(0), ks).
Eq. 18 (or (17)) presents the proposed time-dependent

reliability method for a weighted k-out-of-n system in the
presence of resistance deterioration and correlation. It has
a similar form to Eq. (12) except the item ks involved, due
to the impact of the weights for each component.

Implementation of time-dependent reliability assessment
For the (weighted) k-out-of-n system reliability in
Eqs. (11) and (17), if the expressions of fM(a(0),k)(r)
and fM(a(0),ks)(r) are unaccessible, one would need to
solve the multi-fold integrals numerically. This is usually
time-consuming to conduct, and one could alternatively
assess the reliability via Monte Carlo simulation, which
is especially powerful in dealing with multi-dimensional
problems with mathematical simplicity and robustness
[20, 40, 43, 44]. Technically, one can first generate a sam-
ple for R, denoted by r, and then compute the cores of
Eqs. (11) and (17) numerically with R = r, with which
the multi-fold integration can be evaluated via simulation
according to

L∗(T) = E {L∗(T |R)} (19)

where ∗ = kn or wkn, and E( ) denotes the mean value of
the random variable in the brackets.

Illustrative example
In this section, an illustrative k-out-of-n system will be
used to show the applicability of the proposed method in
Eqs. (12) and (18).

Table 1 Statistics of resistance and load effects of a single
component

Item Mean (kN·m) Coefficient
of variation

Distribution

Initial resistance 3600 0.2 Lognormal

Dead load 700 / Deterministic

Live load 1 (LL1) 500 0.35 Extreme Type I

Live load 2 (LL2) 500(1 + 0.003t), t
in years

0.35 Extreme Type I

Structural configuration
Consider a k-out-of-5 system with totally five compo-
nents, which have identical physical configuration and
load conditions. Table 1 presents a summary of the prob-
abilistic models of resistance and loads (dead load and live
load). Two live load models, namely LL1 and LL2, are con-
sidered, which are associated with an occurrence rate of
1.0/year. The first is representative of a stationary load
process, and the second is a non-stationary load process
with an increasing mean load magnitude. Suppose that
each load event will induce identical load effect to each
component, with which cj = 1 for j = 1, 2, . . . 5. The dete-
rioration of resistance for each component is identical and
deterministic, taking a form of g(t) = 1 − ηtα , where η

and α are two parameters reflecting the rate and shape
of the deterioration process. The deterioration function
evaluated at the end of 50 years equals 0.8. The initial
resistances of the components are identically distributed
and equally correlated pairwise with a correlation coeffi-
cient of ρ = 0.5, unless noted otherwise. The Gaussian
copula is used to describe the joint behaviour of different
component resistances at the initial time.

System reliability assessment
The system reliability is discussed in this section.
Figure 1 presents the time-dependent failure probabilities
Pf,kn(T) = 1− Lkn(T) for reference periods up to 50 years
associated with a single component and a 3-out-of-5 sys-
tem with k = 3 and a linear deterioration function. The
two live load models as summarized in Table 1 are con-
sidered. Note that a(0) = R since cj = 1 for each j. The
probability of failure of a single component is calculated
according to Eq. (2), while the system failure probabil-
ity is estimated with 100,000 replications of simulation.
From Fig. 1 it is seen that, for either a component or a
system, a greater load intensity leads to a greater prob-
ability of failure as expected. Furthermore, for either a
component or a system, the logarithm of failure proba-
bility increases approximately linearly with the duration
of reference period after 20 years. In the presence of the
same load condition, the system reliability is greater than
that of a single component because of the redundancy of
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Fig. 1 Time-dependent failure probabilities of a 3-out-of-5 system
and a single component

the 3-out-of-5 system. In fact, as shown in Table 2, the
mean value ofM(R, 3) is close to that of component resis-
tance, while the standard deviation of M(R, 3) is smaller,
yielding a greater system reliability.
One can use the results in Fig. 1 to estimate the sys-

tem’s performance (e.g., the service life) under the context
of reliability-based assessment. For instance, for the 3-
out-of-5 system with a target reliability index of β = 3.5
(corresponding to a failure probability of 2.33 × 10−4),
the service lives associated with live load models 1 and
2 (c.f. Table 1) are 24.5 and 19.5 years respectively. The
difference between the predicted service lives is evident
of the importance of considering the future varying trend
of loads in an attempt to reasonably estimate the system
performance.
The time-dependent failure probabilities for 4-out-of-

5 and 5-out-of-5 (series) systems are presented in Figs. 2
and 3, respectively. The deterioration shape is linear for all
components and the two live load models in Table 1 (LL1
and LL2) are used. Similar to Fig. 1, a greater load intensity
results in a lower reliability due to the enhanced load risks.
The failure probability of a 4-out-of-5 system is close to
that of a single component, due to the closeness between
the probabilistic behaviour of M(R, 4) and component
resistance at the lower tail. As shown in Table 2, both the

Table 2 Mean and standard deviation (kN·m) ofM(R, k) and
component resistance

Item Mean Standard deviation

Component resistance 3600 720

M(R, 3) 3574.7 573.3

M(R, 4) 3338.4 539.5

M(R, 5) 3045.0 515.6

Fig. 2 Time-dependent failure probabilities of a 4-out-of-5 system
and a single component

mean value and standard deviation ofM(R, 4) are smaller
than those of the component resistance, and these two
factors have opposite effects on the system reliability. In
Fig. 3, the probability of failure of a series system is greater
than that of a single component, which is consistent with
that reported in [20].
Comparing Figs. 1 through 3 it can be seen that when

n is fixed, a greater k results in a smaller reliability. Cor-
respondingly, with a target reliability index of 3.5, the
predicted service life of the system is shortened with a
greater value of k. This can be explained by observing the
monotonicity ofM. In fact, for two integers k1 and k2 sat-
isfying 1 ≤ k1 ≤ k2 ≤ n, it follows that M(a, k1) ≥
M(a, k2) by the definition ofM.

Fig. 3 Time-dependent failure probabilities of a 5-out-of-5 (series)
system and a single component
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Fig. 4 Time-dependent failure probabilities of 3-out-of-n systems for
different numbers of component

The dependence of system failure probability on the
number of components, n, is presented in Fig. 4, where the
load model LL2 in Table 1 is used. A greater number of
components results in a smaller failure probability of the
system, due to the enhanced system redundancy.
The time-dependent failure probabilities for a weighted

k-out-of-5 system are shown in Fig. 5, with a linear deteri-
oration model and LL2. It is assumed that the weights for
the five components are 1,2,3,4 and 5 respectively. Note
that in this case, k could be greater than n while ks varies
between 1 and n. It is observed from Fig. 5 that a smaller
value of k gives a smaller failure probability due to the
weaker requirement of system survival. Furthermore, with

Fig. 5 Time-dependent failure probabilities of weighted k-out-of-5
systems for different k

Fig. 6 Dependence of failure probability of a 4-out-of-5 system on
deterioration shape with g(50) = 0.8

both k and n fixed, the system failure probability asso-
ciated with a weighted system is smaller than that of an
ordinary system because ks ≤ k.

Roles of resistance correlation and deterioration
Figures 6 and 7 examine the effect of resistance deteri-
oration function on the time-dependent reliability of a
4-out-of-5 system, where LL2 in Table 1 is used. The
component resistance degrades by 20% over 50 years in
Fig. 6 and 30% in Fig. 7. The different values of α indi-
cate different dominant deterioration mechanisms. It can
be seen that a severer resistance deterioration leads to a
greater failure probability due to the increased probabil-
ity of load effect exceeding the resistance. Furthermore,
a square-root deterioration shape (with α = 0.5) results
in the greatest failure probability, followed by linear and
parabolic deterioration models. This is because, with the
same g(50), the deterioration mainly occurs at the early
stage with α = 0.5, which gives the smallest resistance
over the time period of 50 years.
The time-dependent failure probabilities associated

with a weighted 4-out-of-5 system subjected to LL2 are
presented in Figs. 8 and 9, where the weights for the five
components are 1 through 5 respectively. It is observed
that a severer resistance deterioration or a smaller value of
α leads to a greater failure probability, which is consistent
with the observations from Figs. 6 and 7. Furthermore,
the failure probability of a weighted system is smaller than
that of an ordinary one due to the fact that ks ≤ k.
Figures 10 and 11 show the dependence of time-

dependent 4-out-of-5 system failure probability on the
resistance correlation ρ. The LL2 in Table 1 is used and
the component resistance degrades linearly by 20% over
50 years. The system is an ordinary one in Fig. 10 and
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Fig. 7 As of Fig. 6 but with g(50) = 0.7

weighted in Fig. 11. A greater resistance correlation results
in a greater failure probability due to the increased vari-
ation of M(R, 4). In fact, as ρ increases from 0.3 to 0.9,
the standard deviation ofM(R, 4) increases from 471.3 to
673.7 kN·m. While the mean of M(R, 4) increases from
3286.0 to 3486.0 kN·m simultaneously, the system reliabil-
ity is less sensitive to this increase in mean. However, the
relationship between the system reliability and the resis-
tance correlation, as revealed in Figs. 10 and 11, does not
necessarily hold for any k. For example, Fig. 12 shows the
time-dependent failure probability for a 5-out-of-5 (series)
system, where the structural configuration is the same as
that in Fig. 10. It can be seen that a greater resistance
correlation results in a smaller failure probability due to
the fact that the increase of mean value ofM(R, 5) domi-
nates in the system reliability compared with the increase

Fig. 8 Dependence of failure probability of a weighted 4-out-of-5
system on deterioration shape with g(50) = 0.8

Fig. 9 As of Fig. 8 but with g(50) = 0.7

of standard deviation. Thus, one should carefully iden-
tify the resistance correlation when assessing the system
reliability in practice.
Finally, it is noticed that for a k-out-of-n system, the reli-

abilities with k = 1 (parallel system) and k = n (series
system) are the upper and lower bounds for the system
reliability, respectively, if the resistance deterioration for
each component is identical. This can be seen by recalling
Eq. (12), where M(a(0), n) ≤ M(a(0), k) ≤ M(a(0), 1).
A more rigorous proof is as follows. Since

M(a(t), n) ≤ M(a(t), k) ≤ M(a(t), 1)

it follows that,

FS[M(a(t), n), t]≤ FS[M(a(t), k), t]≤ FS[M(a(t), 1), t] ,

Fig. 10 Dependence of failure probability of a 4-out-of-5 system on
component resistance correlation (ρ)
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Fig. 11 Dependence of failure probability of a weighted 4-out-of-5
system on ρ

or equivalently,

FS[M(min(a(t)), t]≤ FS[M(a(t), k), t]≤ FS[max(a(t)),t] .

According to Eq. (7), one has

hps(t) ≤ hkn(t) ≤ hss(t) (20)

with which

Lss(T) ≤ Lkn(T) ≤ Lps(T) (21)

This relationship can be further extended to a weighted
k-out-of-n system, and the proof is similar (by replacing k
with ks, which varies between 1 and n at any time t).

Concluding remarks
In this paper, a newmethod is presented for the estimation
of time-dependent reliability of aging k-out-of-n systems

Fig. 12 As of Fig. 10 but with a 5-out-of-5 system

(for both ordinary and weighted ones), considering the
non-stationarity in the external loads and the component
resistance deterioration and correlation. An illustrative
example is presented to demonstrate the applicability of
the proposed method.
Analytical results show that, for a component or a k-out-

of-n system (either ordinary or weighted), the increase of
mean load intensity has a significant impact on the fail-
ure probability. For a k-out-of-n system, an increase of
component number leads to a smaller failure probabil-
ity. Furthermore, a severer resistance deterioration or a
square-root deterioration shape results in a greater failure
probability due to the increased risks of load effect exceed-
ing structural resistance. The reliabilities associated with a
parallel system and a series system serve as the upper and
lower bounds of the k-out-of-n system reliability. How-
ever, the relationship between the system reliability and
the resistance correlation is not necessarily monotonic,
suggesting the importance of reasonably identifying com-
ponent resistance correlation in the estimate of system
safety level.
It is finally noticed that the k-out-of-n system con-

sidered in this paper has been assumed to have iden-
tical component resistance deterioration. More research
efforts are needed in the future to generalize the case to
that with different deterioration processes of component
resistance.
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